Measures for Environmental Preservation Access to Hiyoshi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Muko City, Kyoto
Muko city, Kyoto 1 Section 1 Nature and(Geographical Environment and Weather) 1. Geographical Environment Muko city is located at the southwest part of the Kyoto Basin. Traveling the Yodo River upward from the Osaka Bay through the narrow area between Mt. Tenno, the famous warfield of Battle of Yamazaki that determined the future of this country, and Mt. Otoko, the home of Iwashimizu Hachimangu Shrine, one of the three major hachimangu shrines in Japan, the city sits where three rivers of the Katsura, the Uji and the Kizu merge and form the Yodo River. On west, Kyoto Nishiyama Mountain Range including Mt. Oshio lays and the Katsura River runs on our east. We share three boundaries with Kyoto city - the northern and western boundaries with Nishikyo-ku, and the eastern boundary with Minami-ku and Fushimi-ku. Across the southern boundary is Nagaokakyo city abutting Oyamazaki-cho which is the neighbor of Osaka Prefecture. The city is approximiately 2km from east to west and approximiately 4km from south to north covering the 7.72km2 area. This makes us the third smallest city in Japan after Warabi city and Komae city. Figure 1-1-1 Location of Muko city (Right figure (Kyoto map) : The place of red is Muko city) (Lower figure (Japan map) : The place of red is Kyoto) N W E S 1 Geographically, it is a flatland with the northwestern part higher and the southwestern part lower. This divides the city coverage into three distinctive parts of the hilly area in the west formed by the Osaka Geo Group which is believed to be cumulated several tens of thousands to several million years ago, the terrace in the center, and the alluvial plain in the east formed by the Katsura River and the Obata River. -
Geomorphological Evolution and Sediment Budget Analysis with the Uji River, Kyoto
D-7 Fourth International Conference on Scour and Erosion 2008 GEOMORPHOLOGICAL EVOLUTION AND SEDIMENT BUDGET ANALYSIS WITH THE UJI RIVER, KYOTO Ryoukei AZUMA1 and Hideo SEKIGUCHI2 1Member of ISSMGE, Assistant Professor, Disaster Prevention Research Institute, Kyoto University (Shimomisu, Yoko-oji, Fushimi-ku, Kyoto 612-8235, Japan) E-mail:[email protected] 2 Member of ISSMGE, Professor, Disaster Prevention Research Institute, Kyoto University (Shimomisu, Yoko-oji, Fushimi-ku, Kyoto 612-8235, Japan) E-mail:[email protected] This paper starts with presenting field evidences that illustrate the occurrence of significant bank erosion in a reach of the Uji River. It then demonstrates that the resulting escarpment was not a mere local adjustment, but is an indicator as to how extensively the Uji River has undergone appreciable amounts of channel erosion over the entire 15.2km-long section. The datasets on which the discussion is based include: the cross-channel topographical data (200m intervals along the river course) in 1967, 1979 and 2006 made available from the Yodogawa Office, MLIT. A careful geomorphological analysis of the datasets in terms of GIS, permitted the determination of tempo-spatial changes of areal sediment storage in the Uji River. When integrated over the entire river course, the overall volume of sediment loss due to erosion proved to amount to 3.1 ×106 m3 in the period from 1967 up to 2006. A discussion is made to identifying its practical implications for future riverine management. Furthermore, a discussion is made of the linkage between the extent of the channel erosion and the depositional environments of the sediment that constitutes the boundary of the river channel. -
Mie Aichi Shizuoka Nara Fukui Kyoto Hyogo Wakayama Osaka Shiga
SHIZUOKA AICHI MIE <G7 Ise-Shima Summit> Oigawa Railway Steam Locomotives 1 Toyohashi Park 5 The Museum Meiji-mura 9 Toyota Commemorative Museum of 13 Ise Grand Shrine 17 Toba 20 Shima (Kashikojima Island) 23 These steam locomotives, which ran in the This public park houses the remains of An outdoor museum which enables visitors to 1920s and 1930s, are still in fully working Yoshida Castle, which was built in the 16th experience old buildings and modes of Industry and Technology order. These stations which evoke the spirit century, other cultural institutions such as transport, mainly from the Meiji Period The Toyota Group has preserved the site of the of the period, the rivers and tea plantations the Toyohashi City Museum of Art and (1868–1912), as well as beef hot-pot and other former main plant of Toyoda Automatic Loom the trains roll past, and the dramatic History, and sports facilities. The tramway, aspects of the culinary culture of the times. The Works as part of its industrial heritage, and has mountain scenery have appeared in many which runs through the environs of the park museum grounds, one of the largest in Japan, reopened it as a commemorative museum. The TV dramas and movies. is a symbol of Toyohashi. houses more than sixty buildings from around museum, which features textile machinery and ACCESS A 5-minute walk from Toyohashikoen-mae Station on the Toyohashi Railway tramline Japan and beyond, 12 of which are designated automobiles developed by the Toyota Group, ACCESS Runs from Shin-Kanaya Station to Senzu on the Oigawa Railway ACCESS A 20-minute bus journey from as Important Cultural Properties of Japan, presents the history of industry and technology http://www.oigawa-railway.co.jp/pdf/oigawa_rail_eng.pdf Inuyama Station on the Nagoya Railroad which were dismantled and moved here. -
FY2017 Results of the Radioactive Material Monitoring in the Water Environment
FY2017 Results of the Radioactive Material Monitoring in the Water Environment March 2019 Ministry of the Environment Contents Outline .......................................................................................................................................................... 5 1) Radioactive cesium ................................................................................................................... 6 (2) Radionuclides other than radioactive cesium .......................................................................... 6 Part 1: National Radioactive Material Monitoring Water Environments throughout Japan (FY2017) ....... 10 1 Objective and Details ........................................................................................................................... 10 1.1 Objective .................................................................................................................................. 10 1.2 Details ...................................................................................................................................... 10 (1) Monitoring locations ............................................................................................................... 10 1) Public water areas ................................................................................................................ 10 2) Groundwater ......................................................................................................................... 10 (2) Targets .................................................................................................................................... -
資料29-4 Ihpトレーニングコース2014概要,2013
International Hydrological Programme International Hydrological Programme Forest Hydrology Conservation of Forest, Soil, and Water Resource The Twenty-fourth IHP Training Course 24 November - 7 December, 2014 Nagoya, Japan Hydrospheric Atmospheric Research Center, Nagoya University Supported by Water Resources Research Center, Disaster Prevention Research Institute, Kyoto University Outline A short training course “Forest Hydrology Conservation of Forest, Soil, and Water Resource” will be programmed for participants from Asia-Pacific regions as a part of Japanese contribution to the International Hydrological Program (IHP). The course is composed of a series of lectures and practice sessions. Objectives Incident rainwater is firstly intercepted by foliage and branches and evaporates from their surface to the atmosphere. From the surface full of rainwater, the rainwater conducts to soils along the plant body, and also, some of incident rainwater directly reaches the soils without touching foliage and branches. These rainwaters coming to the soils infiltrate into the soils with being influenced by the soil pore structure, and reaching to groundwater table. During the slow soil water movement, some of the soil water is absorbed by plant roots. It conducts through stem conduits, reaches leaves, and evaporates to the atmosphere through stomata. The ground water flows to a river. This is an outline of water cycling in the forest ecosystems, and science on this water cycling is “Forest Hydrology”. As one can see above, Forest Hydrology has two major scientific aspects, i.e., discharge from forested watershed and water use by trees (evaporation from the forest canopy). Soils in the forested watershed have a high hydraulic conductivity at the ground surface, which prevents from soil erosion, and functions to make soil water flow slow, resulting in a behavior like a dam. -
IWRM Guidelines at River Basin Level, Part
)3". 0HOTOCREDITS #OVERÚ!NDRÖS3ZLLSI .AGYÚ)&!$(ORST7AGNERÚ#")+9IN,UN Ú5.%3#/Ú#OUTERON 6AL£RIEÚ*APAN7ATER!GENCYÚ"'AJDA IWRM Guidelines at River Basin Level PART 2-1 The Guidelines for IWRM Coordination GUIDELINES vol. 2-1.indd 1 24/04/09 18:58:35 TABLE OF CONTENTS 1 FEATURES AND STRUCTURE OF 4 IWRM PROCESS ............................................................... 51 ‘THE GUIDELINES FOR IWRM COORDINATION’ .....3 4.1 The ‘IWRM spiral’ conceptual model ...........................51 1.1 Features .................................................................................3 4.1.1 The IWRM spiral .............................................................. 51 1.2 Structure ...............................................................................3 4.1.2 Stages of the IWRM spiral ............................................ 52 4.1.3 Recognizing the stage shift ............................................ 52 2 SECTORAL PERSPECTIVES IN IWRM ........................5 4.1.4 Where do you stand in the spiral? ............................... 52 2.1 Good-understanding of sectoral perspectives 4.2 Phases, steps and keys for success and their relationships is key for IWRM ...............................5 in the IWRM process .............................................................53 2.2 Water users’ perspectives .................................................5 4.2.1 Phase 1: Recognizing and identifying .......................... 54 2.2.1 Agricultural sector .................................................................5 4.2.2 -
Tourist Guidebook (Pdf)
Tourist Guidebook UNESCO World Cuitural Heritage Site All information contained in this book is based on data as of Feb. 1, 2005 and is subject to change without notice. Kyoto Convention Bureau Kibune Shrine A brief over view Kurama Kibuneguchi of the city Ninose Sanzen-inTemple Ichihara Nikenjaya Kyoto Seika University Kino Iwakura Rakuhoku Hachiman-mae Yase-yuen Sta. Kokusaikaikan Kamigamo Miyake Hachiman Shrine Takaragaike Kozanji Temple Kitayama-dori Shugakuin Imperial Villa Kitayama Matsugasaki Syugakuin Kitaoji Kyoto Imperial Palace Ichijoji Kinkakuji karasuma-dori Temple Kitaoji-dori Rakusai Shimogamo Chayama Shrine Shirakawa-dori Ryoanji Temple Kuramaguchi Mototanaka Ninnaji Temple Saga-Arashiyama Rakuchu Kawaramachi-dori Kawabata-dori Demachiyanagi Imadegawa Higashioji-dori ilwa Line a y o Imadegawa-dori Horikawa-dori K Senbon-dori n Toji-in i Kitanohakubaicho R t a Ryoanji-michi Takaoguchi Omuro u Myoshinji k Subway Karasuma Line Subway u Narutaki f i Ginkakuji Uzumasa Ke Temple Tokiwa JR c h Sanin a Marutamachi-dori Sanjo Keihan Higashiyama i i Main Line c Arashiyama Hanazono Enmachi Marutamachi Marutamachi Sanjo-guchi Rokuoin Kurumazaki Sagaeki-mae Nijo Ke Arisugawa Katabiranotsuji ifuku Castle Kyoto Tenryuji Ra Nijo i ne Uzumasa lw Heian Jingu Rakuto Temple a Oike-dori Shiyakushomae y Nijojomae Oike Karasuma Kaikonoyashiro A Shrine mae rashiyama Line Nijo Yamanouchi Sanjo- Keage Arashiyama Sanjo Subway Tozai Line Tenjingawa-dori dori Shijo-dori YYasakaasaka JJinjainja Karasuma Kawaramachi Omiya Shijo Saiin Saiin Shijo-omiya -
A Revised and Updated Checklist of the Parasites of Eels (Anguilla Spp.) (Anguilliformes: Anguillidae) in Japan (1915-2017)
33 69 生物圏科学 Biosphere Sci. 56:33-69 (2017) A revised and updated checklist of the parasites of eels (Anguilla spp.) (Anguilliformes: Anguillidae) in Japan (1915-2017) 1) 2) Kazuya NAGASAWA and Hirotaka KATAHIRA 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Faculty of Bioresources, Mie University, 1577 Kurima machiya-cho, Tsu, Mie 514-8507, Japan Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan November 2017 生物圏科学 Biosphere Sci. 56:33-69 (2017) REVIEW A revised and updated checklist of the parasites of eels (Anguilla spp.) (Anguilliformes: Anguillidae) in Japan (1915-2017) 1) 2) Kazuya NAGASAWA * and Hirotaka KATAHIRA 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Faculty of Bioresources, Mie University, 1577 Kurima machiya-cho, Tsu, Mie 514-8507, Japan Abstract Information on the protistan and metazoan parasites of four species of eels (the Japanese eel Anguilla japonica, the giant mottled eel Anguilla marmorata, the European eel Anguilla anguilla, and the short-finned eel Anguilla australis) in Japan is summarized in the Parasite-Host and Host- Parasite lists, based on the literature published for 103 years between 1915 and 2017. This is a revised and updated version of the checklist published in 2007. Anguilla japonica and A. marmorata are native to Japan, whereas A. anguilla and A. australis are introduced species from Europe and Australia, respectively. The parasites, including 54 nominal species and those not identified to species level, are listed by higher taxa as follows: Sarcomastigophora (no. -
Failed Manhood on the Streets of Urban Japan: the Meanings of Self-Reliance for Homeless Men 日本都市部路傍に男を下げ て−−ホームレス男性にとって自助の意味とは
Volume 10 | Issue 1 | Number 2 | Article ID 3671 | Dec 25, 2011 The Asia-Pacific Journal | Japan Focus Failed Manhood on the Streets of Urban Japan: The Meanings of Self-Reliance for Homeless Men 日本都市部路傍に男を下げ て−−ホームレス男性にとって自助の意味とは Tom Gill Failed Manhood on the Streets of industrialized countries,2 but nowhere is the Urban Japan: The Meanings of Self- imbalance quite as striking as in Japan. Reliance for Homeless Men Thus the two questions I raised are closely related. Livelihood protection (seikatsu hogo) is Tom Gill designed to pay the rent on a small apartment and provide enough money to cover basic living The two questions Japanese people most often expenses. People living on the streets, parks ask about the homeless people they see around and riverbanks may be assumed to be not them are “Why are there any homeless people getting livelihood protection, which means in here in Japan?” and “Why are they nearly all turn that they have not applied for it, or they men?” Answering those two simple questions have applied and been turned down, or they will, I believe, lead us in fruitful directions for have been approved but then lost their understanding both homelessness and eligibility. And since most of the people masculinity in contemporary Japan. concerned are men, our inquiry leads us toward a consideration of Japanese men’s relationship The first question is not quite as naive as it with the welfare system. might sound. After all, article twenty-five of Japan’s constitution clearly promises that “All A woman at risk of homelessness is far more people shall have the right to maintain the likely than a man to be helped by the Japanese minimum standards of wholesome and cultured state. -
Lake Biwa Comprehensive Preservation Initiatives
Bequeathing a Clean Lake Biwa to Future Generations Lake Biwa Comprehensive Preservation Initiatives ― Seeking Harmonious Coexistence with the Lake's Ecosystem ― Lake Biwa Comprehensive Preservation Liaison Coordination Council Lake Biwa Comprehensive Preservation Promotion Council Contents 1 Overview of Lake Biwa and the Yodo River Basin ○ Overview of the Yodo River Basin 1 ○ Water Use in Lake Biwa and the Yodo River Basin ○ Land Use in Lake Biwa and the Yodo River Basin 2 Overview of Lake Biwa ○ Lake Biwa, an Ancient Lake 2 ○ Dimensions of Lake Biwa 3 Development of Lake Biwa and the Yodo River Basin ○ Early History 3 ○ Expanded Farmlands, Increased Rice Production and Subsequent Development of Commerce ○ A Political Center and Cradle of Culture and Tradition ○ Industrial and Economic Development after the Meiji Restoration ○ Changing Lifestyles 4 Background of Lake Biwa Comprehensive ○ Farmland Development and Flooding in the Edo Period (1603 - 1868) 5 Development Program ○ Flood Control During the Meiji Period (1868 - 1912) ○ Modern Projects for Using Water of Lake Biwa ○ Increasing Demand for Water in the Showa Period (1926 - 1989) 5 Lake Biwa Comprehensive Development Program ○ Program System 7 ○ Breakdown of the Program Expenses ○ Environmental Preservation ○ Flood Control ○ Promotion Effective Water Use 6 Outcomes of the Lake Biwa ○ Effects of Flood Control Projects 9 Comprehensive Development Program ○ Effects of Projects Promoting Effective Use of Water ○ Effects of Environmental Preservation Projects 7 Current Situation of -
Text V1 2AK 2 Without Tutlepage
Contents Greetings ………………………………………..…… P. 1 Information about the Symposium ………………… P. 2 Symposium Program Amphibian Genomics and Genome Editing …….. P. 4 Amphibian Conservation ………………….....….. P. 5 Poster Presentations ………………………….….. P. 6 Abstracts Lectures Amphibian Genomics and Genome Editing …. P. 11 Amphibian Conservation …………………….. P. 21 Poster Presentations ………………………….….... P. 35 List of Participants …………………….…….………. P. 66 Access ……...………………………………………….. P. 68 Greetings On behalf of the organizing committee, I would like to welcome you to the Institute for Amphibian Biology of Hiroshima University’s International Symposium, “Frontiers in Amphibian Biology: Endangered Species Conservation and Genome Editing,” held in Hiroshima on March 27–28. The Institute is now engaged in a research project titled “Pioneering amphibian research: conservation of endangered amphibian species and development of gene targeting methods,” which is funded by a special education and research expense from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The project will conclude at the end of fiscal 2013. The purpose of this symposium is to introduce the outcomes and findings of the project, as well as promote international exchange among researchers of amphibian biology. The symposium’s scientific program comprises oral and poster presentations covering research areas such as endangered species conservation, landscape genetics, genome editing, and other topics in amphibian biology. To explore the recent progress in these areas, 10 invited biologists and 4 members of the Institute’s staff will give oral presentations with chaired discussion. In addition, 46 participants will give poster presentations with free discussion. The oral presentations will focus on genome editing on March 27 and on endangered species conservation on March 28. I hope that this symposium is able to greatly benefit the study of amphibian biology by inspiring future investigations, stimulating collaborative endeavors, and establishing new friendships. -
Hygrobates (Hygrobates)Capillus
JapaneseJapaneseSociety Society ofSystematicof Systematic Zoology Species Diversity, 2005, 10, 27-36 Hygrobates (Hygrobates) capillus sp. nov. (Araehnida: Acari: Hydrachnidia: Hygrobatidae) from South-central Honshu, Japan, with Records of Two Allied Species Noriko Matsumoto, Hiroshi Kajihara and Shunsuke F. Mawatari Division ofBiological Sciences, Graduate School of Science, Hbkkaido University. Sapporo, 0600810 .lapan E-mail: noriho-m@./sci.hokudat.ac.J'p aVAD; kazia[t;sct,hohudai.ac,jp (HK); [email protected] (SFIVO (Received 13 July 2004; Accepted 12 January 2005) Three sjmilar species of water mite in the subgenus Hygrobates (genus Hy- grobates) are reported firom middle Henshu, Japan. These include two re- cently described lacustrine species, H)lgrobates (ltvgrobates) biu)aensis Tu- zovskij, 2003 and H. (H.) rarus Tuzovskij, 2oo3, which are known only from Lake Biwa, and one new fluvial species, Il (HL) copiltus sp. nov. The new species is distinguished from the other two by the truncate P-2 ventral pro- jection; the female genital plates being longer than the genital opening and extending to the post-genital sclerite; the anterior border of the flat male genital plate; and the ]arger body size (408-603um). Two or three setae are confirmed to be present on the fernale pre-genital sclerites in the three species reported herein; this character state has never so far been recorded in any member of this subgenus, Key Words: Hydrachnidia, water mites, new species, central Japan, ft'esh- water, fine structure, taxonomy, scanning electron microscopy, Introduction Most species of H),grobates Koch, 1837, one ef the largest genera of the water- mite family Hygrobatidae, occur in still or slowly fiowing waters, such as lakes, ponds, and the middle and lower reaches of rivers.