Genetic Variation and Phylogenetic Relationships in the Podalyrieae and Related Tribes (Fabaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Variation and Phylogenetic Relationships in the Podalyrieae and Related Tribes (Fabaceae) GENETIC VARIATION AND PHYLOGENETIC RELATIONSHIPS IN THE PODALYRIEAE AND RELATED TRIBES (FABACEAE) by MICHELLE VAN DER BANK Thesis presented in fulfilment of the requirements for the degree PHILOSOPB1AE DOCTOR in BOTANY in the FACULTY OF SCIENCES at the RAND AFRIKAANS UNIVERSITY PROMOTER: PROF. B-E VAN WYK SEPTEMBER 1999 I dedicate this thesis to my late father, Pierre Wessels, in recognition of his unfailing support for everything that I have attempted CONTENTS: Table of contents Abstract iv Acknowledgements Foreword vi Chapter 1: General introduction and motivation for the study ' Chapter 2: Material and methods 3 2.1 Sampling of populations and taxa for genetic studies 4 2.2 Electrophoretic analysis 4 2.2.1 Electrophoretic technique 4 2.2.2 Choice of tissue type 5 2.2.3 Enzyme extraction 5 2.2.4 Starch gel and buffer systems 6 2.2.5 Run conditions 8 2.2.6 Histochemical staining of gels 8 2.3 Genetic interpretation of gels and statistical analysis 9 2.3.1 Genetic interpretation of isozyme and allozyme variation 9 2.3.1.1 Locus nomenclature 9 2.3.2 Statistical analysis 10 2.3.2.1 Allelic and genotypic frequencies 10 2.3.2.2 Genetic diversity 10 2.3.2.3 Genetic variability — polymorphism 11 2.3.2.4 Genetic divergence 11 2.3.2.5 Constructing dendrograms depicting phylogenetic linkages 12 2.3.3 Computer analysis 12 2.4 DNA sequencing 13 2.4.1. DNA extraction 13 2.4.2 DNA purification 13 2.4.3 PCR amplification 14 2.4.4 PCR purification 14 2.4.5 DNA sequencing/ cycle sequencing 15 2.4.6 Sequence alignment and treatment of sequence insertions and deletions 17 2.5 Statistical analysis of DNA data 18 2.5.1 Distance data 18 2.5.1.1 Additive distance data 18 2.5.1.2 Ultrametric distance data 19 2.5.2 Discrete data 20 2.5.2.1 Maximum likelihood 20 2.5.2.2 Maximum parsimony- 21 2.5.2.2.1 Choice of parsimony optimality criterion 22 i. 2.5.2.2.2 Algorithm used to search for optimal trees 22 2.5.2.2.3 Measures used to evaluate results 26 2.5.3 Consensus tree 28 2.5.4 Inclusion of an outgroup 28 2.5.5 Choice of methods used to analysed sequence data in the present study 29 Chapter 3: Enzyme electrophoresis and plant systematics 30 3.1 General introduction to the Chapter 31 3.2 Abstract 31 3.3 Introduction 31 3.4 Nature of electrophoretic data 34 3.5 Advantages of electrophoretic data 34 3.6 Disadvantages of electrophoretic data 35 3.7 Taxonomic uses of electrophoretic data 37 3.7.1 Phenetic approach 38 3.7.1.1 Calculation of overall genetic similarity values 38 3.7.1.2 Clustering algorithms 41 3.7.2 Cladistic approach 42 3.8 A literature review of genetic identities among taxa at three levels of divergence 44 3.9 Conclusions 47 Chapter 4: Taxonomic value of isozyme data at the population level 73 4.1 General introduction to the chapter 74 4.2 Allozyme variation in Virgilia oroboides 77 4.3 Genetic variation within and geographical relationships between four natural populations of Virgilia oroboides 83 4.4 Biochemical genetic variation in four wild populations of Aspalathus linearis 94 4.5 Evolution of sprouting versus seeding in Aspalathus linearis 101 4.6 Summary of results 115 Chapter 5: Taxonomic value of isozymes at the species level 116 5.1 General introduction to the chapter 117 5.2 Speciation in Virgilia (Fabaceae): Allozymes divergence followed by introgression? 119 5.3 Summary of results 135 Chapter 6: Taxonomic value of isozymes at the generic and tribal levels 136 6.1 General introduction to the chapter 137 6.2 Genetic divergence among genera of the tribe Podalyrieae (Fabaceae) 138 6.3 Summary of results 150 Chapter 7: Variation within the internal transcribed spacer region of nuclear ribosomal DNA in the tribe Podalyrieae (Fabaceae) 151 7.1 General introduction to the Chapter 152 7.1.1 Structure and orginisation of plant nuclear ribosomal DNA 153 7.1.2 Evolutionary considerations for phylogeny reconstruction 154 7.1.2.1 Favorable properties 154 7.1.2.2 Limitations 157 ii 7.2 Systematics of the tribe Podalyrieae (Fabaceae) based on DNA, morphological and chemical data 158 Chapter 8: Conclusions 181 Chapter 9: References 191 iii ABSTRACT Genetic variation estimates and phylogenetic studies (based on genetic differentiation) of the Podalyrieae and related tribes (family Fabaceae) are presented. The tribe is endemic to the Cape fynbos region of South Africa, except for Calpurnia. Although Podalyrieae have been the focus of many taxonomic studies no genetic variation studies have been done on this group of plants. Genetic variation in selected populations, species and genera was studied to evaluate the use of enzyme electrophoresis in systematic studies on these three levels. Eight case studies are presented. Allelic data proved to be extremely useful at the population and congeneric species level. However, at a higher level, it showed some potential when treated with caution. It is not possible to predict beforehand if meaningful results can be obtained at this higher (i.e. confamilial genus) level of divergence. A large number of plant genetic data sets from the literature was analysed to determine typical levels and ranges of genetic differentiation within families, genera and species. A graph of probability against taxonomic rank was constructed and compared with results published by Thorpe (1982, 1983). The results indicate that plant taxa have a reduced biochemical evolution (less diverse than animals at comparable taxonomic ranks) in contrast to Thorpe's (1982, 1983) reports (which were based on less data for plant taxa). Genetic identity values between 3041 pairs of taxa were used in the present study. The phylogenetic relationships among genera of the tribe Podalyrieae were estimated from sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA as well as morphological and chemical data. Morphological and. ITS sequence data produced cladograms with similar topologies, both supporting the exclusion of Hypocalyptus from Podalyrieae. A broadening of Podalyrieae, which includes Xiphothecinae, Podalyriinae and Cyclopia, is suggested. The multidisciplinary approach followed in this study provided a better understanding of taxonomic and evolutionary relationships in the Podalyrieae and some other Cape legumes. iv ACKNOWLEDGEMENTS: First, and foremost I want to thank Prof. BeniErik Van Wyk for accepting me as a candidate for this study and for his guidance and advice. I also' want to thank him for his constructive criticism, which enabled me to seek answers to fundamental questions. I would also like to express my sincere gratitude to the following persons and institutions: My husband Herman for assisting me iri the enzyme electrophoretic studies, and also for his encouragement throughout my studies. Drs. Mark Chase and Mike Fay from the Royal Botanical Gardens, Kew for assisting me in DNA sequence analyses and for their continuous encouragement. Gail Reeves who taught me molecular techniques. Paul Green for proofreading the manuscript and support. Various anonymous reviewers who provided constructive criticism on the papers from this study that were submitted for publication. Wilma, Carien and Hester for help with constructing some of the, figures. Current and previous colleagues and students at the departments of Botany and Zoology (Rand Afrikaans University), in particular Alvaro Viljoen for encouragement and support. Rand Afrikaans University and the Foundation for Research Development for financial support. I thank my family and two of my friends, Erna Bruwer and Nozuko Makhuhva, for their love, assistance and understanding throughout my study. FOREWORD: This thesis is presented as a collection of eight case studies. The research topics are preceded by an introduction (Chapter 1) describing the motivation and aims for the study. Chapter 2 provides more detailed information on material and methods used during the study. This section was included since basic data on research techniques, interpretation and statistical analysis could not be dealt with comprehensively in research papers. Chapter 3 is the first of four Chapters dealing with the taxonomic and phylogenetic value of enzyme electrophoretic data at the population, species, generic and suprageneric levels. The data in Chapter 3 is being prepared for publication in Taxon. Chapter 4 consists of papers dealing with the taxonomic value of allelic data at the population level. The papers: "Allozyme variation in Virgilia oroboides", "Genetic variation within and geographical relationships between four populations of Virgilia oroboides", and "Biochemical genetic variation in four wild populations of Aspalathus linearis" were published in Biochemical Systematics and Ecology. The manuscript on the evolution of sprouting versus seeding in A. linearis has been accepted for publication in Plant Systematics and Evolution. Chapter 5 describes the taxonomic value of isozyme data at the species level and this section was also published in Plant Systematics and Evolution. Chapter 6 deals with the taxonomic value of isozymes at the generic and tribal levels. This paper is in preparation and will be submitted for publication in Biochemical Systematics and Ecology. Chapter. 7 presents a molecular analysis of the Cape legume tribe Podalyrieae using sequences of the internal transcribed spacer (ITS) of nuclear ribosomal DNA to determine phylogenetic relationships. This paper was submitted for publication in Systematic Botany. The factual content of Chapters 3 to 7 is as published, although the format has been standardised to provide uniformity throughout the thesis. The statistical methods used differ slightly from paper to paper. This reflects the requirements of specific journals and the recommendations of various referees. The research papers are followed by a summary (Chapter 8). Chapter 8 provides a discussion of the results obtained and conclusions reached and it highlights the scientific value of the present study.
Recommended publications
  • Project: 2003-NPS-305-P Seed Fates of Arctomecon Californica By
    Project: 2003-NPS-305-P Seed Fates of Arctomecon californica By: Laura Megill & Dr. Lawrence Walker University of Nevada, Las Vegas Final Report Clark County Multiple Species Habitat Conservation Plan June 30, 2006 ** A copy of the finished thesis and subsequent publications will be sent upon completion. INTRODUCTION The Las Vegas bearpoppy, Arctomecon californica Torr. and Frem., is a rare herbaceous perennial endemic to the Mojave Desert that mainly inhabits gypsum outcrops. The Las Vegas bearpoppy is listed as Critically Endangered by the State of Nevada (Mistretta et al., 1995). A vital aspect of the life history of the bearpoppy that has been overlooked in previous studies is the fate of seeds. The unknown fate of the bearpoppy seeds provides an information gap in conservation management plans that is critical to plan mitigation measures (Powell and Walker 2003). Therefore, the objective of this research project is to determine the seed fates of the Las Vegas bearpoppy to further promote conservation efforts. The scope of this project follows seed fates through seed production, seed dispersal, and granivory to incorporation within the soil seed bank. In addition, seed viability testing will occur throughout the project to substantiate seed fate data. The research data will be collected from four study areas with an additional area added for soil seed bank studies traversing the natural range of the Las Vegas bearpoppy over a two-year consecutive period. The following hypotheses will be addressed in this research study: (1) Seed production corresponds to capsule size and number of rosettes. (2) Primary seed dispersal declines leptokurtically from the source.
    [Show full text]
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • Colorado Wildlife Action Plan: Proposed Rare Plant Addendum
    Colorado Wildlife Action Plan: Proposed Rare Plant Addendum By Colorado Natural Heritage Program For The Colorado Rare Plant Conservation Initiative June 2011 Colorado Wildlife Action Plan: Proposed Rare Plant Addendum Colorado Rare Plant Conservation Initiative Members David Anderson, Colorado Natural Heritage Program (CNHP) Rob Billerbeck, Colorado Natural Areas Program (CNAP) Leo P. Bruederle, University of Colorado Denver (UCD) Lynn Cleveland, Colorado Federation of Garden Clubs (CFGC) Carol Dawson, Bureau of Land Management (BLM) Michelle DePrenger-Levin, Denver Botanic Gardens (DBG) Brian Elliott, Environmental Consulting Mo Ewing, Colorado Open Lands (COL) Tom Grant, Colorado State University (CSU) Jill Handwerk, Colorado Natural Heritage Program (CNHP) Tim Hogan, University of Colorado Herbarium (COLO) Steve Kettler, U.S. Fish and Wildlife Service (USFWS) Andrew Kratz, U.S. Forest Service (USFS) Sarada Krishnan, Colorado Native Plant Society (CoNPS), Denver Botanic Gardens Brian Kurzel, Colorado Natural Areas Program Eric Lane, Colorado Department of Agriculture (CDA) Paige Lewis, The Nature Conservancy (TNC) Ellen Mayo, U.S. Fish and Wildlife Service Mitchell McGlaughlin, University of Northern Colorado (UNC) Jennifer Neale, Denver Botanic Gardens Betsy Neely, The Nature Conservancy Ann Oliver, The Nature Conservancy Steve Olson, U.S. Forest Service Susan Spackman Panjabi, Colorado Natural Heritage Program Jeff Peterson, Colorado Department of Transportation (CDOT) Josh Pollock, Center for Native Ecosystems (CNE) Nicola Ripley,
    [Show full text]
  • Nature Conservation Practical Year 2014
    Polhillia on the brink: Taxonomy, ecophysiology and conservation assessment of a highly threatened Cape legume genus by Brian du Preez Thesis presented in partial fulfilment of the requirements for the degree of Master of Science (Botany) in the Faculty of Science at Stellenbosch University Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Supervisors: Prof. L.L. Dreyer, Prof. A.J. Valentine, Prof. M. Muasya April 2019 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third-party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: ……15 February 2019……… Copyright ©2019 Stellenbosch University All rights reserved. i Stellenbosch University https://scholar.sun.ac.za TABLE OF CONTENTS DECLARATION....................................................................................................................... i LIST OF FIGURES ................................................................................................................ vi LIST OF TABLES ................................................................................................................... x ABSTRACT .........................................................................................................................
    [Show full text]
  • Dynamics of a Dwarf Bear-Poppy (Arctomecon Humilis) Population Over a Sixteen-Year Period
    Western North American Naturalist Volume 64 Number 4 Article 8 10-29-2004 Dynamics of a dwarf bear-poppy (Arctomecon humilis) population over a sixteen-year period K. T. Harper Brigham Young University Renée Van Buren Utah Valley State College, Orem, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Harper, K. T. and Van Buren, Renée (2004) "Dynamics of a dwarf bear-poppy (Arctomecon humilis) population over a sixteen-year period," Western North American Naturalist: Vol. 64 : No. 4 , Article 8. Available at: https://scholarsarchive.byu.edu/wnan/vol64/iss4/8 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 64(4), © 2004, pp 482–491 DYNAMICS OF A DWARF BEAR-POPPY (ARCTOMECON HUMILIS) POPULATION OVER A SIXTEEN-YEAR PERIOD K.T. Harper1,2 and Renée Van Buren3 ABSTRACT.—A population of the dwarf bear-poppy (Arctomecon humilis Coville, Papaveraceae) at Red Bluff, Wash- ington County, Utah, was monitored twice annually between 1987 and 2002. This is a narrowly endemic, gypsophilous species that has been formally listed as endangered since 1979. During the 16 years of observation, density of this species has fluctuated between 3 and 1336 individuals on the 0.07-ha monitoring plot. Moderate to large recruitments of seedlings occurred in 1992, 1995, and 2001. Seedling recruitments from a large, long-lived seed bank are triggered by abundant precipitation during the February–April period.
    [Show full text]
  • Alplains 2013 Seed Catalog P.O
    ALPLAINS 2013 SEED CATALOG P.O. BOX 489, KIOWA, CO 80117-0489, U.S.A. Three ways to contact us: FAX: (303) 621-2864 (24 HRS.) email: [email protected] website: www.alplains.com Dear Growing Friends: Welcome to our 23rd annual seed catalog! The summer of 2012 was long, hot and brutal, with drought afflicting most of the U.S. Most of my botanical explorations were restricted to Idaho, Wash- ington, Oregon and northern California but even there moisture was below average. In a year like this, seeps, swales, springs, vestigial snowbanks and localized rainstorms became much more important in my search for seeding plants. On the Snake River Plains of southern Idaho and the scab- lands of eastern Washington, early bloomers such as Viola beckwithii, V. trinervata, Ranunculus glaberrimus, Ranunculus andersonii, Fritillaria pudica and Primula cusickiana put on quite a show in mid-April but many populations could not set seed. In northern Idaho, Erythronium idahoense flowered extensively, whole meadows were covered with thousands of the creamy, pendant blossoms. One of my most satisfying finds in the Hells Canyon area had to be Sedum valens. The tiny glaucous rosettes, surround- ed by a ring of red leaves, are a succulent connoisseur’s dream. Higher up, the brilliant blue spikes of Synthyris missurica punctuated the canyon walls. In southern Oregon, the brilliant red spikes of Pedicularis densiflora lit up the Siskiyou forest floor. Further north in Oregon, large populations of Erythronium elegans, Erythronium oregonum ssp. leucandrum, Erythro- nium revolutum, trilliums and sedums provided wonderful picture-taking opportunities. Eriogonum species did well despite the drought, many of them true xerics.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Genetic Variation in the Illinois-Threatened Hill Prairie Larkspur
    GENETIC VARIATION IN THE ILLINOIS-THREATENED HiLL PRAIRIE LARKSPUR Brooke BRYant, Department of Biology, Augustana College, 639-38th Street, Rock Island, IL 61201 EliZabeth EYler, Illinois College of Optometry, 3241 S. Michigan Avenue, Chicago, IL 60616 Stefan Johnsrud, Department of Plant Biology, University of Illinois at Urbana-Champaign, 265 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801 Jason KoontZ, Department of Biology, Augustana College, 639-38th Street, Rock Island, IL 61201, [email protected] Abstract: Delphinium carolinianum Walter is a threatened A hill prairie is a dry grassland patch located on the west wildflower in the state of Illinois, where it is limited to iso- or southwest slope of an elevation (Evers 1955). Hill prai- lated hill prairies along the Mississippi River. Isolated pop- ries are one of the least disturbed prairies left in the United ulations often experience little to no gene flow with other States because the steep slopes where they are located are populations, and this may cause inbreeding depression that not suitable for conversion to farmland. Agriculture and ultimately leads to extinction. Through use of amplified development have replaced the surrounding natural areas, fragment length polymorphism (AFLP) molecular markers, causing the habitat of the hill prairie larkspur to become we assessed the patterns of genetic variation within and be- highly fragmented into small “hill prairie islands.” The tween populations of D. carolinianum to better understand lack of conservation within and around the hill prairies the stability of extant populations of this rare wildflower. Jo Daviess Stephenson Our data show that high levels of genetic variation are pres- Winnebago Boone McHenr y Lake ent within the populations studied, yet it is unclear whether Carroll Ogle DeKalb Kane Cook this variation is due to current gene flow or preservation of DuPage Whiteside Lee historic variation.
    [Show full text]
  • Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
    RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits.
    [Show full text]
  • Threatened, Endangered, Candidate & Proposed Plant Species of Utah
    TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]