Species Status Assessment Report for the San Clemente Island Larkspur (Delphinium Variegatum Ssp

Total Page:16

File Type:pdf, Size:1020Kb

Species Status Assessment Report for the San Clemente Island Larkspur (Delphinium Variegatum Ssp Species Status Assessment Report for the San Clemente Island larkspur (Delphinium variegatum ssp. kinkiense) Version 1.0 Image courtesy of US Navy March 2020 U.S. Fish and Wildlife Service Pacific Southwest Region Sacramento, CA ACKNOWLEDGEMENTS This document was prepared by the Texas A&M Natural Resources Institute in cooperation with the U.S. Fish and Wildlife Service and the United States Navy as part of the Service’s San Clemente Island Species Status Assessment Team. We would like to recognize and thank the following individuals who provided substantive information and/or insights for our SSA: Sula Vanderplank, Dawn Lawson, Jon Rebman, Kim O’Connor, Bryan Munson, and Melissa Booker. Additionally, valuable input into the analysis and reviews of a draft of this document were provided by Mitchell McGlaughlin and Andrea Williams. We appreciate their input and comments, which resulted in a more robust status assessment and final report. Suggested reference: U.S. Fish and Wildlife Service. 2020. Species status assessment report for the San Clemente Island larkspur (Delphinium variegatum ssp. kinkiense), Version 1.0. March 2020. Sacramento, CA. SSA Report – San Clemente Island larkspur ii March 2020 EXECUTIVE SUMMARY This Species Status Assessment (SSA) provides an analysis of the overall species viability for the San Clemente Island larkspur (Delphinium variegatum ssp. kinkiense). To assess the viability of this subspecies, we, the U.S. Fish and Wildlife Service, used the conservation biology principles of resiliency, redundancy, and representation (3 Rs). Specifically, we identified the subspecies’ ecological requirements and resources needed for individual survival and reproduction. We described the stressors (threats) influencing these resources and evaluated current levels of population resiliency and subspecies redundancy and representation using available metrics to forecast the ability of this subspecies to sustain populations into the future. The San Clemente Island larkspur is an herbaceous perennial in the buttercup family (Ranunculaceae) that is endemic to San Clemente Island (SCI) off the coast of California. The San Clemente Island larkspur was federally listed as endangered on August 11, 1977. A five-year status review was completed in 2008 and recommended reclassification of the subspecies from endangered to threatened. A request for new information during an initiation for a new five-year status review was issued in 2010; no updated 5-year review has been published. San Clemente Island larkspur is one of two subspecies of Delphinium variegatum that occur exclusively on SCI, the other being Thorne’s larkspur (Delphinium variegatum spp. thornei). A third subspecies, Royal larkspur (D. v. spp. variegatum), occurs on the mainland. The taxonomic separation of San Clemente Island larkspur from Thorne’s larkspur is not very definitive from field observation. When the two subspecies were described, there were fewer locations and individuals known on the island, and the island subspecies were distinguished primarily by flower color, with Thorne’s larkspur noted to have generally bright blue (i.e., darker), slightly larger flowers than the San Clemente Island larkspur, which generally has white flowers. While this taxonomic treatment is still used, these color and flower size metric distinctions do not adequately separate these taxa. San Clemente Island larkspur occurs mostly in the northern portion of the island, and Thorne’s larkspur occurs in the southern portion of the island. However, in the middle of the island (and on the far southern end), the two flower colors coexist in many locations, with varying proportions of each color, and flower colors ranging from pure white to dark purple. Thus, expert opinion, genetic research, and careful consideration of taxonomic challenges sheds doubt on the existence of two distinct taxa on SCI, and it has been suggested that the two subspecies may be a single taxon separate from Delphinium variegatum or that the two subspecies might be better described as varieties. Genetic research using allozyme data to validate two taxa was inconclusive, and only additional genetic research can determine whether there are any significant genetic differences between the two flower forms present on the island. However, from a regulatory perspective, locations and individuals currently recognized as San Clemente Island larkspur must be assumed as such, and these are the focus of this assessment, although we account for locations where the population appears to be mixed or otherwise in question. Like most other California larkspurs, San Clemente Island larkspur can survive below ground when conditions are unfavorable and may remain dormant and not appear above-ground for one or more years. We assume that the subspecies is relatively long-lived. Because of this dormancy, and additionally because flower production in Delphinium can be highly variable and may be dependent upon quite localized weather conditions, exact numbers of individuals are difficult to locate and count. The subspecies is generally found within mid- to high- elevation grasslands on the east side of the northern and central portions of the island where it occurs in SSA Report – San Clemente Island larkspur iii March 2020 clay, loam, and rocky soils with soil-depths ranging from shallow to deep; however, it is more often associated with non-clay soils. Reported habitats have included costal grasslands as well as grassy slopes and benches, open grassy terraces, and chaparral and oak woods. Using a strict ruleset to avoid overcounting the subspecies and segmenting the island population by watershed for counting/management purposes, we estimate there are currently 18,956 individuals within 22 watersheds on SCI. Another two watersheds are known to be occupied, but data do not exist for estimated numbers of individuals. Two additional watersheds do not contain locations identified as San Clemente Island larkspur; however, these watersheds occur in an area where white individuals have been noted to be prominent within groups, and thus, we assume these groups are of mixed subspecies. We find that the subspecies currently has generally high levels of resiliency within watersheds and as a population overall, appears to have sufficient representation, based on the diverse areas it occupies and genetic studies, and sufficient redundancy, occupying many of the same areas it has been known to historically and increasing in numbers and distribution since listing. At listing under the Endangered Species Act (ESA), nonnative herbivores were the primary threat to San Clemente Island larkspur. As a result of their removal by 1992, habitat conditions improved and led to increases in the cover of native and nonnative plants on the island, including San Clemente Island larkspur and several other threatened and endangered species. In the absence of the primary threat, additional threats to San Clemente Island larkspur that have been identified include: (1) land use, (2) erosion, (3) nonnative plants, (4) fire and fire management, and (5) climate change. SCI is owned by the U.S. Department of the Navy (Navy) and, with its associated offshore range complex, the island is the primary maritime training area for the Pacific Fleet and Sea Air and Land Teams (SEALs) and supports training by the U.S. Marine Corps, the U.S. Air Force, and other military organizations. As such, portions of the island receive intensive use by the military and can involve the movement of vehicles and troops over the landscape and can include live munitions fire, incendiary devices, demolitions, and bombardment. However, very few individuals exist within these training areas; less than 1% of the population occurs in a training area that gets heavy use. Current erosion issues are localized, and erosion is generally decreasing on the island as the vegetation continues to recover. While San Clemente Island larkspur exist in watersheds where erosion resulting from the Assault Vehicle Maneuver Areas (AVMAs) could impact an estimated 344 individuals, an Erosion Control Plan is expected to prevent or correct erosion that may occur as a result of military operations and training in the AVMA. One other location of an estimated 70 individuals exists near a road where erosion impacts are projected to be higher, but still, this threat is minor. While not much is known about the tolerance of the subspecies to fires of different severities or frequencies, based on field observations and closely related species, fire does not appear to negatively impact San Clemente Island larkspur, and may even benefit the subspecies. We assume that San Clemente Island larkspur is not threatened by fire on SCI. Non-native annual and perennial grasses are widespread on SCI and have been for many decades. No assessment to track these invasive plants within occupied habitat areas has been done, but none is indicated at this time. San Clemente Island larkspur is found within naturalized, non-native grasslands, and there is the potential that these exotic annual grasses could out- compete San Clemente Island larkspur or affect fire regimes, making fires more likely. However, SSA Report – San Clemente Island larkspur iv March 2020 it does not appear as if these grasses are expanding, and they have been present during the recorded fire history, so we do not expect fire patterns to change due to these non-native grasses. The factor that appears to have the most potential to impact species viability in the future
Recommended publications
  • Sunol Wildflower Guide
    Sunol Wildflowers A photographic guide to showy wildflowers of Sunol Regional Wilderness Sorted by Flower Color Photographs by Wilde Legard Botanist, East Bay Regional Park District Revision: February 23, 2007 More than 2,000 species of native and naturalized plants grow wild in the San Francisco Bay Area. Most are very difficult to identify without the help of good illustrations. This is designed to be a simple, color photo guide to help you identify some of these plants. The selection of showy wildflowers displayed in this guide is by no means complete. The intent is to expand the quality and quantity of photos over time. The revision date is shown on the cover and on the header of each photo page. A comprehensive plant list for this area (including the many species not found in this publication) can be downloaded at the East Bay Regional Park District’s wild plant download page at: http://www.ebparks.org. This guide is published electronically in Adobe Acrobat® format to accommodate these planned updates. You have permission to freely download and distribute, and print this pdf for individual use. You are not allowed to sell the electronic or printed versions. In this version of the guide, only showy wildflowers are included. These wildflowers are sorted first by flower color, then by plant family (similar flower types), and finally by scientific name within each family. Under each photograph are four lines of information, based on the current standard wild plant reference for California: The Jepson Manual: Higher Plants of California, 1993. Common Name These non-standard names are based on Jepson and other local references.
    [Show full text]
  • Alplains 2013 Seed Catalog P.O
    ALPLAINS 2013 SEED CATALOG P.O. BOX 489, KIOWA, CO 80117-0489, U.S.A. Three ways to contact us: FAX: (303) 621-2864 (24 HRS.) email: [email protected] website: www.alplains.com Dear Growing Friends: Welcome to our 23rd annual seed catalog! The summer of 2012 was long, hot and brutal, with drought afflicting most of the U.S. Most of my botanical explorations were restricted to Idaho, Wash- ington, Oregon and northern California but even there moisture was below average. In a year like this, seeps, swales, springs, vestigial snowbanks and localized rainstorms became much more important in my search for seeding plants. On the Snake River Plains of southern Idaho and the scab- lands of eastern Washington, early bloomers such as Viola beckwithii, V. trinervata, Ranunculus glaberrimus, Ranunculus andersonii, Fritillaria pudica and Primula cusickiana put on quite a show in mid-April but many populations could not set seed. In northern Idaho, Erythronium idahoense flowered extensively, whole meadows were covered with thousands of the creamy, pendant blossoms. One of my most satisfying finds in the Hells Canyon area had to be Sedum valens. The tiny glaucous rosettes, surround- ed by a ring of red leaves, are a succulent connoisseur’s dream. Higher up, the brilliant blue spikes of Synthyris missurica punctuated the canyon walls. In southern Oregon, the brilliant red spikes of Pedicularis densiflora lit up the Siskiyou forest floor. Further north in Oregon, large populations of Erythronium elegans, Erythronium oregonum ssp. leucandrum, Erythro- nium revolutum, trilliums and sedums provided wonderful picture-taking opportunities. Eriogonum species did well despite the drought, many of them true xerics.
    [Show full text]
  • Download Curriculum Vitae
    Jason Ager Koontz Biology Department, Augustana College Phone: 309-794-3442 639-38th Street FAX: 309-794-8004 Rock Island, IL 61201 E-mail: [email protected] Education 1993 B.S. (Botany) Iowa State University, Ames, IA (with Distinction, Honors Program, and Phi Beta Kappa) 1995 M.S. (Botany) Miami University, Oxford, OH 2000 Ph.D. (Botany) Washington State University, Pullman, WA Current Position 7/14-present: Chair of Biology 8/11-7/14: Co-Chair of Biology 8/10: Tenured and promoted to Associate Professor 9/04-8/10: Assistant Professor of Biology Becoming Biologists (BI150), General Botany (BI220), Cell Biology (BI210), Nutrition (BI263; 2004-2006), Natural History of Ireland (BI328; 2010, 2013), Conservation Biology (BI410), Conservation Biology Senior Inquiry (BI464) Non-Academic Positions 5/12-present: Research Associate, Rancho Santa Ana Botanic Garden, Claremont, CA. 1/06-present: Research Associate, Department of Botany, The Field Museum of Natural History, Chicago, IL. 10/04-present: Adjunct Assistant Professional Scientist, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, IL. 5/00-9/04: Assistant Research Scientist III, Plant Systematist, Centers for Biodiversity and Wildlife and Plant Ecology, Illinois Natural History Survey, Champaign, IL. Academic Positions 10/01-12/07: Affiliate Assistant Professor, Department of Plant Biology, University of Illinois at Urbana-Champaign, IL. 8/95-5/00: Graduate Teaching Assistant, Department of Botany, Washington State University,
    [Show full text]
  • Genetic Variation in the Illinois-Threatened Hill Prairie Larkspur
    GENETIC VARIATION IN THE ILLINOIS-THREATENED HiLL PRAIRIE LARKSPUR Brooke BRYant, Department of Biology, Augustana College, 639-38th Street, Rock Island, IL 61201 EliZabeth EYler, Illinois College of Optometry, 3241 S. Michigan Avenue, Chicago, IL 60616 Stefan Johnsrud, Department of Plant Biology, University of Illinois at Urbana-Champaign, 265 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801 Jason KoontZ, Department of Biology, Augustana College, 639-38th Street, Rock Island, IL 61201, [email protected] Abstract: Delphinium carolinianum Walter is a threatened A hill prairie is a dry grassland patch located on the west wildflower in the state of Illinois, where it is limited to iso- or southwest slope of an elevation (Evers 1955). Hill prai- lated hill prairies along the Mississippi River. Isolated pop- ries are one of the least disturbed prairies left in the United ulations often experience little to no gene flow with other States because the steep slopes where they are located are populations, and this may cause inbreeding depression that not suitable for conversion to farmland. Agriculture and ultimately leads to extinction. Through use of amplified development have replaced the surrounding natural areas, fragment length polymorphism (AFLP) molecular markers, causing the habitat of the hill prairie larkspur to become we assessed the patterns of genetic variation within and be- highly fragmented into small “hill prairie islands.” The tween populations of D. carolinianum to better understand lack of conservation within and around the hill prairies the stability of extant populations of this rare wildflower. Jo Daviess Stephenson Our data show that high levels of genetic variation are pres- Winnebago Boone McHenr y Lake ent within the populations studied, yet it is unclear whether Carroll Ogle DeKalb Kane Cook this variation is due to current gene flow or preservation of DuPage Whiteside Lee historic variation.
    [Show full text]
  • Etude Sur L'origine Et L'évolution Des Variations Florales Chez Delphinium L. (Ranunculaceae) À Travers La Morphologie, L'anatomie Et La Tératologie
    Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie : 2019SACLS126 : NNT Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris-Sud ED n°567 : Sciences du végétal : du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Paris, le 29/05/2019, par Felipe Espinosa Moreno Composition du Jury : Bernard Riera Chargé de Recherche, CNRS (MECADEV) Rapporteur Julien Bachelier Professeur, Freie Universität Berlin (DCPS) Rapporteur Catherine Damerval Directrice de Recherche, CNRS (Génétique Quantitative et Evolution Le Moulon) Présidente Dario De Franceschi Maître de Conférences, Muséum national d'Histoire naturelle (CR2P) Examinateur Sophie Nadot Professeure, Université Paris-Sud (ESE) Directrice de thèse Florian Jabbour Maître de conférences, Muséum national d'Histoire naturelle (ISYEB) Invité Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie Remerciements Ce manuscrit présente le travail de doctorat que j'ai réalisé entre les années 2016 et 2019 au sein de l'Ecole doctorale Sciences du végétale: du gène à l'écosystème, à l'Université Paris-Saclay Paris-Sud et au Muséum national d'Histoire naturelle de Paris. Même si sa réalisation a impliqué un investissement personnel énorme, celui-ci a eu tout son sens uniquement et grâce à l'encadrement, le soutien et l'accompagnement de nombreuses personnes que je remercie de la façon la plus sincère. Je remercie très spécialement Florian Jabbour et Sophie Nadot, mes directeurs de thèse.
    [Show full text]
  • Gymnaconitum, a New Genus of Ranunculaceae Endemic to the Qinghai-Tibetan Plateau
    TAXON 62 (4) • August 2013: 713–722 Wang & al. • Gymnaconitum, a new genus of Ranunculaceae Gymnaconitum, a new genus of Ranunculaceae endemic to the Qinghai-Tibetan Plateau Wei Wang,1 Yang Liu,2 Sheng-Xiang Yu,1 Tian-Gang Gao1 & Zhi-Duan Chen1 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043, U.S.A. Author for correspondence: Wei Wang, [email protected] Abstract The monophyly of traditional Aconitum remains unresolved, owing to the controversial systematic position and taxonomic treatment of the monotypic, Qinghai-Tibetan Plateau endemic A. subg. Gymnaconitum. In this study, we analyzed two datasets using maximum likelihood and Bayesian inference methods: (1) two markers (ITS, trnL-F) of 285 Delphinieae species, and (2) six markers (ITS, trnL-F, trnH-psbA, trnK-matK, trnS-trnG, rbcL) of 32 Delphinieae species. All our analyses show that traditional Aconitum is not monophyletic and that subgenus Gymnaconitum and a broadly defined Delphinium form a clade. The SOWH tests also reject the inclusion of subgenus Gymnaconitum in traditional Aconitum. Subgenus Gymnaconitum markedly differs from other species of Aconitum and other genera of tribe Delphinieae in many non-molecular characters. By integrating lines of evidence from molecular phylogeny, divergence times, morphology, and karyology, we raise the mono- typic A. subg. Gymnaconitum to generic status. Keywords Aconitum; Delphinieae; Gymnaconitum; monophyly; phylogeny; Qinghai-Tibetan Plateau; Ranunculaceae; SOWH test Supplementary Material The Electronic Supplement (Figs. S1–S8; Appendices S1, S2) and the alignment files are available in the Supplementary Data section of the online version of this article (http://www.ingentaconnect.com/content/iapt/tax).
    [Show full text]
  • Genetic Diversity in Delphinium Variegatum (Ranunculaceae): a Comparison of Two Insular Endemic Subspecies and Their Widespread Mainland Relative1
    American Journal of Botany 89(4): 613–622. 2002. GENETIC DIVERSITY IN DELPHINIUM VARIEGATUM (RANUNCULACEAE): A COMPARISON OF TWO INSULAR ENDEMIC SUBSPECIES AND THEIR WIDESPREAD MAINLAND RELATIVE1 SHANA C. DODD2,4 AND KAIUS HELENURM3,5 2Department of Biology, San Diego State University, San Diego, California 92182 USA; and 3Department of Biology, University of South Dakota, Vermillion, South Dakota 57069 USA Delphinium variegatum is subdivided into three subspecies: D. v. variegatum is widespread in central and northern California, while D. v. kinkiense (an endangered taxon) and D. v. thornei are endemic to San Clemente Island off the coast of southern California. Electrophoretic data for 19 loci were collected from 7 populations of the mainland subspecies and all 24 known populations of the two insular endemic subspecies. Populations of the widespread mainland subspecies have more polymorphic loci (33.6% vs. 24.5%) and more alleles per polymorphic locus (2.61 vs. 2.15) than the insular endemic subspecies. However, observed heterozygosities are lower in the mainland subspecies (0.041 vs. 0.071), presumably due to lower levels of outcrossing (t ϭ 0.464 vs. 0.895). Expected heterozygosities are similar (0.064 vs. 0.074) due to lower alternative allele frequencies in populations of the mainland subspecies (mean q ϭ 0.075 vs. 0.190). Populations of the two insular subspecies are almost equivalent genetically (mean I ϭ 0.997) regardless of taxonomic designation or geographic location. In contrast, one of the mainland populations is genetically well differentiated from the others. If this exceptional population is excluded, the mainland subspecies partitions genetic diversity similarly to the island subspecies, with most variation being found within populations (GST ϭ 0.073 vs.
    [Show full text]
  • Genetic Variation and Inbreeding Depression in the Rare California Endemic, Astragalus Agnicidus (Leguminosae)
    Genetic Variation and Inbreeding Depression in the Rare California Endemic, Astragalus agnicidus (Leguminosae) by Robin Bencie A Thesis Presented to the Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts December, 1997 GENETIC VARIATION AND INBREEDING DEPRESSION IN THE RARE CALIFORNIA ENDEMIC, ASTRAGALUS AGNICIDUS (LEGUMINOSAE) by Robin Bencie We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts. Michael R. Mesler, Major Professor Mich J. Bowes, Commit tee ember Timothy E. Lawlor, Committee Member Andrea J. Pickart, Committee Member John O Sawyer, Committee Member Milton J. Boyd, Graduate Coordinator Linda A. Parker Dean for Research and Graduate Studies ABSTRACT Predictions of low genetic variation and low levels of inbreeding depression in small plant populations were tested on Astragalus agnicidus, a species with only one known population. Loss of alleles through drift and increased inbreeding (followed by selection) may leave small populations genetically depauperate, but with negligible genetic load as well. This scenario results in low levels of inbreeding depression as selfed and outcrossed progeny become more equivalent in overall fitness (i.e., the difference in progeny fitness between pollination treatments decreases). As predicted, gel electrophoresis of isozymes indicated that A. agnicidus has low genetic variation. Five fitness variables: seed set, seed weight, germination, survival, and seedling weight were used to test for fitness differences between open-pollinated and self-pollinated progeny. Some degree of fitness reduction for selfed progeny was seen in all variables, but only in seedling survival was the difference significant.
    [Show full text]
  • Rose-Flowered Larkspur (Delphinium Purpusii)
    Rose-Flowered Larkspur (Delphinium purpusii) Legal Status State: Not state listed California Rare Plant Rank: 1B.3, Rare or endangered in California. Federal: Not federally listed Critical Habitat: No critical habitat has been designated for this species. Recovery Planning: No recovery plan for this species. Notes: No status changes proposed or anticipated during the permit term. Taxonomy Rose-flowered larkspur was first collected by Dr. Carl Purpus in 1892 near Erskine Creek, southeast of Lake Isabella, and it was named for him by Townsend Brandegee (1899:444). Amos Heller (1905:35) subsequently described the same species as Delphinium roseum, based on his collection from near the mouth of the Kern River. The most recent treatments of Delphinium treat D. roseum as a synonym of D. purpusii (Warnock 1997:217; Koontz and Warnock 2012:1,141). Descriptions of rose-flowered larkspur’s physical characteristics and discussions of how the species can be distinguished from other similar larkspurs can be found in Warnock (1997) and Koontz and Warnock (2012). Distribution General Recurved larkspur is endemic to the southern Sierra Nevada in California. It is found only in Kern County, primarily in the Kern River watershed, with a single occurrence in the Poso Creek watershed (Koontz and Warnock 2012:1,181; California Department of Fish and Game 2012). A total of 36 occurrences are documented (California Department of Fish and Game 2012). Distribution and Occurrences within the Study Area Three occurrences are known from the study area. Bakersfield Conservation Plan 1 April 2015 1st Administrative Draft Rose-Flowered Larkspur (Delphinium purpusii) Historical Two occurrences in the study area are known only from historical records.
    [Show full text]
  • W a Sh in G to N Na Tu Ra L H Er Itag E Pr Og Ra M
    PROGRAM HERITAGE NATURAL Climate Change and Connectivity Review of Site Designs for Established Natural Areas with Federally Listed Plant Species Prepared for WASHINGTON US Fish and Wildlife Service Region 1 Prepared by Jake Kleinknecht, David Wilderman, and Walter Fertig December 26, 2019 Natural Heritage Report 2019-06 Climate Change and Connectivity Review Of Site Designs for Established Natural Areas with Federally Listed Plant Species Award Number F16AF01135 Prepared for US Fish and Wildlife Service Western Washington Fish and Wildlife Office Region 1 Section 6 Funding Washington Natural Heritage Program Report Number: 2019-06 December 26, 2019 Prepared by: Jake Kleinknecht, David Wilderman, and Walter Fertig Washington Natural Heritage Program Washington Department of Natural Resources Olympia, Washington 98504-7014 ON THE COVER: Map of projected temperature increase in Washington State relative to the distribution of the federally . Endangered Wenatchee Mountains checkermallow (Sidalcea oregana var. calva). Inset photo of Wenatchee Mountains checkermallow by Walter Fertig. Table of Contents Page Tables …………………………………………………………………………………………… iv Figures ………………………………………………………………………………………….. iv Appendices ……………………………………………………………………………………… v Introduction ……………………………………………………………………………………… 1 Study Areas ……………………………………………………………………………………….3 Camas Meadows Natural Area Preserve ………………………………………………… 3 Dishman Hills Natural Resource Conservation Area …………………………………… 4 Lacamas Prairie Natural Area Preserve …………………………………………………. 5 Rocky Prairie Natural
    [Show full text]
  • Draft Columbia Cascade Ecoprovince Wildlife Assessment and Inventory
    Draft Columbia Cascade Ecoprovince Wildlife Assessment and Inventory Submitted by Paul Ashley and Stacey H. Stovall Table of Contents Table of Contents........................................................................................................................... i List of Figures .............................................................................................................................. iii List of Tables................................................................................................................................. v 1.0 Wildlife Assessment Framework .......................................................................................1 1.1 Assessment Tools.......................................................................................................3 2.0 Physical Features..............................................................................................................3 2.1 Land Area....................................................................................................................3 2.2 Physiography...............................................................................................................4 3.0 Socio-Political Features ....................................................................................................5 3.1 Land Ownership ..........................................................................................................5 3.2 Land Use.....................................................................................................................7
    [Show full text]
  • Thomas Coulter's Californian Exsiccata
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 37 Issue 1 Issue 1–2 Article 2 2019 Plantae Coulterianae: Thomas Coulter’s Californian Exsiccata Gary D. Wallace California Botanic Garden, Claremont, CA Follow this and additional works at: https://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Wallace, Gary D. (2020) "Plantae Coulterianae: Thomas Coulter’s Californian Exsiccata," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 37: Iss. 1, Article 2. Available at: https://scholarship.claremont.edu/aliso/vol37/iss1/2 Aliso, 37(1–2), pp. 1–73 ISSN: 0065-6275 (print), 2327-2929 (online) PLANTAE COULTERIANAE: THOMAS COULTER’S CALIFORNIAN EXSICCATA Gary D. Wallace California Botanic Garden [formerly Rancho Santa Ana Botanic Garden], 1500 North College Avenue, Claremont, California 91711 ([email protected]) abstract An account of the extent, diversity, and importance of the Californian collections of Thomas Coulter in the herbarium (TCD) of Trinity College, Dublin, Ireland, is presented here. It is based on examination of collections in TCD, several other collections available online, and referenced literature. Additional infor- mation on historical context, content of herbarium labels and annotations is included. Coulter’s collections in TCD are less well known than partial duplicate sets at other herbaria. He was the first botanist to cross the desert of southern California to the Colorado River. Coulter’s collections in TCD include not only 60 vascular plant specimens previously unidentified as type material but also among the first moss andmarine algae specimens known to be collected in California. A list of taxa named for Thomas Coulter is included.
    [Show full text]