Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 575 610 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.e: C12Q 1/32 of the grant of the patent: 22.04.1998 Bulletin 1998/17 (86) International application number: PCT/JP91/01785 (21) Application number: 92901868.7 (87) International publication number: (22) Date of filing: 27.12.1991 WO 92/15705 (17.09.1992 Gazette 1992/24)

(54) HIGHLY SENSITIVE DETERMINATION OF AMMONIA, ALPHA-AMINO ACID OR ALPHA-KETO ACID AND COMPOSITION THEREFOR HOCHEMPFINDLICHES BESTIMMUNGSVERFAHREN FUR AMMONIAK, ALPHA- AMINOSAURE ODER ALPHA-KETOSAURE UND ZUSAMMENSETZUNG HIERFUR PROCEDE TRES SENSIBLE DE DETERMINATION D'AMMONIAQUE, ALPHA-AMINOACIDE OU ACIDE ALPHA-CETO ET COMPOSITION A CET EFFET

(84) Designated Contracting States: (74) Representative: Boeters, Hans Dietrich, Dr. et al DE FR IT Patentanwalte Boeters & Bauer, Bereiteranger 15 (30) Priority: 01.03.1991 JP 36385/91 81541 Miinchen (DE)

(43) Date of publication of application: (56) References cited: 29.12.1993 Bulletin 1993/52 EP-A- 0 266 905 EP-A- 0 293 732 EP-A- 0 477 001 (73) Proprietor: Asahi Kasei Kogyo Kabushiki Kaisha Osaka 530 (JP) • ANALYTICAL BIOCHEMISTRY, vol. 182, no. 2, November 1989, pages 399-404, XP000574490 (72) Inventors: FLORINI, J.R.: "Assay of creatine kinase in • UEDA, Shigeru, 1421-237, Nanjo Nirayama-cho microtiter plates using thio-NAD to allow Shizuoka 410-21 (JP) monitoring at 405 nm." • TAKAHASHI, Mamoru, 648-1, Kakita • SHADAN HOJIN NIHON SEIKAGAKU-KAI Shimizu-cho (author) "Biochemical Experiment Lecture 5 Shizuoka 411 (JP) Research (upper)", August 20, 1975 • MISAKI, Hideo, 839-1, Mifuku Ohito-cho (20.08.75), Tokyo Kagaku Dojin, p. 121-135. Shizuoka 410-23 (JP) • IKUTA, Shigeru, 1277-5, Kashiya Kannami-cho Shizuoka 419-01 (JP)

DO o CO lO Is- LO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. opposition a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. a. 99(1) European Patent Convention). LU

Printed by Jouve, 75001 PARIS (FR) EP0 575 610B1

Description

Technical field

5 The present invention relates to a method for the quantitative determination of ammonia, an a-amino acid or an a-keto acid corresponding to the a-amino acid, or of a chemical substance producing any one of these compounds. The present invention also relates to an analytical composition for use in the above-mentioned quantitative determi- nation.

10 Background Art

Generally, in clinical diagnosis it is important to determine a-keto acids in biological samples, such as blood and urine, while in food chemistry it is important to determine a-amino acids, such as glutamic acid, contained in food. For example, organic monocarboxylic acids, such as pyruvic acid, a-ketoglutaric acid and the like, are quantitatively de- 15 termined in a chemical testing of blood [Kensa Tensu Hayami Hyo, P.289, issued by Social Insurance Research Institute, Japan, 1990]. Especially, pyruvic acid, positioned at the intersections in various metabolic pathways, has been known to reflect the conditions of various diseases, and has generally been determined using lactate dehydrogenase [Nippon Rinsho (Japanese Journal of Clinical Medicine), vol.47, P.496, 1989] or pyruvate oxidase (U.S. patent No.4,246,342 and Examined Japanese Patent Publication Specification No. 61-14794). The significance of L-alanine in blood as a 20 criterion for determining the condition of a controlled diabetic has been acknowledged, and the determination of the L-alanine by the chemiluminescence method has been reported (Proceedings of Annual Meeting of Japan Society of Clinical Chemistry, vol.27, P. 122, 1987). It has also been known that the quantity of ammonia in blood is increased by a liver dysfunction or an enzyme deficiency in the urea cycle and, therefore, the determination of ammonia is useful in diagnosis of liver cirrhosis, uremia 25 and the like. In addition, in view of the toxicity of ammonia, it is important to determine ammonia contained in food, drinking water, etc. Conventionally, various methods are known for the determination of ammonia, a-keto acids and a-amino acids. They can be roughly classified into the microdiffusion method, ion exchange method, direct colorimetric method, en- zymatic method and so on. In the microdiffusion method, an alkali is added to blood in a sealed container, and ammonia 30 diffused from the blood is collected with an acid. In the ion exchange method, ammonium ions are adsorbed onto a cation exchange resin and then, eluted with an alkali, followed by colorimetry. In the direct colorimetric method, blood is deproteinized and then, ammonia in the blood is colorimetrically determined by indophenol reaction. These methods, however, have a drawback in that each of the methods necessarily involves two steps, i.e., a step of separating ammonia from a sample and a step of determining the separated ammonia, so that the whole procedure of each method inevitably 35 becomes troublesome. In the meaning of the simplification of a determination process as well as the accuracy of determination, the enzymatic method is superior to the above-mentioned methods since this method utilizes a specificity of an enzyme and an enzymatic reaction involved therein is conducted under ordinary physiological pH and temperature conditions, so that not only is it expected that determination results to be obtained should be closer to the real ammonia content value than those obtained by the above-mentioned other methods but the operation is also much 40 simpler than that of the above-mentioned methods. In the enzymatic method, ammonia, an a-keto acid or an a-amino acid is determined by measuring a change in amount of a reduced nicotinamide adenine dinucleotide (phosphate) (in terms of a change in absorbance at 340 nm with respect to the reaction mixture) in the following reversible reaction which is catalyzed by (EC 1.4.1.2, EC 1.4.1.3 or EC 1.4.1.4): 45

L-glutamic acid + NAD(P)++ H20 ±5

a-ketoglutaric acid + NH3 + NAD(P)H + H+ 50 (Extra-edition of Journal of Medical Technology, Vol. 22, No. 11, Japan, 1978, and Examined Japanese Patent Publi- cation Specification No. 57-21995). This method, however, has some problems. For example, this method is difficult to use in performing accurate deter- minations of low levels of substances in samples. That is, this method is unsatisfactory in determining ammonia which 55 is present in blood in a small quantity. Still another method has also been reported for the quantitative determination of ammonia, in which a reverse reaction of the above-mentioned reaction is conducted to thereby produce glutamic acid in an equimolar amount relative to the amount of the ammonia contained in a sample. The produced glutamic acid is then reacted with glutamate

2 EP0 575 610B1

oxidase to produce hydrogen peroxide in an equimolar amount relative to the amount of the produced glutamic acid, and the amount of the produced hydrogen peroxide is measured, thereby determining the ammonia from the measured amount of the hydrogen peroxide (Unexamined Japanese Patent Application Laid-Open Specification No. 60-41500). However, this method cannot provide an essential solution of the problems accompanying the prior art. 5 On the other hand, there is a further report regarding an enzymatic method for the quantitative determination of ammonia, in which an enzymatic cycling reaction is utilized (Unexamined Japanese Patent Application Laid-Open specification No. 62-232397). In this method, two types of , i.e., glutamate dehydrogenase and glutamate oxidase are used to form the following enzymatic cycling reaction:

10 H20+02 H202

ammonia + a-ketoglutaric acid

NADP reduced NADP

wherein NADP represents nicotinamide adenine dinucleotide phosphate. 25 In this method, detection is made with respect to the amount of the produced hydrogen peroxide or the amount of the consumed, reduced nicotinamide adenine dinucleotide phosphate, which reflects the amount of the ammonia con- tained in the starting sample. However, this method has a defect in that substrates for glutamate oxidase include not only glutamic acid, but also glutamine and aspartic acid, so that the accuracy of the determination is adversely affected when a biological sample is subjected to testing (Analytical Chemistry, Vol. 38, P1 88-1 92, Japan, 1989). 30 There have also been reported further enzymatic methods, that is, a method employing carbamate kinase (EC 2.7.2.2) [Unexamined Japanese Patent Application Laid-Open Specification No. 59-21 3399] and a method employing carbamoyl-phosphate synthase (EC 6.3.4.16) [Unexamined Japanese Patent Application Laid-Open Specification No. 60-47698]. Each of these methods can be used as a highly sensitive method for the quantitative determination of ammonia. However, these methods are disadvantageous in that ADP (adenosine 5'-diphosphate) produced by a first 35 reaction catalyzed by either of the above-mentioned enzymes can be detected only by linking the ADP to another enzymatic reaction system, so that the methods inevitably become complicated. Still a further highly sensitive method has been known for the quantitative determination of ammonia employing NAD (nicotinamide adenine dinucleotide) synthase (Unexamined Japanese Patent Application Laid-Open Specification Nos. 59-198995 and 63-185378) in which NAD produced by the above-mentioned synthase is linked to an NAD cycling 40 reaction. This method is also disadvantageously cumbersome. Though various types of methods for the quantitative determination of ammonia, an a-keto acid and an amino acid have been reported as described above, none of them is really suitable as a highly sensitive method for quantitative determinations except for the above-mentioned enzymatic cycling reaction employing glutamate dehydrogenase and glutamate oxidase. Even this enzymatic reaction, however, has not been widely adopted because the enzyme employed 45 reacts with not only a target chemical substance but also coexisting non-target chemical substances in a biological sample, so that the selective, quantitative determination of the target chemical substance cannot be effectively achieved. Among the quantitative determinations of ammonia, an a-amino acid and an a-keto acid, the quantitative deter- mination of ammonia is especially important for the following reasons: the determination of ammonia is not only useful so for determining ammonia itself, but also for determining a chemical substance other than ammonia, which participates in a reaction system producing ammonia, e.g., for determining urea in the reaction system: urea + H20-> 2NH3 + C02, which is catalyzed by urease, or for measuring the activity of the enzyme catalyzing such a reaction system. Further, it should be noted that when the amount of a test sample itself or a target chemical substance is very small, it is desirable for a highly sensitive determination method to be available. In fact, a highly sensitive method has 55 long been desired for the accurate, quantitative determination of ammonia since the ordinary concentration of ammonia in blood is low and widely varies depending on the type of a determination method used [e.g., the following variation has been reported with respect to the determination of a single type sample: 70-190u.g/dl by the microdiffuison method, 100-150 u.g/dl by the direct colorimetric method, 20-70 u.g/dl by the ion exchange method, and 12-66 u.g/dl by the

3 EP0 575 610B1

enzymatic method (Extra-edition of Japanese Journal of Clinical Medicine, vol. 47, P.390, 1989)]. In the above context, the present inventors have made extensive and intensive studies with a view toward solving the above-mentioned problems accompanying the conventional methods for the quantitative determination of chemical substances in biological samples. As a result, they have found that in the reversible enzymatic reaction (producing an 5 a-keto acid and ammonia from an a-amino acid and water) which is catalyzed by an amino acid dehydrogenase, a cycling reaction in which the following two types of coenzymes are simultaneously used: (i) a first coenzyme selected from the group consisting of thionicotinamide adenine dinucleotide or its analogue (thio-NAD compound) and thioni- cotiamide adenine dinucleotide phosphate or its analogue (thio-NADP compound) and (ii) a second coenzyme selected from the group consisting of nicotiamide adenine dinucleotide or its analogue (NAD compound) and nicotiamide adenine 10 dinucleotide phosphate or its analogue (NADP compound), can be advantageously, effectively utilized for the quanti- tative determination of ammonia, an a-amino acid and an a-keto acid corresponding to the a-amino acid in a biological sample. That is, the target chemical substance selected from the group consisting of ammonia, an a-amino acid and an a-keto acid corresponding to the a-amino acid can be quantitatively determined by measuring a change in amount of A2 or B-| , which is caused for a predetermined period of time during the cycling reaction represented by the following is formula:

wherein A-, is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced of A-, ; B-, is a reduced NADP compound or a reduced NAD compound when A-, is a thio-NADP com- pound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD compound when A-, is an 35 NADP compound or an NAD compound; and B2 is an oxidized product of B1 . Further, the present inventors have also found that the change in amount of coenzyme A2 or B1 can be easily measured in terms of the change in absorbance at a wavelength specific for coenzyme A2 or B-, with respect to the reaction mixture (actually, in terms of the difference in absorbance at a specific wavelength, which is observed with respect to the reaction mixture as between predeter- mined two time points during the above-mentioned cycling reaction) because coenzymes A2 and B-, are different in 40 absorption maximum from each other (a reduced thio-NAD compound and a reduced thio-NADP compound exhibit an absorption maximum at about 400 nm, and a reduced NAD compound and a reduced NADP compound exhibit an absorption maximum at about 340 nm). Thus, a highly sensitive method for the quantitative determination of ammonia, an a-amino acid or an a-keto acid corresponding to the amino acid, which can be simply, efficiently carried out, has been realized. Based upon the above findings, the present invention has been completed. 45 Brief Description of The Drawings

In the drawings: so Fig. 1 is a graph showing the results of the rate assay of ammonium chloride at a wavelength of 400 nm conducted in Example 1 ; Fig. 2 is a graph showing the results of the rate assay of ammonium chloride at a wavelength of 400 nm conducted in Example 2; Fig. 3 is a graph showing the results of the rate assay of sodium L-glutamate at a wavelength of 400 nm conducted 55 in Example 3; Fig. 4 is a graph showing the results of the rate assay of creatinine at a wavelength of 400 nm conducted in Example 4; Fig. 5 is a graph showing the results of the rate assay of L-leucine at a wavelength of 400 nm conducted in Example

4 EP0 575 610B1

5; Fig. 6 is a graph showing the results of the rate assay of pyruvic acid at a wavelength of 400 nm conducted in Example 6; Fig. 7 is a graph showing the results of the rate assay of ammonium chloride at a wavelength of 400 nm conducted 5 in Example 7; and Fig. 8 is a graph showing the results of the rate assay of ammonium chloride at a wavelength of 340 nm conducted in Example 8.

Disclosure of The Invention 10 According to the present invention, there is provided a method for the quantitative determination of a chemical substance selected from the group consisting of ammonia, an a-amino acid and an a-keto acid corresponding to the a-amino acid, which comprises: reacting a biological sample containing a target chemical substance selected from the group consisting of am- 15 monia, an a-amino acid and an a-keto acid corresponding to the a-amino acid, with a reagent comprising:

(1 ) an amino acid dehydrogenase which catalyzes the reversible reaction of an a-amino acid with water, the reaction producing ammonia and an a-keto acid corresponding to the a-amino acid, in the presence of (i) a first coenzyme 20 selected from the group consisting of thionicotinamide adenine dinucleotide phosphate or its analogue (thio-NADP compound) and thionicotinamide adenine dinucleotide or its analogue (thio-NAD compound) and (ii) a second coenzyme selected from the group consisting of nicotinamide adenine dinucleotide phosphate or its analogue (NADP compound) and nicotinamide adenine dinucleotide or its analogue (NAD compound); (2) A1 (defined hereinbelow); 25 (3) B-| (defined hereinbelow); and (4) optionally a non-target chemical substance participating in the following cycling reaction (I):

wherein A-, is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced product of A-, ; B-, is a reduced NADP compound or a reduced NAD compound when A-, is a thio-NADP 45 compound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD compound when A-, is an NADP compound or an NAD compound; and B2 is an oxidized product of B-,;

thereby effecting the cycling reaction (I); and measuring a change in amount of A2 or B-, , which is caused for a predetermined period of time during the reaction so (|). In another aspect of the present invention, there is provided an analytical composition for use in the quantitative determination of a chemical substance selected from the group consisting of ammonia, an a-amino acid and an a-keto acid corresponding to the a-amino acid, which composition comprises components (1 ), (2), (3) and (4) as defined above. The amino acid dehydrogenase to be used in the method of the present invention is defined as a dehydrogenase 55 which catalyzes the reversible reaction of an a-amino acid with water, which reaction produces ammonia and an a- keto acid corresponding to the a-amino acid, in the presence of (i) a first coenzyme selected from the group consisting of a thio-NADP compound and a thio-NAD compound and (ii) a second coenzyme selected from an NADP compound and an NAD compound. A typical example of the above-mentioned reversible reactions is represented by the following

5 EP0 575 610B1

formula:

a-amino acid + H20 + NAD(P) ±5 5 a-keto acid + ammonia + NAD(P)H + H+.

Such an amino acid dehydrogenase is present widely in living bodies, plants, bacteria and the like. Specific ex- amples of amino acid dehydrogenases to be used in combination with a (thio)NAD compound as a coenzyme include: 10 alanine dehydrogenase (EC 1 .4. 1 . 1 ) derived from Bacillus subtilis, Bacillus sphaericus and the like; glutamate dehy- drogenase (EC 1 .4.1 .2) derived from the root of a pea, the leaf of a corn, the cotyledon of a soybean, Micrococcus aerogenes and the like; a common amino acid dehydrogenase, e.g., L-aminoacid dehydrogenase (EC 1 .4.1 .5) derived from anaerobic bacteria, such as Clostridium sporogenes, Clostridium saccharobutyricum; serine dehydrogenase (EC 1.4.1.7) derived from the cotyledon of a soybean, wheat, the bud of a pea and the like; leucine dehydrogenase (EC 15 1 .4.1 .9) derived from Bacillus cereus, Bacillus subtilis SJ-2 and the like; dehydrogenase (EC 1 .4.1 .10) derived from Mycobacterium tuberculosis, Myxococcus xanthus and the like; and L-erythro-3,5-diaminohexanoate dehydro- genase (EC 1.4.1.11) derived from Clostridium SB4, Clostridium sticklandii and the like. As examples of amino acid dehydrogenases to be used in combination with a (thio)NADP compound as a coenzyme, there can be mentioned glutamate dehydrogenase (EC 1 .4. 1 .4) derived from yeast, E. coli, chlorella and the like; and valine dehydrogenase 20 (EC 1.4.1.8) derived from the bud of a pea. As examples of amino acid dehydrogenases to be used in combination with either a (thio)NAD compound or a (thio)NADP compound as a coenzyme, there can be mentioned glutamate dehydrogenase (EC 1 .4.1 .3) derived from bovine liver, avian liver, Bacillus subtilis and the like, among which the amino acid dehydrogenases derived from animal tissues, e.g., bovine liver, are allosteric enzymes which are inhibited by GTP but activated by ADP. 25 With respect to glutamate dehydrogenase (EC 1 .4.1 -.3) derived from bovine liver (which is sold by Boehringer Co., Germany and Oriental Yeast Industries Co., Ltd., Japan), when the activity exerted with use of NAD is taken as 100 %, the relative activities exerted with uses of thio-NAD, NADP and thio-NADP are 40.0%, 38.9% and 14.8%, respec- tively (Biochem. J., 191 , 299-304, 1980). With respect to glutamate dehydrogenase (EC 1 .4.1 .4) (derived from proteus sp. and sold by Toyobo Co., Japan), when the activity exerted with use of NADP is taken as 100 %, the relative activity 30 exerted with use of thio-NADP is about 15 %. Other amino acid dehydrogenases of other origins also can be used in appropriate systems. With respect to the reactivity of amino acid dehydrogenases to coenzymes, i.e., an NAD(P) compound and a thio- NAD(P) compound, there is no particular limitation as long as the amino acid dehydrogenase employed catalyzes the reversible reaction of an a-amino acid with water with the aid of the coenzymes. The reactivity can be confirmed using 35 these coenzymes and a-amino acids as substrates as well as the amino acid dehydrogenases. In the present invention, coenzymes A-, and B2 are appropriately selected from the group consisting of a thio- NADP compound, a thio-NAD compound, an NADP compound and an NAD compound in accordance with the designed reaction scheme. Examples of thio-NADP compounds and thio-NAD compounds include thionicotinamide adenine dinucleotide phosphate (thio-NADP) and thionicotinamide hypoxanthine dinucleotide phosphate; and thionicotinamide 40 adenine dinucleotide (thio-NAD) and thionicotinamide hypoxanthine dinucleotide. Examples of NADP compounds and NAD compounds include nicotinamide adenine dinucleotide phosphate (NADP), acetylpyridine adenine dinucleotide phosphate (acetyl NADP), acetylpyridine hypoxanthine dinucleotide phosphate, nicotinamide hypoxanthine dinucle- otide phosphate (deamino NADP); and nicotinamide adenine dinucleotide (NAD), acetylpyridine adenine dinucleotide (acetyl NAD), acetylpyridine hypoxanthine dinucleotide and nicotinamide hypoxanthine dinucleotide (deamino NAD). 45 Hereinafter, reduced types of these coenzymes are referred to, for example, asathio-NADPH compound, athio-NADH compound, an NADPH compound and an NADH compound. In the present invention, for example, when A1 is a thio-NAD(P) compound, B1 is an NAD(P)H compound, and when A-, is an NAD(P) compound, B-, is a thio-NAD(P)H compound. When the amino acid dehydrogenase to be used is capable of reacting with only NAD type coenzymes, i.e., a thio- 50 NAD compound and an NAD compound, appropriate NAD type coenzymes are selected from the above-mentioned thio-NAD compounds and NAD compounds. When the amino acid dehydrogenase to be used is capable of reacting with only NADP coenzymes, i.e., a thio-NADP compound and an NADP compound, appropriate NADP coenzymes are selected from the above-mentioned thio-NADP compounds and NADP compounds. When the amino acid dehydroge- nase to be used is capable of reacting with either NAD type coenzymes or NADP type coenzymes, appropriate NAD 55 type or NADP type coenzymes are selected from the above-mentioned thio-NAD compounds, thio-NADP compounds, NAD compounds and NADP compounds. In practice, an appropriate oxidized form or reduced form thereof is used in the method of the present invention. By the method of the present invention, not only an a-amino acid but also ammonia or an a-keto acid, which is a

6 EP0 575 610B1

reaction product of the amino acid dehydrogenase-catalyzed reaction of an a-amino acid with water, can be quantita- tively determined. When the quantitative determination of ammonia or an a-keto acid is intended, depending on the type of a target chemical substance, namely ammonia or an a-keto acid, an appropriate non-target chemical substance participating in the cycling reaction is added to the analysis reaction system involved in the method of the presents 5 invention. Illustratively stated, when a target chemical substance is ammonia, an a-keto acid corresponding to the amino acid dehydrogenase to be employed is added, whereas when a target chemical substance is an a-keto acid, ammonia is added. According to the highly sensitive method of the present invention, it is possible to accurately determine ammonia; a-amino acids including L-glutamic acid, L-leucine, L-alanine, L-serine, L-valine, L-glycine and the like; or a-keto acids 10 including pyruvic acid, a-ketoglutaric acid, hydropyruvic acid, 2-oxoisovaleric acid, oxoisocaproic acid, glyoxalic acid and the like, which are originally present in such forms in biological samples. The method of the present invention has other utilities. That is, it is possible not only to determine a substrate in an enzymatic reaction system producing the above substances, but also measure the activity of an enzyme involved in such an enzymatic reaction system. Further, according to the highly sensitive method of the present invention, it is is possible not only to determine a substrate in an enzymatic reaction system which comprises one or more reaction steps and can be linked to the enzymatic reaction system producing ammonia, an a-amino acid or an a-keto acid, but also measure the activity of an enzyme involved in the first-mentioned enzymatic reaction system. Illustrative examples of such utilities are described below.

20 (1 ) Enzymatic reaction of creatinine, catalyzed by creatinine deiminase (EC 3.5.4.21 ):

creatinine + H20 -» N-methylhydantoin + NH3

25 In the system involving the above reaction, by determining ammonia produced, not only can creatinine be determined, but also the activity of creatinine deiminase can be measured. (2) Enzymatic reaction of urea, catalyzed by urease (EC 3.5.1.5):

urea + -> + 30 H20 2NH3 C02

In the system involving the above reaction, by determining ammonia produced, not only can urea be deter- mined, but also the activity of urease can be measured. (3) Enzymatic reaction of guanine, catalyzed by guanine deaminase (EC 3.5.4.3): 35 guanine + H20 -» xanthine + NH3

In the system involving the above reaction, by determining ammonia produced, not only can guanine be de- 40 termined, but also the activity of guanine deaminase can be measured. (4) Enzymatic reaction of adenosine, catalyzed by adenosine deaminase (EC 3.5.4.4 or EC 3.5.4.17):

adenosine + H20 -» inosine + NH3 45 In the system involving the above reaction, by determining ammonia produced, not only can adenosine be determined, but also the activity of adenosine deaminase can be measured. (5) Enzymatic reaction of asparagine, catalyzed by asparaginase (EC 3.5. 1 . 1 ):

50 L-asparagine + H20 -» L-aspartic acid + NH3

In the system involving the above reaction, by determining ammonia or L-aspartic acid produced, not only can L-asparagine be determined, but also the activity of asparaginase can be measured. 55 (6) Enzymatic reaction of ADP, catalyzed by ammonia kinase (EC 2.7.3.8) (the ADP is produced by the pre-enzy- matic reaction catalyzed by a certain kinase, in which a substrate for the kinase is reacted with ATP): EP0 575 610B1

ADP + phosphoramide -> ATP + NH3

In the system involving the above reaction, by determining ammonia produced, not only can ADP or any one component participating in the above-mentioned pre-enzymatic reaction be determined, but also the activity of ammonia kinase can be measured. (7) Enzymatic reaction of ethanolamine, catalyzed by ethanolamine deaminase (EC 4.3.1.7):

ethanolamine -» acetaldehyde + NH3

In the system involving the above reaction, by determining ammonia produced, not only can ethanolamine be determined, but also the activity of ethanolamine deaminase can be measured. (8) Enzymatic reaction of phosphoenolpyruvic acid and ADP, catalyzed by pyruvate kinase (EC 2.7.1.40):

phosphoenolpyruvic acid + ADP -» pyruvic acid + ATP

In the system involving the above reaction, by determining pyruvic acid produced, not only can phosphoe- nolpyruvic acid or ADP be determined, but also the activity of pyruvate kinase can be measured. (9) Enzymatic reaction of N-acetylneuraminic acid, catalyzed by N-acetylneuraminate aldolase (EC 4.1.3.3):

N-acetylneuraminic acid -» N-acetylmannosamine +

pyruvic acid

In the system involving the above reaction, by determining pyruvic acid produced, not only can N-acetyl- neuraminic acid be determined, but also the activity of N-acetylneuraminate aldolase can be measured. (10) Enzymatic reaction of isocitric acid and NAD(P), catalyzed by isocitrate dehydrogenase (EC 1.1.1.41 or EC 1.1.1.42):

isocitric acid + NAD(P) -» a-ketoglutaric acid +

C02 + NAD(P)H

In the system involving the above reaction, by determining a-ketoglutaric acid produced, not only can isocitrate be determined, but also the activity of isocitrate dehydrogenase can be measured. (11) Enzymatic reaction of sarcosine, catalyzed by sarcosine dehydrogenase (EC 1 .5.99.1) or sarcosine oxidase (EC 1.5.3.1), (which sarcosine is produced by the pre-enzymatic reaction of creatinine or creatine, catalyzed by creatininase or creatinase, respectively):

sarcosine + hydrogen acceptor + H20 -» glycine +

formaldehyde + H202, or

sarcosine + 02 + H20 -» glycine + formaldehyde +

H202

In the system involving the above reaction, by determining glycine produced, not only can sarcosine or any one component participating in the above-mentioned pre-enzymatic reaction be determined, but also the activity of sarcosine dehydrogenase or sarcosine oxidase can be measured.

8 EP0 575 610B1

In the method of the present invention, component (2) (coenzyme A-,), component (3) (coenzyme B-,) and optional component (4) (non-target chemical substance participating in the cycling reaction) are used in excess amounts relative not only to the amount of a target chemical substance, but also the respective Km (Michaelis constant) values of component (1) (amino acid dehydrogenase) for components (2), (3) and (4). It is especially preferred to use components 5 (2), (3) and (4) individually in amounts of from 20 to 10,000 moles per mole of the target chemical substance. For example, when the target chemical substance is an a-amino acid, each of A-,, B1 and an a-keto acid or ammonia is used in an excess amount as compared not only to the amount of the a-amino acid but also the respective Km values of an amino acid dehydrogenase for A-,, B-, and the a-keto acid or ammonia, and such an amount is preferably from 20 to 10,000 moles per mole of the a-amino acid. 10 Also for example, when the target chemical substance is an a-keto acid, each of A-,, B-, and ammonia is used in an excess amount as compared not only to the amount of the a-keto acid but also the respective Km values of an amino acid dehydrogenase for A-,, B1 and ammonia, and such an amount is preferably from 20 to 10,000 moles per mole of the a-keto acid. Also for example, when the target chemical substance is ammonia, each of A-,, B-, and an a-keto acid is used in is an excess amount as compared not only to the amount of the ammonia but also the respective Km values of an amino acid dehydrogenase for A-,, B-, and the a-keto acid, and such an amount is preferably 20 to 10,000 moles per mole of the ammonia. As mentioned above, in another aspect of the present invention, there is provided an analytical composition for use in the above-mentioned quantitative determination. In the analytical composition of the present invention, the con- 20 centration of each of component (2) (A-,) and component (3) (B-,) is 0.02 to 100 mM, preferably 0.05 to 20 mM, the concentration of ammonia or an a-keto acid which is used as optional component (4) for advancing the cycling reaction is 3 to 100 mM, preferably 5 to 50 mM, and the concentration of component (1) (amino acid dehydrogenase) is 5 to 1,000 u/ml, preferably 20 to 400 u/ml. However, an appropriate concentration of each of components (1) (2) (3) and (4) in the analytical composition is varied depending on the type of a biological sample to be tested and, if desired, 25 these components can be used in more large amounts. In the present invention, when B2 functions also as a coenzyme for a certain dehydrogenase other than the amino acid dehydrogenase of the cycling reaction (I), which certain dehydrogenase does not react with an a-amino acid but acts to advance the reaction for converting B2 to B-, in cooperation with a substrate for the certain dehydrogenase, such a certain dehydrogenase (which is hereinafter frequently referred to as "second dehydrogenase") can also be 30 additionally incorporated together with a substrate therefor (second dehydrogenase is referred to also as "component (5) ") into the analytical reagent for effecting the following cycling reaction (II):

35

40 a-Keto Acid + Ammonia

(ID

45

50

Second Dehydrogenase 55 wherein A-, is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced product of A-, ; B-, is a reduced NADP compound or a reduced NAD compound when A-, is a thio-NADP com- pound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD compound when A-, is an

9 EP0 575 610B1

NADP compound or an NAD compound; and B2 is an oxidized product of B-,. In the above reaction system, as the second dehydrogenase, a dehydrogenase which does substantially not react with A-, but acts to advance the reaction for converting B2to B-,, is chosen. Alternatively, by choosing reaction conditions under which the second dehydrogenase does not react with A-, , the objective can be attained. For example, there can 5 be chosen appropriate A1 -B2 amount relationship conditions under which the second dehydrogenase does substantially not react with A-,. The quantitative determination of the target chemical substance participating in reaction (II), can be achieved by measuring a change in the amount of A2 [which is caused for a predetermined period of time during reaction (II)]. The second dehydrogenase can be advantageously used in order to regenerate B-,, so that the amount of B-, to 10 be used in the analytical reaction can be reduced. This is particularly useful when B-, is an expensive compound. It is also possible to use B2 alone or a mixture of B1 and B2 at the initiation of the reaction. For conducting reaction (II), an amount of at least one coenzyme selected from B1 and B2 is preferably not larger than 1/10 mole per mole of A-,, although the amount is not particularly limited. In practicing the above method for quantitative determination of the present invention using a second dehydroge- 15 nase as component (5), A-, is used in a concentration of 0.02 to 100 mM, preferably 0.05 to 20 mM. B2 and/or B-, is used in a concentration of 0.05 to 5,000 uJvl, preferably 5 to 500 uJvl. Ammonia or an a-keto acid as optional component (4) for advancing the cycling reaction (II) is used in a concentration of 3 to 100 mM, preferably 5 to 50 mM. An amino acid dehydrogenase as the first dehydrogenase is used in a concentration of 5 to 1000 u/ml, preferably 20 to 500 u/ ml. The concentration of the second dehydrogenase (u/ml) can be 20 times or more the Km value (unit: mM) thereof 20 for B2, e.g., 1 to 100 u/ml. The substrate for the second dehydrogenase can be used in a stoichiometrically excess amount, for example, 0.05 to 20 mM. The amounts of the components of the reagent for the cycling reaction can be varied depending on the type of a biological sample to be tested. The amount exceeding the above can also be em- ployed. As examples of combinations of second dehydrogenases and substrates therefor, the following combinations can 25 be mentioned. When B2 is an NAD compound or a thio-NAD compound, there can be mentioned combinations of: alcohol dehydrogenase (EC 1.1.1.1) and ethanol; glycerol dehydrogenase (EC 1.1.1.6) derived from .E. coli and glyc- erol; glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) derived from rabbit muscle and L-glycerol-3-phosphate; malate dehydrogenase (EC 1.1.1.37) derived from pig or bovine heart and L-malic acid; and glyceraldehyde phosphate de- hydrogenase (EC 1.1.1.12) derived from rabbit muscle, liver, yeast or E. coli D-glyceraldehyde phosphate and phos- 30 phoric acid. When B2 is an NADP compound or a thio-NADP compound, there can be mentioned combinations of: glucose-6-phosphate dehydrogenase (EC 1 .1 .1 .49) derived from yeast and glucose-6-phosphate; isocitrate dehydro- genase (EC 1.1.1.42) derived from yeast or pig heart and iso-citric acid; glyoxylate dehydrogenase (EC 1.2.1.17) derived from Pseudomonas oxalaticus, CoA and glyoxylic acid; phosphogluconate dehydrogenase (EC 1.1.1 .44) de- rived from rat liver, beer yeast or E. coli and 6-phospho-D-gluconic acid; glyceraldehyde phosphate dehydrogenase 35 (EC 1 .2.1 .13) derived from plant chlorophyll, D-glyceraldehyde-3-phosphate and phosphoric acid; and benzaldehyde dehydrogenase (EC 1 .2.1 .7) derived from Pseudomonas fluorescens and benzaldehyde. Furthermore, in the present invention, when A2 functions also as a coenzyme for a certain dehydrogenase other than the amino acid dehydrogenase of the reaction (I) and the second dehydrogenase of the reaction (II), which certain dehydrogenase does not react with an a-amino acid but acts to advance the reaction for converting A2 to A-, in coop- 40 eration with a substrate for the certain dehydrogenase, such a certain dehydrogenase (which is hereinafter frequently referred to as "third dehydrogenase") can also be additionally incorporated together with a substrate therefor (third dehydrogenase is referred to also as "component (6)") into the analytical reagent for effecting the following cycling reaction (III):

45

50

55

10 EP0 575 610B1

Third Dehydrogenase

wherein A1 is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; is a reduced product of A1 ; B1 is a reduced NADP compound or a reduced NAD compound when A1 is a thio-NADP com- 25 pound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD compound when A-, is an NADP compound or an NAD compound; and B2 is an oxidized product of B-,. In the above reaction system, as the third dehydrogenase, a dehydrogenase which does substantially not react with B-,, but acts to advance the reaction for converting A2to A-,, is chosen. Alternatively, by choosing reaction conditions under which the third dehydrogenase does not react with B1 , the objective can be attained. For example, there can be 30 chosen appropriate B1 -A2 amount relationship conditions under which the third dehydrogenase does substantially not react with B-,. The quantitative determination of the target chemical substance participating in reaction (III), can be achieved by measuring a change in amount of B-, [which is caused for a predetermined period of time during reaction (III)]. The third dehydrogenase can be advantageously used in order to regenerate A-,, so that the amount of A-, to be 35 used in the analytical reaction can be reduced. This is particularly useful when A1 is an expensive compound. It is also possible to use A2 alone or a mixture of A1 and A2, at the initiation of the reaction. For conducting reaction (III), an amount of at least one coenzyme selected from A-, and A2 is preferably not larger than 1/10 mole per mole of B-,, although the amount is not particularly limited. In practicing the above method for quantitative determination of the present invention using a third dehydrogenase 40 as component (6), B-, is used in a concentration of 0.02 to 100 mM, preferably 0.05 to 20 mM. A2 and/or A-, is used in a concentraion of 0.05 to 5,000 u.M, preferably 5 to 500 uJvl. Ammonia or an a-keto acid as optional component (4) for advancing the cycling reaction (III) is used in a concentration of 3 to 100 mM, preferably 5 to 50 mM. An amino acid dehydrogenase as the first dehydrogenase is used in a concentration of 5 to 1 000 u/ml, preferably 20 to 500 u/ml. The concentration of the third dehydrogenase (u/ml) can be 20 times or more the Km value (unit: mM) thereof for A2, e.g., 45 1 to 100 u/ml. The substrate for the third dehydrogenase can be used in a stoichiometrically excess amount, for ex- ample, 0.05 to 20 mM. The amounts of the components of the reagent for the cycling reaction can be varied depending on the type of a biological sample to be tested. The amounts exceeding the above can also be employed. As Examples of combinations of third dehydrogenases and substrates therefor, the following combinations can be mentioned. When A-, is an NAD compound or a thio-NAD compound, there can be mentioned combinations of: alcohol so dehydrogenase (EC 1.1.1.1) and acetaldehyde; glycerol dehydrogenase (EC 1.1.1.6) derived from E. coli and dihy- droxyacetone; glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) derived from rabbit muscle and dihydroxyacetone phosphate; malate dehydrogenase (EC 1 .1 .1 .37) derived from pig or bovine heart and oxaloacetic acid; and glyceral- dehyde phosphate dehydrogenase (EC 1.1.1.12) derived from rabbit muscle, liver, yeast or E. coli and 1 ,3-diphospho- D-glycerate. When A1 is an NADP compound or a thio-NADP compound, there can be mentioned combinations of: 55 glucose-6-phosphate dehydrogenase (EC 1 .1 .1 .49) derived from yeast and gluconolactone-6-phosphate; and glycer- aldehyde phosphate dehydrogenase (EC 1 .2.1 .13) derived from plant chlorophyll and 1 ,3-diphospho-D-glycerate. In practicing the method for the quantitative determination of ammonia, an a-amino acid or an a-keto acid corre- sponding to the a-amino acid in a biological sample by using the analytical composition of the present invention, 0.001

11 EP0 575 610B1 to 0.5 ml of the biological sample can be added to an aqueous composition containing the above-defined components (1) to (4), (1) to (5), or (1) to (4) and (6), and the resultant solution is reacted at about 37 °C. Then, a change in absorbance at a wavelength specific for coenzyme A2 or B-, is measured, which is observed with respect to the reaction mixture as between predetermined two time points during the reaction (e.g., between 3 and 4 minutes after the start of the reaction, or between 3 and 8 minutes after the start of the reaction). The period between such two time points during the reaction can be varied in the range from several minutes to several tens of minutes, depending on the type of a biological sample and the type of a target chemical substance contained therein. For example, when A2 is a thio- NADH compound and B-, is an NADH compound, either the produced A2 is determined in terms of the change in absorbance at 400 nm, or the consumed B-, is determined in terms of the change in absorbance at 340 nm. The thus obtained change in absorbance reflecting the amount of the target chemical substance is applied to a calibration curve which has been prepared with respect to standard samples containing the target chemical substance in different con- centrations, to thereby determine the amount of the target chemical substance. By the method of the present invention, it becomes possible to realize a real-time quantitative determination of a target chemical substance in a biological sample. Furthermore, the method of the present invention is so designed that a target chemical substance (e.g., ammonia, an a-amino acid or an a-keto acid corresponding to the a-amino acid) itself participates in the enzymatic cycling re- action. Therefore, the determination of the target chemical substance of the method of the present invention is less influenced by other compounds present in the sample, so that the desired determination can be easily, simply done by rate assay without requiring any blank assay of the sample. With respect to the determination of A2 or B-,, other known methods can be used instead of the measurement of absorbances described above.

Best Mode for Carrying Out the Invention

Hereinbelow, the present invention will be illustrated with reference to the following examples, which however should not be construed as limiting the present invention.

Example 1 Quantitative determination of ammonia

Reagent 40 mM Tris-HCI buffer (pH 8.9) 3 mM ADP (manufactured by Oriental Yeast Co., Ltd., Japan) 2 mM thio-NAD (manufactured by Sigma Co., Ltd., U.S.A.) 0.2 mM reduced NAD (manufactured by Oriental Yeast Co., Ltd., Japan) 5 mM a-ketoglutaric acid (manufactured by Wako Pure Chemical Industries, Ltd., Japan) 3 mM EDTA 128 u/ml glutamate dehydrogenase (derived from bovine liver and manufactured by Boehringer Co., Germany)

Procedure

1 ml of the above reagent was placed in each of six cuvettes. To the respective cuvettes were individually added 50 u.l each of six types of aqueous ammonium chloride solutions respectively having concentrations of 0, 40, 80, 120, 1 60 and 200 u.M. The resultant mixtures in the respective cuvettes were individually allowed to react at 37 °C. 2 Minutes and 4 minutes after the start of the reaction, absorbances at 400 nm were measured with respect to each of samples from the reaction mixtures in the six cuvettes. The absorbance value obtained with respect to the sample from the cuvette containing the 0 u.M concentration solution was taken as reagent blank, and was subtracted from the respective absorbance values obtained with respect to the samples from the remaining five cuvettes, which had originally had different ammonium chloride concentrations of from 40 to 200 u.M as mentioned above. Results are shown in Fig. 1 , which demonstrates the presence of good linearity in the relationship between the change (difference) in absorbance (with respect to the reaction mixture as between 2 and 4 minutes after the start of the reaction) and the ammonium chloride concentration.

12 EP0 575 610B1

Example 2 Quantitative determination of ammonia

Reagent 1 00 mM Tris-HCI buffer (pH 9.5) 1 mM thio-NADP (manufactured by Sigma Co., Ltd., U.S.A.) 0.2 mM reduced NADP (manufactured by Oriental Yeast Co., Ltd., Japan) 10 mM a-ketoglutaric acid (manufactured by Wako Pure Chemical Industries, Ltd., Japan) 5 mM EDTA 250u/ml glutamate dehydrogenase (derived from Proteus sp. and manufactured by Toyobo Co., Ltd., Japan)

Procedure

1 ml of the above reagent was placed in each of six cuvettes. To the respective cuvettes were individually added 50 u.l each of six types of aqueous ammonium chloride solutions respectively having concentrations of 0, 50, 1 00, 1 50, 200 and 250 u.M. The resultant mixtures in the respective cuvettes were individually allowed to react at 37 °C. 3 Minutes and 4 minutes after the start of the reaction, absorbances at 400 nm were measured with respect to each of samples from the reaction mixtures in the six cuvettes. The absorbance value obtained with respect to the sample from the cuvette containing the 0 u.M concentration solution was taken as reagent blank, and was subtracted from the respective absorbance values obtained with respect to the samples from the remaining five cuvettes, which had originally had different ammonium chloride concentrations of from 50 to 250 u.M as mentioned above. Results are shown in Fig. 2, which demonstrates the presence of good linearity in the relationship between the change (difference) in absorbance (with respect to the reaction mixture as between 3 and 4 minutes after the start of the reaction) and the ammonium chloride concentration.

Example 3 Quantitative determination of L-glutamic acid

30 Reagent 100 mM Tris-HCI buffer (pH 9.5) 1 mM thio-NADP (manufactured by Sigma Co., Ltd., U.S.A.) 35 0.2 mM reduced NADP (manufactured by Oriental Yeast Co., Ltd., Japan) 5 mM ammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd., Japan) 5 mM EDTA 250 u/ml glutamate dehydrogenase (derived from Proteus sp. and manufactured by Toyobo Co., Ltd., Japan) 40 Procedure

1 ml of the above reagent was placed in each of six cuvettes. To the respective cuvettes were individually added 50 u.l each of six types of aqueous sodium L-glutamate solutions respectively having concentrations of 0, 40, 80, 120, 1 60 and 200 u.M. The resultant mixtures in the respective cuvettes were individually allowed to react at 37 °C. 3 Minutes and 4 minutes after the start of the reaction, absorbances at 400 nm were measured with respect to each of samples from the reaction mixtures in the six cuvettes. The absorbance value obtained with respect to the sample from the cuvette containing the 0 u.M concentration solution was taken as reagent blank, and was subtracted from the respective absorbance values obtained with respect to the samples from the remaining five cuvettes, which had originally had different sodium L-glutamate concentrations of from 40 to 200 u.M as mentioned above. Results are shown in Fig. 3, which demonstrates the presence of good linearity in the relationship between the change (difference) in absorbance (with respect to the reaction mixture as between 3 and 4 minutes after the start of the reaction) and the sodium L- glutamate concentration.

13 EP0 575 610B1

Example 4 Quantitative determination of creatinine

Reagent 250 mM Tris-HCI buffer (pH.9.5) 2 mM thio-NADP (manufactured by Sigma Co., Ltd., U.S.A.) 0.2 mM reduced NADP (manufactured by Oriental Yeast Co., Ltd., Japan) 10 mM a-ketogrutaric acid (manufactured by Wako Pure Chemical Industries, Ltd., Japan) 5 mM EDTA 20 u/ml creatinine deiminase (derived from microorganism and manufactured by Toyobo Co., Ltd., Japan) 250 u/ml glutamate dehydrogenase (derived from Proteus sp. and manufactured by Toyobo Co., Ltd., Japan)

Procedure

1 ml of the above reagent was placed in each of six cuvettes. To the respective cuvettes were individually added 50 u.l each of six types of aqueous creatinine (manufactured by Wako Pure Chemical Industries, Ltd., Japan) solutions respectively having concentrations of 0, 20, 40, 60, 80 and 100 uJvl. The resultant mixtures in the respective cuvettes were individually allowed to react at 37 °C. 3 Minutes and 8 minutes after the start of the reaction, absorbances at 400 nm were measured with respect to each of samples from the reaction mixtures in the six cuvettes. The absorbance value obtained with respect to the sample from the cuvette containing the 0 u.M concentration solution was taken as reagent blank, and was subtracted from the respective absorbance values obtained with respect to the samples from the remaining five cuvettes, which had originally had different creatinine concentrations of from 20 to 1 00 u.M as men- tioned above. Results are shown in Fig. 4, which demonstrates the presence of good linearity in the relationship between the change (difference) in absorbance (with respect to the reaction mixture as between 3 and 8 minutes after the start of the reaction) and the creatinine concentration. Example 5 Quantitative determination of L-leucine

Reagent 40 mM Tris-HCI buffer (pH 8.9) 2 mM thio-NAD (manufactured by Sigma Co., Ltd., U.S.A.) 0.25 mM reduced NAD (manufactured by Oriental Yeast Co., Ltd., Japan) 100 mM ammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd., Japan) 100 u/ml leucine dehydrogenase (EC 1.4.1.9, derived from Bacillus sp. and manufactured by Toyobo Co., Ltd., Japan)

Procedure

1 ml of the above reagent was placed in each of six cuvettes. To the respective cuvettes were individually added 50 u.l each of six types of aqueous L-leucine solutions respectively having concentrations of 0, 4, 8, 12, 16 and 20u.M. The resultant mixtures in the respective cuvettes were individually allowed to react at 37 °C. 3 Minutes and 5 minutes after the start of the reaction, absorbances at 400 nm were measured with respect to each of samples from the reaction mixtures in the six cuvettes. The absorbance value obtained with respect to the sample from the cuvette containing the 0 u.M concentration solution was taken as reagent blank and was subtracted from the respective absorbance values obtained with respect to the samples from the remaining five cuvettes, which had originally had different L-leucine concentrations of from 4 to 20 u.M as mentioned above. Results are shown in Fig. 5, which demonstrates the presence of good linearity in the relationship between the change (difference) in absorbance (with respect to the reaction mixture as between 3 and 5 minutes after the start of the reaction) and the L-leucine concentration.

Example 6 Quantitative determination of pyruvic acid

Reagent 40 mM triethanolamine hydrochloric acid-NaOH buffer (pH 8.5) 4 mM thio-NAD (manufactured by Sigma Co., Ltd., U.S.A.) 0.1 mM reduced NAD (Oriental Yeast Co., Ltd., Japan)

14 EP0 575 610B1

(continued) Reagent 50 mM ammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd., Japan) 1250 u/ml alanine dehydrogenase (EC 1 .4;1 .1) (derived from Sporolactobacillus sp. and manufactured by Asahi Chemical Industry Co., Ltd., Japan)

Procedure 10 1 ml of the above reagent was placed in each of six test tubes. To the respective test tubes were individually added 20 u.l each of six types of aqueous pyruvic acid solutions respectively having concentrations of 0, 50, 100, 150, 200 and 250 uJvl. The resultant mixtures in the respective test tubes were individually allowed to react at 37 °C. 1 0 Minutes after the start of the reaction, to each of the reaction mixtures in six test tubes was added 1 ml of an aqueous 2 % 15 sodium dodecyl sulfate (SDS) solution, to thereby terminate the reaction. After the termination of the reaction, absorb- ances at 400 nm were measured with respect to each of samples from the reaction mixtures in the six test tubes. Results are shown in Fig. 6, which demonstrates the presence of good linearity in the relationship between absorbance (with respect to the reaction mixture 10 minutes after the start of the reaction) and the pyruvic acid concentration.

Example 7 Quantitative determination of ammonia

Reagent 40 mM glycine-NaOH buffer (pH 10.0) 25 3 mM thio-NAD (manufactured by Sigma Co., Ltd., U.S.A.) 50 u.M NADP (manufactured by Oriental Yeast Co., Ltd., Japan) 8 mM L-malic acid 30 u/ml malate dehydrogenase (EC 1.1.1.37) (derived from pig heart and manufactured by Boehringer Co., Ltd., 30 Germany) 3 mM ADP (manufactured by Oriental Yeast Co., Ltd., Japan) 5 mM a-ketoglutaric acid (manufactured by Wako Pure Chemical Industries, Ltd., Japan) 3 mM EDTA 160 u/ml glutamate dehydrogenase (derived from bovine liver and manufactured by Boehringer Co., Ltd., 35 Germany)

Procedure

1 ml of the above reagent was placed in each of six cuvettes. To the respective cuvettes were individually added 50 u.l each of six types of aqueous ammonium chloride solutions respectively having concentrations of 0, 20, 40, 60, 80 and 1 00 uJvl. The resultant mixtures in the respective cuvettes were individually allowed to react at 37 °C. 3 Minutes and 8 minutes after the start of the reaction, absorbances at 400 nm were measured with respect to each of samples from the reaction mixtures in the six cuvettes. The absorbance value obtained with respect to the sample from the cuvette containing the 0 u.M concentration solution was taken as reagent blank, and was subtracted from the respective absorbance values obtained with respect to the samples from the remaining five cuvettes, which had originally had different ammonium chloride concentrations of from 20 to 100 u.M as mentioned above. Results are shown in Fig. 7, which demonstrates the presence of good linearity in the relationship between the change (difference) in absorbance (with respect to the reaction mixture as between 3 and 8 minutes after the start of the reaction) and the ammonium chloride concentration.

Example 8 Quantitative determination of ammonia

Reagent 40 mM Tris-HCI buffer (pH 8.0) 0.25 mM reduced NADP (manufactured by Oriental Yeast Co., Ltd., Japan)

15 EP0 575 610B1

(continued) Reagent 50 u,M thio-NAD (manufactured by Sigma Co., Ltd., U.S.A.) 5 mM dihydroxyaceton phosphate 10 u/ml glycerol-3-phosphate dehydrogenase (EC 1 .1 .1 .8, derived from rabbit muscle and manufactured by Boehringer Co., Ltd., Germany) 3 mM ADP (manufactured by Oriental Yeast Co., Ltd., Japan) 5 mM a-ketoglutaric acid (manufactured by Wako Pure Chemical Industries, Ltd., Japan) 3 mM EDTA 200 u/ml glutamate dehydrogenase (derived from bovine liver and manufactured by Boehringer Co., Ltd., Germany)

Procedure

1 ml of the above reagent was placed in each of six cuvettes. To the respective cuvettes were individually added 50 u.l each of six types of aqueous ammonium chloride solutions respectively having concentrations of 0, 50, 1 00, 1 50, 200 and 250 u.M. The resultant mixtures in the respective cuvettes were individually allowed to react at 37 °C. 3 Minutes and 8 minutes after the start of the reaction, absorbances at 340 nm were measured with respect to each of samples from the reaction mixtures in the six cuvettes. The absorbance value obtained with respect to the sample from the cuvette containing the 0 u.M concentration solution was taken as reagent blank, and was subtracted from the respective absorbance values obtained with respect to the samples from the remaining five cuvettes, which had originally had different ammonium chloride concentrations of from 50 to 250 u.M as mentioned above. Results are shown in Fig. 8, which demonstrates the presence of good linearity in the relationship between the change (difference) in absorbance (with respect to the reaction mixture as between 3 and 8 minutes after the start of the reaction) and the ammonium chloride concentration.

Industrial Applicability

According to the determination method of the present invention, an error in the quantitative determination of a target chemical substance can be minimized since two types of coenzymes exhibiting absorbances at different ab- sorption wavelengths are used. Further, the sensitivity of the determination method can be greatly increased due to the utilization of the enzymatic cycling reaction. Thus, the method of the present invention ensures rapidness and accuracy in the determination of a target chemical substance, e.g., ammonia, an a-amino acid or an a-keto acid, even with the use of a small quantity of a biological sample. Therefore, the method of the present invention is very useful in application fields, such as clinical diagnosis and food testing.

40 Claims

1 . A method for the quantitative determination of a chemical substance selected from the group consisting of ammo- nia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, which comprises: reacting a biological sample containing a target chemical substance selected from the group consisting of 45 ammonia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, with a reagent comprising:

(1 ) an amino acid dehydrogenase which catalyzes the reversible reaction of an a-amino acid with water, said reaction producing ammonia and an a-keto acid corresponding to said a-amino acid, in the presence of (i) a 50 first coenzyme selected from the group consisting of thionicotinamide adenine dinucleotide phosphate or its analogue (thio-NADP compound) and thionicotinamide adenine dinucleotide or its analogue (thio-NAD com- pound) and (ii) a second coenzyme selected from the group consisting of nicotinamide adenine dinucleotide phosphate or its analogue (NADP compound) and nicotinamide adenine dinucleotide or its analogue (NAD compound); 55 (2) A1 (defined hereinbelow); (3) B1 (defined hereinbelow); and (4) optionally a non-target chemical substance participating in the following cycling reaction (I):

16 EP0 575 610B1

a-Amino Acid + H_0 a-Keto Acid + Ammonia

(I)

B.

wherein A-, is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced product of A1 ; B1 is a reduced NADP compound or a reduced NAD compound when A1 is a thio- NADP compound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD com- pound when A-, is an NADP compound or an NAD compound; and B2 is an oxidized product of B-,;

thereby effecting the cycling reaction (I); and measuring a change in amount of A2 or B-,, which is caused for a predetermined period of time during said reaction (I).

The method according to claim 1 , wherein said a-amino acid is L-glutamic acid, said a-keto acid is a-ketoglutaric acid, and said amino acid dehydrogenase is glutamate dehydrogenase.

The method according to claim 1 , wherein said a-amino acid is alanine, said a-keto acid is pyruvic acid, said amino acid dehydrogenase is alanine dehydrogenase, A1 is a thio-NAD compound or an NAD compound, and B1 is a reduced NAD compound when A1 is a thio-NAD compound, or a reduced thio-NAD compound when A1 is an NAD compound.

The method according to claim 1 , wherein said a-amino acid is leucine, said a-keto acid is 2-oxoisocaproic acid, said amino acid dehydrogenase is leucine dehydrogenase, A-, is a thio-NAD compound or an NAD compound, and B1 is a reduced NAD compound when A1 is a thio-NAD compound, or a reduced thio-NAD compound when A1 is an NAD compound.

The method according to claim 1 , wherein said target chemical substance is ammonia, said amino acid dehydro- genase (1) is selected from the group consisting of glutamate dehydrogenase, alanine dehydrogenase, leucine dehydrogenase, serine dehydrogenase, valine dehydrogenase, glycine dehydrogenase and a common amino acid dehydrogenase, and said non-target chemical substance (4) is an a-keto acid corresponding to the a-amino acid which is used as a substrate for the selected amino acid dehydrogenase.

A method for the quantitative determination of a chemical substance selected from the group consisting of ammo- nia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, which comprises: reacting a biological sample containing a target chemical substance selected from the group consisting of ammonia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, with a reagent comprising:

(1) an amino acid dehydrogenase as a first dehydrogenase which catalyzes the reversible reaction of an a- amino acid with water, said reaction producing ammonia and an a-keto acid corresponding to said a-amino acid, in the presence of (i) a first coenzyme selected from the group consisting of a thio-NADP compound and a thio-NAD compound and (ii) a second coenzyme selected from the group consisting of an NADP compound and an NAD compound; (2) A-, (defined hereinbelow); (3) at least one coenzyme selected from B-, (defined hereinbelow) and B2 (defined hereinbelow); (4) optionally a non-target chemical substance participating in the cycling reaction (II) which is catalyzed by said amino acid dehydrogenase (1); and

17 EP0 575 610B1

(5) a second dehydrogenase which does not react with an a-amino acid but acts to advance the reaction for converting B2 to B-, in the reaction (II), in combination with a substrate for said second dehydrogenase,

wherein A-, is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced product of A-, ; B-, is a reduced NADP compound or a reduced NAD compound when A-, is a thio- NADP compound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD com- pound when A1 is an NADP compound or an NAD compound; and B2 is an oxidized product of B-,;

thereby effecting the cycling reaction (II); and measuring a change in amount of A2, which is caused for a predetermined period of time during said reaction (II).

7. The method according to claim 6, wherein said a-amino acid is L-glutamic acid, said a-keto acid is a-ketoglutaric acid, and said amino acid dehydrogenase is glutamate dehydrogenase.

8. The method according to claim 6, wherein said a-amino acid is alanine, said a-keto acid is pyruvic acid, said amino acid dehydrogenase is alanine dehydrogenase, A-, is a thio-NAD compound or an NAD compound, and B-, is a reduced NAD compound when A-, is a thio-NAD compound, or a reduced thio-NAD compound when A-, is an NAD compound.

9. The method according to claim 6, wherein said a-amino acid is leucine, said a-keto acid is 2-oxoisocaproic acid, said amino acid dehydrogenase is leucine dehydrogenase, A-, is a thio-NAD compound or an NAD compound, and B-| is a reduced NAD compound when A-, is a thio-NAD compound, or a reduced thio-NAD compound when A-, is an NAD compound.

10. The method according to claim 6, wherein said target chemical substance is ammonia, said amino acid dehydro- genase (1) is selected from the group consisting of glutamate dehydrogenase, alanine dehydrogenase, leucine dehydrogenase, serine dehydrogenase, valine dehydrogenase, glycine dehydrogenase and a common amino acid dehydrogenase, and said non-target chemical substance (4) is an a-keto acid corresponding to the a-amino acid which is used as a substrate for the selected amino acid dehydrogenase.

11. A method for the quantitative determination of a chemical substance selected from the group consisting of ammo- nia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, which comprises: reacting a biological sample containing a target chemical substance selected from the group consisting of ammonia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, with a reagent comprising:

18 EP0 575 610B1

(1) an amino acid dehydrogenase as a first dehydrogenase which catalyzes the reversible reaction of an a- amino acid with water, said reaction producing ammonia and an a-keto acid corresponding to said a-amino acid, in the presence of (i) a first coenzyme selected from the group consisting of a thio-NADP compound and a thio-NAD compound and (ii) a second coenzyme selected from the group consisting of an NADP compound 5 and an NAD compound; (2) at least one coenzyme selected from A1 (defined hereinbelow) and A2 (defined hereinbelow); (3) B-| (defined hereinbelow); (4) optionally a non-target chemical substance participating in the cycling reaction (III) which is catalyzed by said amino acid dehydrogenase; and 10 (6) a third dehydrogenase which does not react with an a-amino acid but acts to advance the reaction for converting A2 to A1 in the reaction (III), in combination with a substrate for said third dehydrogenase,

Third 15 Dehydrogenase

a-Keto Acid + Ammonia

(III)

35 wherein A1 is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced product of A-, ; B-, is a reduced NADP compound or a reduced NAD compound when A-, is a thio- NADP compound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD com- pound when A-, is an NADP compound or an NAD compound; and B2 is an oxidized product of B-,; 40 thereby effecting the cycling reaction (III); and measuring a change in amount of B1 , which is caused for a predetermined period of time during said reaction.

12. The method according to claim 11 , wherein said a-amino acid is L-glutamic acid, said a-keto acid is a-ketoglutaric 45 acid, and said amino acid dehydrogenase is glutamate dehydrogenase.

13. The method according to claim 11, wherein said a-amino acid is alanine, said a-keto acid is pyruvic acid, said amino acid dehydrogenase is alanine dehydrogenase, A1 is a thio-NAD compound or an NAD compound, and B1 is a reduced NAD compound when A-, is a thio-NAD compound, or a reduced thio-NAD compound when A-, is an so NAD compound.

14. The method according to claim 11 , wherein said a-amino acid is leucine, said a-keto acid is 2-oxoisocaproic acid, said amino acid dehydrogenase is leucine dehydrogenase, A1 is a thio-NAD compound or an NAD compound, and B1 is a reduced NAD compound when A1 is a thio-NAD compound, or a reduced thio-NAD compound when 55 A-, is an NAD compound.

15. The method according to claim 11 , wherein said target chemical substance is ammonia, said amino acid dehydro- genase (1) is selected from the group consisting of glutamate dehydrogenase, alanine dehydrogenase, leucine

19 EP0 575 610B1

dehydrogenase, serine dehydrogenase, valine dehydrogenase, glycine dehydrogenase and a common amino acid dehydrogenase, and said non-target chemical substance (4) is an a-keto acid corresponding to the a-amino acid which is used as a substrate for the selected amino acid dehydrogenase.

16. An analytical composition for use in the quantitative determination of a chemical substance selected from the group consisting of ammonia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, which comprises:

(1) an amino acid dehydrogenase as a first dehydrogenase which catalyzes the reversible reaction of an a- amino acid with water, said reaction producing ammonia and an a-keto acid corresponding to said a-amino acid, in the presence of (i) a first coenzyme selected from the group consisting of a thio-NADP compound and a thio-NAD compound and (ii) a second coenzyme selected from the group consisting of an NADP compound and an NAD compound; (2) A-, (defined hereinbelow); (3) B-| (defined hereinbelow); and (4) optionally a non-target chemical substance participating in the following cycling reaction (I):

wherein A-, is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced product of A-, ; B-, is a reduced NADP compound or a reduced NAD compound when A-, is a thio- NADP compound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD com- pound when A-, is an NADP compound or an NAD compound; and B2 is an oxidized product of B-,.

17. An analytical composition for use in the quantitative determination of a chemical substance selected from the group consisting of ammonia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, which comprises:

(1) an amino acid dehydrogenase as a first dehydrogenase which catalyzes the reversible reaction of an a- amino acid with water, said reaction producing ammonia and an a-keto acid corresponding to said a-amino acid, in the presence of (i) a first coenzyme selected from the group consisting of a thio-NADP compound and a thio-NAD compound and (ii) a second coenzyme selected from the group consisting of an NADP compound and an NAD compound; (2) A-, (defined hereinbelow); (3) at least one coenzyme selected from B-, (defined hereinbelow) and B2 (defined hereinbelow); (4) optionally a non-target chemical substance participating in the cycling reaction (II) which is catalyzed by said amino acid dehydrogenase; and (5) a second dehydrogenase which does not react with an a-amino acid but acts to advance the reaction for converting B2 to B-, in the reaction (II), in combination with a substrate for said second dehydrogenase,

20 EP0 575 610B1

a-Amino Acid + H_0 -«S- a-Keto Acid + Ammonia

(ID

B

Second Dehydrogenase

wherein A1 is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced product of A1 ; B1 is a reduced NADP compound or a reduced NAD compound when A1 is a thio- NADP compound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD com- pound when A-, is an NADP compound or an NAD compound; and B2 is an oxidized product of B-,.

18. An analytical composition for use in the quantitative determination of a chemical substance selected from the group consisting of ammonia, an a-amino acid and an a-keto acid corresponding to said a-amino acid, which comprises:

(1) an amino acid dehydrogenase as a first dehydrogenase which catalyzes the reversible reaction of an a- amino acid with water, said reaction producing ammonia and an a-keto acid corresponding to said a-amino acid, in the presence of (i) a first coenzyme selected from the group consisting of a thio-NADP compound and a thio-NAD compound and (ii) a second coenzyme selected from the group consisting of an NADP compound and an NAD compound; (2) at least one coenzyme selected from A1 (defined hereinbelow) and A2 (defined hereinbelow); (3) B-| (defined hereinbelow); (4) optionally a non-target chemical substance participating in the cycling reaction (II) which is catalyzed by said amino acid dehydrogenase; and (6) a third dehydrogenase which does not react with an a-amino acid but acts to advance the reaction for converting A2 to A1 in the reaction (III), in combination with a substrate for said third dehydrogenase,

21 EP0 575 610B1

Third Dehydrogenase

a-Amino Acid + H_0 ■=> a-Keto Acid + Ammonia

(III)

B

wherein A1 is a thio-NADP compound, a thio-NAD compound, an NADP compound or an NAD compound; A2 is a reduced product of A-, ; B-, is a reduced NADP compound or a reduced NAD compound when A-, is a thio- NADP compound or a thio-NAD compound, or a reduced thio-NADP compound or a reduced thio-NAD com- pound when A-, is an NADP compound or an NAD compound; and B2 is an oxidized product of B-,.

Patentanspriiche

1 . Verfahren zur quantitativen Bestimmung einer chemischen Verbindung, welche aus der Gruppe ausgewahlt wird, die aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besteht, welche der a-Aminosaure entspricht, umfassend: Umsetzen einer biologischen Probe, die eine chemische Targetverbindung enthalt, welche aus der Gruppe ausgewahlt wird, die aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besteht, welche der a- Aminosaure entspricht, mit einem Reagenz, umfassend:

(1) eine Aminosaure-Dehydrogenase, die die reversible Reaktion einer a-Aminosaure mit Wasser katalysiert, wobei durch die Reaktion Ammoniak und eine a-Ketosaure hergestellt werden, die der a-Aminosaure ent- spricht, in Gegenwart von

(i) einem ersten Coenzym, das aus der Gruppe ausgewahlt wird, die aus Thionicotinamidadenindinucleo- tidphosphat oder seinem Analogon (der Thio-NADP-Verbindung) und Thionicotinamidadenindinucleotid oder seinem Analogon (der Thio-NAD-Verbindung) besteht, und (ii) einem zweiten Coenzym, das aus der Gruppe ausgewahlt wird, die aus Nicotinamidadenindinucleo- tidphosphat oder seinem Analogon (der NADP-Verbindung) und Nicotinamidadenindinucleotid oder sei- nem Analogon (der NAD-Verbindung) besteht;

(2) A-, (hierin nachstehend definiert) ;

(3) B-| (hierin nachstehend definiert) ; und

(4) gegebenenfalls eine chemische Nicht-Targetverbindung, die an der folgenden Kreislaufreaktion (I) teil- nimmt:

22 EP0 575 610B1

worin A-, eine Thio-NADP-Verbindung, eine Thio-NAD-Verbindung, eine NADP-Verbindung oder eine NAD- Verbindung ist; A2ein reduziertes Produktvon A1 ist; B1 eine reduzierte NADP-Verbindung oder eine reduzierte NAD-Verbindung ist, wenn A1 eine Thio-NADP-Verbindung oder eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NADP-Verbindung oder eine reduzierte Thio-NAD-Verbindung ist, wenn A-, eine NADP-Ver- bindung oder eine NAD-Verbindung ist; und B2 ein Oxidationsprodukt von B-, ist; wodurch die Kreislaufreaktion (I) bewirkt wird; und Messen einer Veranderung der Menge an A2 oder B-,, welche fur einen bestimmten Zeitraum wahrend der Reaktion (I) bewirkt wird.

Verfahren nach Anspruch 1, worin die a-Aminosaure L-Glutaminsaure ist, die a-Ketosaure a-Ketoglutarsaure ist, und die Aminosaure-Dehydrogenase Glutamat-Dehydrogenase ist.

Verfahren nach Anspruch 1 , worin die a-Aminosaure Alanin ist, die a-Ketosaure Brenztraubensaure ist, die Ami- nosaure-Dehydrogenase Alanin-Dehydrogenase ist, A1 eine Thio-NAD-Verbindung oder eine NAD-Verbindung ist, und B1 eine reduzierte NAD-Verbindung ist, wenn A1 eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio- NAD-Verbindung, wenn A-, eine NAD-Verbindung ist.

Verfahren nach Anspruch 1, worin die a-Aminosaure Leucin ist, die a-Ketosaure 2-Oxoisocapronsaure ist, die Aminosaure-Dehydrogenase Leucin-Dehydrogenase ist, A-, eine Thio-NAD-Verbindung oder eine NAD-Verbin- dung ist, und B1 eine reduzierte NAD-Verbindung ist, wenn A1 eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NAD-Verbindung, wenn A1 eine NAD-Verbindung ist.

Verfahren nach Anspruch 1, worin die chemische Targetverbindung Ammoniak ist, die Aminosaure-Dehydroge- nase (1) aus der Gruppe ausgewahlt wird, die aus Glutamat-Dehydrogenase, Alanin-Dehydrogenase, Leucin- Dehydrogenase, Serin-Dehydrogenase, Valin-Dehydrogenase, Glycin-Dehydrogenase und einer ublichen Amino- saure-Dehydrogenase besteht, und die chemische Nicht-Targetverbindung (4) eine a-Ketosaure ist, die der a- Aminosaure entspricht, welche als ein Substrat fur die ausgewahlte Aminosaure-Dehydrogenase verwendet wird.

Verfahren zur quantitativen Bestimmung einer chemischen Verbindung, welche aus der Gruppe ausgewahlt wird, die aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besthet, welche der a-Aminosaure entspricht, umfassend: Umsetzen einer biologischen Probe, die eine chemische Targetverbindung enthalt, welche aus der Gruppe ausgewahlt wird, die aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besteht, welche der a- Aminosaure entspricht, mit einem Reagenz, umfassend:

(1 ) eine Aminosaure-Dehydrogenase als eine erste Dehydrogenase, die die reversible Reaktion einer a-Ami- nosaure mit Wasser katalysiert, wobei durch die Reaktion Ammoniak und eine a-Ketosaure hergestellt werden, die der a-Aminosaure entspricht, in Gegenwart von (i) einem ersten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer Thio-NADP-Verbindung und einer Thio-NAD-Verbindung besteht und (ii) einem zweiten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer NADP-Verbindung und einer NAD-Verbindung besteht;

(2) A-, (hierin nachstehend definiert) ;

23 EP0 575 610B1

(3) mindestens ein Coenzym, das aus B-, (hierin nachstehend definiert) und B2 (hierin nachstehend definiert) ausgewahlt wird;

(4) gegebenenfalls eine chemische Nicht-Targetverbindung, die an der Kreislaufreaktion (II) teilnimmt, welche durch die Aminosaure-Dehydrogenase (1) katalysiert wird; und

(5) eine zweite Dehydrogenase, die nicht mit einer a-Aminosaure reagiert, aber so wirkt, dal3 die Reaktion zur Umwandlung von B2 zu B-, in der Reaktion (II) in Kombination mit einem Substrat fur die zweite Dehydro- genase gefordert wird:

a-Ketosaure + Ammoniak

(ID

Zweite Dehydrogenase

worin A-, eine Thio-NADP-Verbindung, eine Thio-NAD-Verbindung, eine NADP-Verbindung oder eine NAD- Verbindung ist; A2ein reduziertes Produktvon A1 ist; B1 eine reduzierte NADP-Verbindung oder eine reduzierte NAD-Verbindung ist, wenn A1 eine Thio-NADP-Verbindung oder eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NADP-Verbindung oder eine reduzierte Thio-NAD-Verbindung ist, wenn A-, eine NADP-Ver- bindung oder eine NAD-Verbindung ist; und B2 ein Oxidationsprodukt von B-, ist; wodurch die Kreislaufreaktion (II) bewirkt wird; und Messen einer Veranderung der Menge an A2, welche fur einen bestimmten Zeitraum wahrend der Reaktion (II) bewirkt wird.

7. Verfahren nach Anspruch 6, worin die a-Aminosaure L-Glutaminsaure ist, die a-Ketosaure eine a-Ketoglutarsaure und die Aminosaure-Dehydrogenase Glutamat-Dehydrogenase ist.

8. Verfahren nach Anspruch 6, worin die a-Aminosaure Alanin ist, die a-Ketosaure Brenztraubensaure ist, die Ami- nosaure-Dehydrogenase Alanin-Dehydrogenase ist, A-, eine Thio-NAD-Verbindung oder eine NAD-Verbindung ist, und B1 eine reduzierte NAD-Verbindung ist, wenn A1 eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio- NAD-Verbindung, wenn A1 eine NAD-Verbindung ist.

9. Verfahren nach Anspruch 6, worin die a-Aminosaure Leucin ist, die a-Ketosaure 2-Oxoisocapronsaure ist, die Aminosaure-Dehydrogenase Leucin-Dehydrogenase ist, A-, eine Thio-NAD-Verbindung oder eine NAD-Verbin- dung ist, und B-| eine reduzierte NAD-Verbindung ist, wenn A-, eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NAD-Verbindung, wenn A1 eine NAD-Verbindung ist.

10. Verfahren nach Anspruch 6, worin die chemische Targetverbindung Ammoniak ist, die Aminosaure-Dehydroge- nase (1) aus der Gruppe ausgewahlt wird, die aus Glutamat-Dehydrogenase, Alanin-Dehydrogenase, Leucin- Dehydrogenase, Serin-Dehydrogenase, Valin-Dehydrogenase, Glycin-Dehydrogenase und einer ublichen Amino- saure-Dehydrogenase besteht, und die chemische Nicht-Targetverbindung (4) eine a-Ketosaure ist, die der a-

24 EP0 575 610B1

Aminosaure entspricht, welche als ein Substrat fur die ausgewahlte Aminosaure-Dehydrogenase verwendet wird.

11. Verfahren zur quantitativen Bestimmung einer chemischen Verbindung, welche aus der Gruppe ausgewahlt wird, die aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besteht, welche der a-Aminosaure entspricht, 5 umfassend: Umsetzen einer biologischen Probe, die eine chemische Targetverbindung enthalt, welche aus der Gruppe ausgewahlt wird, die aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besteht, welche der a- Aminosaure entspricht, mit einem Reagenz, umfassend:

(1 ) eine Aminosaure-Dehydrogenase als eine erste Dehydrogenase, die die reversible Reaktion einer a-Ami- 10 nosaure mit Wasser katalysiert, wobei durch die Reaktion Ammoniak und eine a-Ketosaure hergestellt werden, die der a-Aminosaure entspricht, in Gegenwart von (i) einem ersten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer Thio-NADP-Verbindung und einer Thio-NAD-Verbindung besteht und (ii) einem zweiten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer NADP-Verbindung und einer NAD-Verbindung besteht; 15 (2) mindestens ein Coenzym ausgewahlt aus A-, (hierin nachstehend definiert) und A2 (hierin nachstehend definiert);

(3) B-| (hierin nachstehend definiert) ; 20 (4) gegebenenfalls eine chemische Nicht-Targetverbindung, die an der Kreislaufreaktion (III) teilnimmt, welche durch die Aminosaure-Dehydrogenase katalysiert wird, und

(6) eine dritte Dehydrogenase, die nicht mit einer Aminosaure reagiert, aber so wirkt, dal3 die Reaktion zur 25 Umwandlung von A2zu A-, in der Reaktion (III) in Kombination mit einem Substrat fur die dritte Dehydrogenase, gefordert wird

Dritte Dehydrogenase

a-Ketosaure + Ammoniak

(III)

so worin A-, eine Thio-NADP-Verbindung, eine Thio-NAD-Verbindung, eine NADP-Verbindung oder eine NAD- Verbindung ist; A2ein reduziertes Produktvon A-, ist; B-, eine reduzierte NADP-Verbindung oder eine reduzierte NAD-Verbindung ist, wenn A-, eine Thio-NADP-Verbindung oder eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NADP-Verbindung oder eine reduzierte Thio-NAD-Verbindung ist, wenn A1 eine NADP-Ver- bindung oder eine NAD-Verbindung ist; und B2 ein Oxidationsprodukt von B1 ist; 55 wodurch die Kreislaufreaktion (III) bewirkt wird; und Messen einer Veranderung der Menge B-,, welche fur einen bestimmten Zeitraum wahrend der Reaktion bewirkt wird.

12. Verfahren nach Anspruch 11 , worin die a-Aminosaure L-Glutaminsaure ist, die a-Ketosaure a-Ketoglutarsaure ist,

25 EP0 575 610B1 und die Aminosaure-Dehydrogenase die Glutamat-Dehydrogenase ist.

Verfahren nach Anspruch 11 , worin die a-Aminosaure Alanin ist, die a-Ketosaure Brenztraubensaure ist, die Ami- nosaure-Dehydrogenase Alanin-Dehydrogenase ist, A-, eine Thio-NAD-Verbindung oder eine NAD-Verbindung ist und B1 eine reduzierte NAD-Verbindung ist, wenn A1 eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio- NAD-Verbindung ist, wenn A1 eine NAD-Verbindung ist.

Verfahren nach Anspruch 11, worin die a-Aminosaure Leucin ist, die a-Ketosaure 2-Oxoisocapronsaure ist, die Aminosaure-Dehydrogenase Leucin-Dehydrogenase ist, A-, eine Thio-NAD-Verbindung oder eine NAD-Verbin- dung ist, und B-| eine reduzierte NAD-Verbindung ist, wenn A-, eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NAD-Verbindung ist, wenn A1 eine NAD-Verbindung ist.

Verfahren nach Anspruch 11 , worin die chemische Targetverbindung Ammoniak ist, die Aminosaure-Dehydroge- nase (1) aus der Gruppe ausgewahlt wird, die aus Glutamat-Dehydrogenase, Alanin-Dehydrogenase, Leucin- Dehydrogenase, Serin-Dehydrogenase, Valin-Dehydrogenase, Glycin-Dehydrogenase und einer ublichen Amino- saure-Dehydrogenase besteht, und die chemische Nicht-Targetverbindung (4) eine a-Ketosaure ist, die der a- Aminosaure entspricht, welche als ein Substrat fur die ausgewahlte Aminosaure-Dehydrogenase verwendet wird.

Analytische Zusammensetzung zur Verwendung bei der quantitativen Bestimmung einer chemischen Verbindung, die aus der Gruppe ausgewahlt wird, welche aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besteht, die der a-Aminosaure entspricht, umfassend:

(1 ) eine Aminosaure-Dehydrogenase als eine erste Dehydrogenase, die die reversible Reaktion einer a-Ami- nosaure mit Wasser katalysiert, wobei durch die Reaktion Ammoniak und eine a-Ketosaure hergestellt werden, die der a-Aminosaure entspricht, in Gegenwart von (i) einem ersten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer Thio-NADP-Verbindung und einer Thio-NAD-Verbindung besteht und (ii) einem zweiten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer NADP-Verbindung und einer NAD-Verbindung besteht;

(2) A1 (hierin nachstehend definiert) ;

(3) B-| (hierin nachstehend definiert) ; und

(4) gegebenenfalls eine chemische Nicht-Targetverbindung, die an der folgenden Kreislaufreaktion (I) teil- nimmt:

a-Aminosaure + H20

worin A1 eine Thio-NADP-Verbindung, eine Thio-NAD-Verbindung, eine NADP-Verbindung oder eine NAD- Verbindung ist; A2ein reduziertes Produktvon A1 ist; B1 eine reduzierte NADP-Verbindung oder eine reduzierte NAD-Verbindung ist, wenn A-, eine Thio-NADP-Verbindung oder eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NADP-Verbindung oder eine reduzierte Thio-NAD-Verbindung, wenn A-, eine NADP-Verbin- dung oder eine NAD-Verbindung ist; und B2 ein Oxidationsprodukt von B-, ist;

26 EP0 575 610B1

Analytische Zusammensetzung zur Verwendung bei der quantitativen Bestimmung einer chemischen Verbindung, die aus der Gruppe ausgewahlt wird, welche aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besteht, die der a-Aminosaure entspricht, umfassend:

(1 ) eine Aminosaure-Dehydrogenase als eine erste Dehydrogenase, die die reversible Reaktion einer a-Ami- nosaure mit Wasser katalysiert, wobei durch die Reaktion Ammoniak und eine a-Ketosaure hergestellt werden, die der a-Aminosaure entspricht, in Gegenwart von (i) einem ersten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer Thio-NADP-Verbindung und einer Thio-NAD-Verbindung besteht und (ii) einem zweiten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer NADP-Verbindung und einer NAD-Verbindung besteht; (2) A1 (hierin nachstehend definiert) ; (3) mindestens ein Coenzym, das aus B1 (hierin nachstehend definiert) und B2 (hierin nachstehend definiert) ausgewahlt wird; (4) gegebenenfalls eine chemische Nicht-Targetverbindung, die an der Kreislaufreaktion (II) teilnimmt, welche durch die Aminosaure-Dehydrogenase katalysiert wird; und (5) eine zweite Dehydrogenase, die nicht mit einer a-Aminosaure reagiert, aber so wirkt, dal3 die Reaktion zur Umwandlung von B2 zu B1 in der Reaktion (II) in Kombination mit einem Substrat fur die zweite Dehydro- genase, gefordert wird:

a-Ketosaure + Ammoniak

(ID

Zweite Dehydrogenase

worin A-, eine Thio-NADP-Verbindung, eine Thio-NAD-Verbindung, eine NADP-Verbindung oder eine NAD- Verbindung ist; A2ein reduziertes Produktvon A-, ist; B-, eine reduzierte NADP-Verbindung oder eine reduzierte NAD-Verbindung ist, wenn A-, eine Thio-NADP-Verbindung oder eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NADP-Verbindung oder eine reduzierte Thio-NAD-Verbindung, wenn A-, eine NADP-Verbin- dung oder eine NAD-Verbindung ist; und B2 ein Oxidationsprodukt von B1 ist.

Analytische Zusammensetzung zur Verwendung bei der quantitativen Bestimmung einer chemischen Verbindung, die aus der Gruppe ausgewahlt wird, welche aus Ammoniak, einer a-Aminosaure und einer a-Ketosaure besteht, die der a-Aminosaure entspricht, umfassend:

(1 ) eine Aminosaure-Dehydrogenase als eine erste Dehydrogenase, die die reversible Reaktion einer a-Ami- nosaure mit Wasser katalysiert, wobei durch die Reaktion Ammoniak und eine a-Ketosaure hergestellt werden, die der a-Aminosaure entspricht, in Gegenwart von (i) einem ersten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer Thio-NADP-Verbindung und einer Thio-NAD-Verbindung besteht und (ii) einem zweiten Coenzym, das aus der Gruppe ausgewahlt wird, die aus einer NADP-Verbindung und einer NAD-Verbindung besteht;

27 EP0 575 610B1

(2) mindestens ein Coenzym, ausgewahlt aus A-, (hierin nachstehend definiert) und A2 (hierin nachstehend definiert);

(3) B-| (hierin nachstehend definiert); 5 (4) gegebenenfalls eine chemische Nicht-Targetverbindung, die an der Kreislaufreaktion (III) teilnimmt, die durch die Aminosaure-Dehydrogenase katalysiert wird, und

(6) eine dritte Dehydrogenase, die nicht mit einer Aminosaure reagiert, aber so wirkt, dal3 die Reaktion zur 10 Umwandlung von A2 zu A-, in der Reaktion (III) gefordert wird, in Kombination mit einem Substrat fur die dritte Dehydrogenase

Dritte Dehydrogenase

I)

worin A-, eine Thio-NADP-Verbindung, eine Thio-NAD-Verbindung, eine NADP-Verbindung oder eine NAD- 35 Verbindung ist; A2ein reduziertes Produktvon A1 ist; B1 eine reduzierte NADP-Verbindung oder eine reduzierte NAD-Verbindung ist, wenn A1 eine Thio-NADP-Verbindung oder eine Thio-NAD-Verbindung ist, oder eine reduzierte Thio-NADP-Verbindung oder eine reduzierte Thio-NAD-Verbindung, wenn A-, eine NADP-Verbin- dung oder eine NAD-Verbindung ist; und B2 ein Oxidationsprodukt von B-, ist.

40 Revendications

1 . Procede de determination quantitative d'une substance chimique choisie dans le groupe consistant en I'ammoniac, un acide amine en a et un acide cetone en a correspondant a I'acide amine en a, comprenant : 45 a mettre un echantillon biologique contenant une substance chimique visee choisie dans le groupe consistant en I'ammoniac, un acide amine en a et un acide cetone en a correspondant a I'acide amine en a a reagir sur un reactif comprenant : so (1 ) une amino acide dehydrogenase qui catalyse la reaction reversible d'un acide amine en a sur I'eau, la reaction produisant de I'ammoniac et un acide cetone en a correspondant a I'acide amine en a en la presence de (i) un premier coenzyme choisi dans le groupe consistant en le thionicotinamide adenine dinucleotide phosphate ou son analogue (compose thio-NADP) et le thionicotinamide adenine dinucleotide ou son 55 analogue (compose thio-NAD) et (il) un second coenzyme choisi dans le groupe consistant en le nicoti- namide adenine dinucleotide phosphate ou son analogue (compose NADP) et le nicotinamide adenine dinucleotide ou son analogue (compose NAD) ; (2) A1 (defini ci-dessous) ;

28 EP0 575 610B1

(3) B1 (defini ci-dessous) ; et (4) eventuellement une substance chimique non visee participant a la reaction (I) de cyclisation suivante :

Acide amine + en a H20 ~ >■ Acide cetone en a + ammoniac

(I)

dans laquelle A1 est un compose thio-NADP, un compose thio-NAD, un compose NADP ou un compose NAD ; A2 est un produit reduit de A1 ; B1 est un compose reduit de NADP ou un compose reduit de NAD lorsque A1 est un compose thio-NADP ou est un compose thio-NAD ou un compose reduit de thio-NADP ou un compose reduit de thio-NAD, lorsque A1 est un compose NADP ou est un compose NAD ; et B2 est un produit oxyde de B1 ; effectuant ainsi la reaction (I) de cyclisation ; et a mesurer un changement de la quantite de A2 ou de B1 , qui se produit pendant un laps de temps determine a I'avance pendant la reaction (I).

Procede suivant la revendication 1, dans lequel I'acide amine en a est I'acide L-glutamique, I'acide cetone en a est I'acide a-cetoglutarique, et I'amino acide dehydrogenase est la glutamate dehydrogenase.

Procede suivant la revendication 1, dans lequel I'acide amine en a est I'alanine, I'acide cetone en a est I'acide pyruvique, I'amino acide dehydrogenase est I'alanine dehydrogenase, A1 est un compose thio-NAD ou est un compose NAD et B1 est un compose reduit de NAD lorsque A1 est un compose thio-NAD, ou est un compose reduit de thio-NAD lorsque A1 est un compose NAD.

Procede suivant la revendication 1, dans lequel I'acide amine en a est la leucine, I'acide cetone en a est I'acide 2-oxoisocaproique, I'amino acide dehydrogenase est la leucine dehydrogenase, A1 est un compose thio-NAD ou un compose NAD et B1 est un compose reduit de NAD lorsque A1 est un compose thio-NAD ou un compose reduit de thio-NAD lorsque A1 est un compose NAD.

Procede suivant la revendication 1, dans lequel la substance chimique visee est I'ammoniac, I'amino acide de- hydrogenase (1) est choisie dans le groupe consistant en la glutamate dehydrogenase, en I'alanine dehydro- genase, en la leucine dehydrogenase, en la serine dehydrogenase, en la valine dehydrogenase, en la glycine dehydrogenase et en une amino acide dehydrogenase commune et la substance (4) chimique non visee est un acide cetone en a correspondant a I'acide amine en a qui a ete utilise comme substrat pour I'amino acide dehy- drogenase choisie.

Procede de determination quantitative d'une substance chimique choisie dans le groupe consistant en I'ammoniac, un acide amine en a et un acide cetone en a correspondant a I'acide amine en a, comprenant :

a mettre un echantillon biologique contenant une substance chimique visee choisie dans le groupe consistant en I'ammoniac, un acide amine en a et un acide cetone en a correspondant a I'acide amine en a a reagir sur un reactif comprenant :

(1 ) une amino acide dehydrogenase comme premiere dehydrogenase qui catalyse la reaction reversible d'un acide amine en a sur I'eau, la reaction produisant de I'ammoniac et un acide cetone en a correspon- dant a I'acide amine en a, en la presence de (i) un premier coenzyme choisi dans le groupe consistant en un compose thio-NADP et en un compose thio-NAD et (il), un second coenzyme choisi dans le groupe

29 EP0 575 610B1

consistant en un compose NADP et en un compose NAD ; (2) A1 (defini ci-dessous) (3) au moins un coenzyme choisi parmi B1 (defini ci-dessous) et B2 (defini ci-dessous) ; (4) eventuellement une substance chimique non visee participant a la reaction (II) de cyclisation qui est catalysee par I'amino acide dehydrogenase (1); et (5) une seconde dehydrogenase qui ne reagit pas sur un acide amine en a, mais qui fait progresser la reaction de transformation de B2 en B1 dans la reaction (II), en combinaison avec un substrat pour la seconde dehydrogenase,

dans laquelle A1 est un compose thio-NADP, un compose thio-NAD, un compose NADP ou un compose NAD ; A2 est un produit reduit de A1 ; B1 est un compose reduit de NADP ou un compose reduit de NAD lorsque A1 est un compose thio-NADP ou est un compose thio-NAD ou un compose reduit de thio-NADP ou un compose reduit de thio-NAD lorsque A1 est un compose NADP ou est un compose NAD ; et B2 est un produit oxyde de B1 ; effectuant ainsi la reaction (II) de cyclisation ; et a mesurer un changement de la quantite de A2, qui est produit pendant un laps de temps determine a I'avance pendant la reaction (II).

7. Procede suivant la revendication 6, dans lequel I'acide amine en a est I'acide L-glutamique, I'acide cetone en a est I'acide a-cetoglutarique, et I'amino acide dehydrogenase est la glutamate dehydrogenase.

8. Procede suivant la revendication 6, dans lequel I'acide amine en a est I'alanine, I'acide cetone en a est I'acide pyruvique, I'amino acide dehydrogenase est I'alanine dehydrogenase, A1 est un compose thio-NAD ou est un compose NAD et B1 est un compose reduit de NAD lorsque A1 est un compose thio-NAD, ou est un compose reduit de thio-NAD lorsque A1 est un compose NAD.

9. Procede suivant la revendication 6, dans lequel I'acide amine en a est la leucine, I'acide cetone en a est I'acide 2-oxoisocaproique I'amino acide dehydrogenase est la leucine dehydrogenase, A1 est un compose thio-NAD ou un compose NAD et B1 est un compose reduit de NAD lorsque A1 est un compose thio-NAD ou un compose reduit de thio-NAD lorsque A1 est un compose NAD.

10. Procede suivant la revendication 6, dans lequel la substance chimique visee est I'ammoniac, I'amino acide de- hydrogenase (1) est choisie dans le groupe consistant en la glutamate dehydrogenase, en I'alanine dehydro- genase, en la leucine dehydrogenase, en la serine dehydrogenase, en la valine dehydrogenase, en la glycine dehydrogenase et en une amino acide dehydrogenase commune et la substance (4) chimique non visee est un acide cetone en a correspondant a I'acide amine en a qui a ete utilise comme substrat pour I'amino acide dehy- drogenase choisie.

30 EP0 575 610B1

11. Procede de determination quantitative d'une substance chimique choisie dans le groupe consistant en I'ammoniac, en un acide amine en a et en un acide cetone en a correspondant a I'acide amine en a comprenant :

a mettre un echantillon biologique contenant une substance chimique visee choisie dans le groupe consistant en I'ammoniac, un acide amine en a et un acide cetone en a correspondant a I'acide amine en a, a reagir sur un reactif comprenant :

(1 ) une amino acide dehydrogenase comme premiere dehydrogenase qui catalyse la reaction reversible d'un acide amine en a sur I'eau, la reaction produisant de I'ammoniac et un acide cetone en a correspon- dant a I'acide amine en a, en la presence de (i) un premier coenzyme choisi dans le groupe consistant en un compose thio-NADP et en un compose thio-NAD et (ii), un second coenzyme choisi dans le groupe consistant en un compose NADP et en un compose NAD ; (2) au moins un coenzyme choisi parmi A1 (defini ci-dessous) et A2 (defini ci-dessous) ; (3) B1 (defini ci-dessous); (4) eventuellement une substance chimique non visee participant a la reaction (III) de cyclisation qui est catalysee par I'amino acide dehydrogenase; et (6) une troisieme dehydrogenase qui ne reagit pas sur un acide amine en a mais qui fait progresser la reaction pour transformer A2 en A1 dans la reaction (III), encombinaison avec un substrat pour la troisieme dehydrogenase

Troisieme deshydrogenase

Acide cetone en a + ammoniac

(III)

dans laquelle A1 est un compose thio-NADP, un compose thio-NAD, un compose NADP ou un compose NAD ; A2 est un produit reduit de A1 ; B1 est un compose reduit de NADP ou un compose reduit de NAD lorsque A1 est un compose thio-NADP ou est un compose thio-NAD ou un compose reduit de thio-NADP ou un compose reduit de thio-NAD lorsque A1 est un compose NADP ou est un compose NAD ; et B2 est un produit oxyde de B1 ; effectuant ainsi la reaction (III) de cyclisation ; et a mesurer un changement de la quantite de B1 , qui est produit pendant un laps de temps determine a I'avance pendant la reaction.

12. Procede suivant la revendication 11, dans lequel I'acide amine en a est I'acide L-glutamique, I'acide cetone en a est I'acide a-cetoglutarique, et I'amino acide deshydrogenase est la glutamate deshydrogenase.

13. Procede suivant la revendication 11, dans lequel I'acide amine en a est I'alanine, I'acide cetone en a est I'acide pyruvique, I'amino acide deshydrogenase est I'alanine deshydrogenase, A1 est un compose thio-NAD ou est un compose NAD et B1 est un compose reduit de NAD lorsque A1 est un compose thio-NAD, ou est un compose reduit de thio-NAD lorsque A1 est un compose NAD.

31 EP0 575 610B1

14. Procede suivant la revendication il, dans lequel I'acide amine en a est la leucine, I'acide cetone en a est I'acide 2-oxoisocaproique, I'amino acide deshydrogenase est la leucine deshydrogenase, A1 est un compose thio-NAD ou un compose NAD et B1 est un compose reduit de NAD lorsque A1 est un compose thio-NAD ou un compose reduit de thio-NAD lorsque A1 est un compose NAD. 5 15. Procede suivant la revendication il, dans lequel la substance chimique visee est I'ammoniac, I'amino acide des- hydrogenase (1) est choisie dans le groupe consistant en la glutamate deshydrogenase, en I'alanine deshydro- genase, en la leucine deshydrogenase, en la serine deshydrogenase, en la valine deshydrogenase, en la glycine deshydrogenase et en une amino acide deshydrogenase commune et la substance (4) chimique non visee est un 10 acide cetone en a correspondant a I'acide amine en a qui a ete utilise comme substrat pour I'amino acide deshy- drogenase choisie.

16. Composition analytique destinee a etre utilisee dans la determination quantitative d'une substance chimique choi- sie dans le groupe consistant en I'ammoniac, un acide amine en a et un acide cetone en a correspondant a I'acide is amine en a, qui comprend :

(1) une amino acide deshydrogenase comme premiere deshydrogenase qui catalyse la reaction reversible d'un acide amine en a sur I'eau, la reaction produisant de I'ammoniac et un acide cetone en a correspondant a I'acide amine en a, en la presence de (i) un premier coenzyme choisi dans le groupe consistant en un 20 compose thio-NADP et en un compose thio-NAD et (ii), un second coenzyme choisi dans le groupe consistant en un compose NADP et en un compose NAD ; (2) A1 (defini ci-dessous) ; (3) B1 (defini ci-dessous) ; et (4) eventuellement une substance chimique non visee participant a la reaction (I) de cyclisation suivante :

dans laquelle A1 est un compose thio-NADP, un compose thio-NAD, un compose NADP ou un compose NAD ; A2 est un produit reduit de A1 ; B1 est un compose reduit de NADP ou un compose reduit de NAD lorsque A1 est un compose thio-NADP ou est un compose thio-NAD ou un compose reduit de thio-NADP ou un compose reduit de thio-NAD, lorsque A1 est un compose NADP ou est un compose NAD ; et B2 est un 45 produit oxyde de B1 .

17. Composition analytique destinee a etre utilisee dans la determination quantitative d'une substance chimique choisi dans le groupe consistant en I'ammoniac, un acide amine en a et un acide cetone en a correspondant a I'acide amine en a, qui comprend : 50 (1) une amino acide deshydrogenase comme premiere deshydrogenase qui catalyse la reaction reversible d'un acide amine en a sur I'eau, la reaction produisant de I'ammoniac et un acide cetone en a correspondant a I'acide amine en a, en la presence de (i) un premier coenzyme choisi dans le groupe consistant en un compose thio-NADP et en un compose thio-NAD et (ii), un second coenzyme choisi dans le groupe consistant 55 en un compose NADP et en un compose NAD ; (2) A1 (defini ci-dessous) ; (3) au moins un coenzyme choisi parmi B1 (defini ci-dessous) et B2 (defini ci-dessous) ; (4) eventuellement une substance chimique non visee participant a la reaction (II) de cyclisation qui est cata-

32 EP0 575 610B1

lysee par I'amino acide deshydrogenase (1); et (5) une seconde deshydrogenase qui ne reagit pas sur I'acide amine en a, mais qui fait progresser la reaction de transformation de B2 en B1 dans la reaction (II), en combinaison avec un substrat pour la seconde des- hydrogenase,

Acide cetone en a + ammoniac

(II)

Seconde deshydrogenase

dans laquelle A1 est un compose thio-NADP, un compose thio-NAD, un compose NADP ou un compose NAD ; A2 est un produit reduit de A1 ; B1 est un compose reduit de NADP ou un compose reduit de NAD lorsque A1 est un compose thio-NADP ou est un compose thio-NAD ou un compose reduit de thio-NADP ou un compose reduit de thio-NAD lorsque A1 est un compose NADP ou est un compose NAD ; et B2 est un produit oxyde de B1 .

Composition analytique destinee a etre utilise dans la determination quantitative d'une substance chimique choisie dans le groupe consistant en I'ammoniac, un acide amine en a et un acide cetone en a correspondant a I'acide amine en a, qui comprend :

(1) une amino acide deshydrogenase comme premiere deshydrogenase qui catalyse la reaction reversible d'un acide amine en a sur I'eau, la reaction produisant de I'ammoniac et un acide cetone en a correspondant a I'acide amine en a, en la presence de (i) un premier coenzyme choisi dans le groupe consistant en un compose thio-NADP et en un compose thio-NAD et (ii), un second coenzyme choisi dans le groupe consistant en un compose NADP et en un compose NAD ; (2) au moins un coenzyme choisi parmi A1 (defini ci-dessous) et A2 (defini ci-dessous) ; (3) B1 (defini ci-dessous); (4) eventuellement une substance chimique non visee participant a la reaction (III) de cyclisation qui est ca- talysee par I'amino acide deshydrogenase; et (6) une troisieme deshydrogenase qui ne reagit pas sur I'acide amine en a mais qui fait progresser la reaction pour transformer A2 en A1 dans la reaction (III), en combinaison avec un substrat pour la troisieme deshy- drogenase

33 EP0 575 610B1

Troisieme deshydrogenase

III)

dans laquelle A1 est un compose thio-NADP, un compose thio-NAD, un compose NADP ou un compose NAD ; A2 est un produit reduit de A1 ; B1 est un compose reduit de NADP ou un compose reduit de NAD lorsque A1 est un compose thio-NADP ou est un compose thio-NAD ou un compose reduit de thio-NADP ou un compose reduit de thio-NAD lorsque A1 est un compose NADP ou est un compose NAD ; et B2 est un produit oxyde de B1 .

34 EP0 575 610B1

Fig. 1

W <

0 AO 80 120 160 200

Ammonium Chloride Concentration (|xM)

35 EP0 575 610B1

36 EP0 575 610B1

Fig. 3

40 80 120 160 200

Sodium L-glutamate Concentration (|xM)

37 EP0 575 610B1

38 EP0 575 610B1

Fig. 5

A 8 12 16 20

L-leucine Concentration (u-M)

39 EP0 575 610B1

Fig. 6

0 50 100 150 200 250

Pyruvic Acid Concentration (fxM)

40 EP0 575 610B1

41 EP0 575 610B1

42