MUSCOVITE Which Grades Into “Sericite” at Depth (Klein, 1939)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of High Temperatures on Aluminoceladonite Studied by Mössbauer, Raman, X-Ray Diffraction and X-Ray Photoelectron Spectroscopy
Title: Impact of high temperatures on aluminoceladonite studied by Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopy Author: Mariola Kądziołka-Gaweł, Maria Czaja, Mateusz Dulski, Tomasz Krzykawski, Magdalena Szubka Citation style: Kądziołka-Gaweł Mariola, Czaja Maria, Dulski Mateusz, Krzykawski Tomasz, Szubka Magdalena. (2021). Impact of high temperatures on aluminoceladonite studied by Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopy. “Mineralogy and Petrology” (Vol. 115, iss. 0, 2021, s. 1- 14), DOI: 10.1007/s00710-021-00753-z Mineralogy and Petrology (2021) 115:431–444 https://doi.org/10.1007/s00710-021-00753-z ORIGINAL PAPER Impact of high temperatures on aluminoceladonite studied by Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopy Mariola Kądziołka-Gaweł1 & Maria Czaja2 & Mateusz Dulski3,4 & Tomasz Krzykawski2 & Magdalena Szubka1 Received: 9 March 2020 /Accepted: 28 April 2021 / Published online: 18 May 2021 # The Author(s) 2021 Abstract Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopies were used to examine the effects of temperature on the structure of two aluminoceladonite samples. The process of oxidation of Fe2+ to Fe3+ ions started at about 350 °C for the sample richer in Al and at 300 °C for the sample somewhat lower Al-content. Mössbauer results show that this process may be associated with dehydroxylation or even initiate it. The first stage of dehydroxylation takes place at a temperature > 350 °C when the adjacent OH groups are replaced with a single residual oxygen atom. Up to ~500 °C, Fe ions do not migrate from cis- octahedra to trans-octahedra sites, but the coordination number of polyhedra changes from six to five. -
Download PDF About Minerals Sorted by Mineral Name
MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky. -
Fire Retardancy of Polypropylene/Kaolinite Composites Marcos Batistella, Belkacem Otazaghine, Rodolphe Sonnier, Carlos Petter, José-Marie Lopez-Cuesta
Fire retardancy of polypropylene/kaolinite composites Marcos Batistella, Belkacem Otazaghine, Rodolphe Sonnier, Carlos Petter, José-Marie Lopez-Cuesta To cite this version: Marcos Batistella, Belkacem Otazaghine, Rodolphe Sonnier, Carlos Petter, José-Marie Lopez-Cuesta. Fire retardancy of polypropylene/kaolinite composites. Polymer Degradation and Stability, Elsevier, 2016, 129, pp.260-267. 10.1016/j.polymdegradstab.2016.05.003. hal-02906432 HAL Id: hal-02906432 https://hal.archives-ouvertes.fr/hal-02906432 Submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fire retardancy of polypropylene/kaolinite composites * Marcos Batistella a, c, , Belkacem Otazaghine b, Rodolphe Sonnier b, Carlos Petter c, Jose-Marie Lopez-Cuesta b a Federal University of Santa Catarina, R. Eng. Agronomico^ Andrei Cristian Ferreira, s/n e Trindade, Florianopolis, SC, CEP 88040-900, Brazil b Ecole des Mines d’Ales, Centre des Materiaux (C2MA) e Pole^ Materiaux Polymeres Avances, 6 Avenue de Clavieres, 30319, Ales Cedex, France c Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501-970, Brazil abstract In this study the influence of surface modification of kaolinite with trisilanolisooctyl Polyhedral Oligo- SilSesquioxane (POSS) in polypropylene composites was evaluated in terms of thermal stability and fire retardancy and compared with talc. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Studies of Celadonite and Glauconite
Studies of Celadonite and Glauconite GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F Studies of Celadonite and Glauconite By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F A study of the compositional relations between celadonites and glauconites and an interpretation of the composition of glauconites UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HIGKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S- Government Printing Office Washington, D.C. 20402 - Price 40 cents (paper cover) CONTENTS Page Abstract.-_ ____-____-_--__-_-___--______-__-_______ Fl Interpretation of glauconite coniposition___-___________ F13 Introduction.______________________________________ 1 Relation between trivalent iron and octahedral aluminurn____________________________________ 13 Selection of analyses and calculation of atomic ratios___ 2 The Fe+3 :Fe+2 ratio_______________________ 13 Relation between the composition of celadonites and Relation between iron and potassium____________ 14 glauconites_ _ ___________________________________ 3 Fixation of potassium___________________________ 14 High potassium celadonites and glauconites-_______ 7 Deficiency in potassium content-_________________ 14 Relation between glauconite composition and geo Low potassium celadonites and glauconites_________ logic age_____________________________________ 15 Relation between Si, R+2 (VI), Al(VI), and R+3 (VI)_ -
Duration of Hydrothermal Activity at Steamboat Springs, Nevada, from Ages of Spatially Associated Volcanic Rocks
Duration of Hydrothermal Activity at Steamboat Springs, Nevada, From Ages of Spatially Associated Volcanic Rocks GEOLOGIC AiL SURVEY PROFESSIONAL PAPER 458-D Duration of Hydrothermal Activity at Steamboat Springs, Nevada, From Ages of Spatially Associated Volcanic Rocks By M. L. SILBERMAN, D. E. WHITE, T. E. C. KEITH, and R. D. DOCKTER GEOLOGY AND GEOCHEMISTRY OF THE STEAMBOAT SPRINGS AREA, NEVADA GEOLOGICAL SURVEY PROFESSIONAL PAPER 458-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Main entry under title: Duration of hydrothermal activity at Steamboat Springs, Nevada, from ages of spatially associated volcanic rocks. (Geology and geochemistry of the Steamboat Springs area, Nevada) (United States. Geological Survey. Professional paper ; 45 8-D) Bibliography: p. D13-D14. 1. Geothermal resources-Nevada-Steamboat Springs. 2. Geology- Nevada Steamboat Springs. 3. Potassium-argon dating. I. Silberman, Miles L. II. Series. III. Series: United States. Geological Survey. Professional paper ; 45 8-D. QE75.P9no. 458-D [GB1199.7.N3] 557.3'08s [553] 79-16870 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03215-5 CONTENTS Page Abstract __________ _______.._____________ Dl Potassium-argon ages Continued Introduction ______________________________________________ 1 Rhyolite domes______________________ -
Experimental Data for High-Temperature Decomposition of Natural Celadonite from Banded Iron Formation
Chin. J. Geochem. (2015) 34(4):507–514 DOI 10.1007/s11631-015-0066-2 ORIGINAL ARTICLE Experimental data for high-temperature decomposition of natural celadonite from banded iron formation 1 1 1 K. A. Savko • S. M. Piliugin • N. S. Bazikov Received: 5 March 2015 / Revised: 1 May 2015 / Accepted: 6 July 2015 / Published online: 17 July 2015 Ó Science Press, Institute of Geochemistry, CAS and Springer-Verlag Berlin Heidelberg 2015 Abstract Three experiments were set up to evaluate (KMA), Russia. Subalkaline BIF contains widespread conditions for the high-temperature decomposition of riebeckite, aegirine, celadonite, tetraferribiotite, and Al- celadonite from a banded iron formation in an alumina-free free chlorite instead of grunerite, stilpnomelane, minneso- system and identify its decomposition products. It was taite, and greenalite, which are the usual minerals in BIF estimated that at 650 and 750 °C, with a NiNiO buffer and elsewhere. At the KMA iron deposits, BIF with alkali pressure of 3 kbar, celadonite completely decomposes and amphibole were metamorphosed at 370–520 °C and 2–3 the decomposition products were tetraferribiotite, mag- kbar (Savko and Poskryakova 2003). netite and quartz. Under more oxidizing conditions (he- In the KMA, BIF green mica, which is responsible in matite-magnetite buffer instead of NiNiO), ferrous composition to the celadonite with the formula KFe3?(Mg, 2? potassium feldspar sanidine forms instead of magnetite. Fe ) = [Si4O10](OH)2, is quite abundant (Savko and During the celadonite decomposition in oxidizing condi- Poskryakova 2003). Celadonite forms emerald-green scales tions more magnesian and aluminous tetraferribiotite, sizing from a few tenths to 1.5–2 mm, composing up to along with ferrous sanidine, are formed than at reducing 30 %–40 % modal. -
Clay Minerals Soils to Engineering Technology to Cat Litter
Clay Minerals Soils to Engineering Technology to Cat Litter USC Mineralogy Geol 215a (Anderson) Clay Minerals Clay minerals likely are the most utilized minerals … not just as the soils that grow plants for foods and garment, but a great range of applications, including oil absorbants, iron casting, animal feeds, pottery, china, pharmaceuticals, drilling fluids, waste water treatment, food preparation, paint, and … yes, cat litter! Bentonite workings, WY Clay Minerals There are three main groups of clay minerals: Kaolinite - also includes dickite and nacrite; formed by the decomposition of orthoclase feldspar (e.g. in granite); kaolin is the principal constituent in china clay. Illite - also includes glauconite (a green clay sand) and are the commonest clay minerals; formed by the decomposition of some micas and feldspars; predominant in marine clays and shales. Smectites or montmorillonites - also includes bentonite and vermiculite; formed by the alteration of mafic igneous rocks rich in Ca and Mg; weak linkage by cations (e.g. Na+, Ca++) results in high swelling/shrinking potential Clay Minerals are Phyllosilicates All have layers of Si tetrahedra SEM view of clay and layers of Al, Fe, Mg octahedra, similar to gibbsite or brucite Clay Minerals The kaolinite clays are 1:1 phyllosilicates The montmorillonite and illite clays are 2:1 phyllosilicates 1:1 and 2:1 Clay Minerals Marine Clays Clays mostly form on land but are often transported to the oceans, covering vast regions. Kaolinite Al2Si2O5(OH)2 Kaolinite clays have long been used in the ceramic industry, especially in fine porcelains, because they can be easily molded, have a fine texture, and are white when fired. -
Talc and Pyrophyllite
TALC AND PYROPHYLLITE By Robert L. Virta Domestic survey data and tables were prepared by Raymond I. Eldridge III, statistical assistant, and the world production table was prepared by Glenn J. Wallace, international data coordinator. The mineral talc is a hydrous magnesium silicate. A massive recommended against listing asbestiform talc and talcose rock is called steatite, and an impure massive variety is nonasbestiform talc in its 10th report on carcinogens (U.S. known as soapstone. Talc is used commercially because of its Department of Health and Human Services, Public Health fragrance retention, luster, purity, softness, and whiteness. Service, 2001; National Paint and Coatings Association, Other commercially important properties of talc are its chemical January 2001, NTP skips over talc, accessed January 8, 2001, at inertness, high dielectric strength, high thermal conductivity, URL http://www.paint.org/ind_issue/current/jan/issue05.htm). low electrical conductivity, and oil and grease adsorption. In 2000, the U.S. Department of Defense authorized the Major markets for talc are ceramics, paint, paper, and plastics. disposal of 907 metric tons (t) of block and lump talc, which is Pyrophyllite is a hydrous aluminum silicate with a structure the entire uncommitted inventory in that category, from the similar to talc. Such properties as chemical inertness, high National Defense Stockpile. dielectric strength, high melting point, and low electrical conductivity make it useful for ceramic and refractory Production applications. Talc.—In 2000, seven companies operating nine mines in five Legislation and Government Programs States produced soapstone, steatite, and talc. All were open pit mines. The producers were, in decreasing order of production, The National Toxicology Program (NTP) of the U.S. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
06 11 09 Separation & Preparation of Biotite and Muscovite Samples For
06 11 09 Separation & Preparation of Biotite and Muscovite samples for 40Ar/39Ar analysis Karl Lang When dealing with detrital samples, sample contamination is a big problem. To avoid this at all costs be clean, this means handling samples one at a time and cleaning all equipment entirely after each sample handling. Only handle samples in a quite (i.e. not windy) environment, where there is little chance of spilling or blowing samples away. Handle samples over clean copier paper, and change the paper after each sample. Use compressed air (either canned or from a compressor) to clean all equipment in separation stages and methanol to keep equipment dirt and dust free in the preparation stages. This can be often be tedious work, I recommend finding a good book on tape or podcast to listen to. Estimate times to completion are stated. Detrital Samples Separation I. Sample drying (1-3 days) For detrital samples it is likely that samples will be wet. Simple let the samples dry in the open air, or under a mild lamp on paper plates. It may be necessary to occasionally stir up samples to get them to dry faster, if you do this, clean the stirrer after each sample. Split samples using a riffle splitter to obtain a quantity for the rest of the process, do this in the rock room. II. Sample Sieving (3-7 days) First locate a set of sieves that can be intensively cleaned. There are a set of appropriate sieves in 317 for this use, be careful using other's sieves as you will likely bend the meshes during cleaning. -
Swelling Capacity of Mixed Talc-Like/Stevensite Layers in White/Green Clay
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-6984 1 1 Plagcheck: no concerns 2 Tables?: 3 small 3 Word Count: ~9,100 4 Prod notes: make sure tables in file before RE 5 6 7 8 Swelling capacity of mixed talc-like/stevensite layers in white/green clay 9 infillings (‘deweylite’/‘garnierite’) from serpentine veins of faulted 10 peridotites, New Caledonia 11 REVISION 2 12 Lionel FONTENEAU 1, Laurent CANER 2*, Sabine PETIT 2, Farid JUILLOT 3, Florian 13 PLOQUIN 3, Emmanuel FRITSCH 3 14 15 1Corescan Pty Ltd, 1/127 Grandstand Road, 6104 Ascot, WA, Australia 16 2 Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP UMR 17 7285 CNRS, 5 rue Albert Turpain, TSA51106, 86073 Poitiers cedex 9, France 18 * Corresponding author, e-mail: [email protected] 19 3 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne 20 Universités – Université Pierre et Marie Curie UPMC, UMR CNRS 7590, Museum National 21 d’Histoire Naturelle, UMR IRD 206, 101 Promenade Roger Laroque, Anse Vata, 98848, 22 Nouméa, New Caledonia 23 24 25 Abstract: White (Mg-rich) and green (Ni-rich) clay infillings (‘deweylite’/‘garnierite’) found 26 in serpentine veins of faulted peridotite formations from New Caledonia consist of an intimate 27 mixture of fine-grained and poorly ordered 1:1 and 2:1 layer silicates, commonly referred to 28 as non-expandable serpentine-like (SL) and talc-like (TL) minerals.