Changes Over the Last Ten Years in the Fauna Structure of Aphids Inhabiting the Vegetation of Allotment Gardens in Poznań
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L]. -
Anatomical Investigations of the Male Reproductive System of Selected Species of Macrosiphini
Bulletin of Insectology 61 (1): 179, 2008 ISSN 1721-8861 Anatomical investigations of the male reproductive system of selected species of Macrosiphini Karina WIECZOREK Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland Abstract Histological sections and whole mount preparations of five species of Macrosiphini [Impatientinum asiaticum Nevsky, Hypero- myzus (Hyperomyzus) pallidus Hille Ris Lambers, Myzus (Myzus) cerasi (F.), Rhopalomyzus (Judenkoa) loniceare (Siebold) and Uroleucon obscurum (Koch)] were examined. Key words: Hemiptera, Aphidoidea, Aphididae, Macrosiphini, male reproductive system. In previous research on the structure of the male repro- References ductive system of aphids, about 70 species from various subfamilies have been described, mainly Lachninae BLACKMAN R. L., 1987.- Reproduction cytogenetics and de- (Wojciechowski, 1977), Chaitophorinae (Wieczorek and velopment, pp 163-191. In: Aphids, their biology, natural Wojciechowski, 2004), and Calaphidinae (Głowacka et. enemies and control (MINKS A. K., HARREWIJN P., Ed).- El- sevier, Amsterdam, The Netherland. al., 1974; Wieczorek and Wojciechowski, 2001; Wiec- BOCHEN K., KLIMASZEWSKI S. M., WOJCIECHOWSKI W., zorek, 2006). 1975.- Budowa męskiego układu rozrodczego Macrosipho- In contrast, Aphidinae are the largest and most diverse niella artemisiae (B.De Fonsc.) i M. millefolli (De Geer) group of aphids whose male reproductive system is least (Homoptera, Aphididae).- Acta Biologica Uniwersytet Slaski studied. In Pterocommatini the structure of the male re- w Katowicach, 90: 73-81. productive system has been analysed in Pterocomma GŁOWACKA E., KLIMASZEWSKI S. M., SZELEGIEWICZ H., WOJ- populeum (Kaltenbach) (Wieczorek and Wo- CIECHOWSKI W., 1974.- Uber den Bau des mannlichen Fort- jciechowski, 2005) and Pterocomma salicis (L.) (Wiec- pflanzungssystems der Aphiden (Homoptera, Aphidoidea).- zorek and Mróz, 2006), in Aphidini in Rhopalosiphum Annales Universitas Mariae Curie-Skłodowska, 29C: 133-138. -
Paecilomyces Niveus Stolk & Samson, 1971 (Ascomycota
http://dx.doi.org/10.1590/1519-6984.08014 Original Article Paecilomyces niveus Stolk & Samson, 1971 (Ascomycota: Thermoascaceae) as a pathogen of Nasonovia ribisnigri (Mosley, 1841) (Hemiptera, Aphididae) in Brazil M. A. C. Zawadneaka*, I. C. Pimentelb, D. Roblb, P. Dalzotob, V. Vicenteb, D. R. Sosa-Gómezc, M. Porsanib and F. L. Cuqueld aLaboratório de Entomologia Prof. Ângelo Moreira da Costa Lima, Departamento de Patologia Básica, Universidade Federal do Paraná – UFPR, CP 19020, CEP 81531-980, Curitiba, PR, Brazil bLaboratório de Microbiologia, Departamento de Patologia Básica, Universidade Federal do Paraná – UFPR, CP 19020, CEP 81531-980, Curitiba, PR, Brazil cLaboratório de Entomologia, Embrapa Soja, CP 231, CEP 86001-970, Londrina, PR, Brazil dDepartamento de Fitotecnia e Fitossanitarismo, Universidade Federal do Paraná – UFPR, Rua dos Funcionários, CP 1540, CEP 80035-050, Curitiba, PR, Brazil *e-mail: [email protected] Received: May 2, 2014 – Accepted: August 27, 2014 – Distributed: November 30, 2015 (With 2 figures) Abstract Nasonovia ribisnigri is a key pest of lettuce (Lactuca sativa L.) in Brazil that requires alternative control methods to synthetic pesticides. We report, for the first time, the occurrence of Paecilomyces niveus as an entomopathogen of the aphid Nasonovia ribisnigri in Pinhais, Paraná, Brazil. Samples of mummified aphids were collected from lettuce crops. The fungus P. niveus (PaePR) was isolated from the insect bodies and identified by macro and micromorphology. The species was confirmed by sequencing Internal Transcribed Spacer (ITS) rDNA. We obtained a sequence of 528 bp (accession number HQ441751), which aligned with Byssochlamys nivea strains (100% identities). In a bioassay, 120 h after inoculation of N. -
Natural Enemies of the Currant Lettuce Aphid, Nasonovia Ribisnigri (Mosely) (Hemiptera: Aphididae) and Their Population Fluctuations in Ahvaz, Iran
J. Crop Prot. 2014, 3 (4):487-497_______________________________________________________ Research Article Natural enemies of the currant lettuce aphid, Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae) and their population fluctuations in Ahvaz, Iran Afrooz Farsi1*, Farhan Kocheili1, Mohammad Saeed Mossadegh1, Arash Rasekh1 and Mehrzad Tavoosi2 1. Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran. 2. Agriculture and Natural Resources Research Center of Khuzestan-Ahvaz. Abstract: Nasonovia ribisnigri (Mosely) is one of the most important pests of the lettuce plant and it was reported for the first time in Ahvaz in 2008. In order to investigate the dominant species of its natural enemies and their population fluctuations, sample were taken arbitrarily from fifty plants twice a week during the growing season in 2010-2012. In this study, ten species of predators, three species of parasitoids and two species of hyperparasitoids were collected and identified. Hoverflies with a relative frequency of 55% were the dominant predators. Peaks of lacewings and subsequently ladybird beetles were more coincident with peaks of aphid population in mid-March in the first year of studies. But their densities in the second year were very low. Also, hoverflies and parasitoids were mainly observed in the high densities in late March-early April, in both years. Regression analysis indicated that populations of aphids were mainly affected by ladybird beetles and lacewings in the first year of study, as well as by ladybird beetles, hoverflies and parasitoids in the second year. Therefore, additional studies are required for further evaluation on the potential abilities of these natural enemies being a good candidates for the future biological control programs. -
The Ecology of the Bird Cherry-Oat Aphid, Rhopalosiphum Padi (L.)
WÅITT. INSTI]'IjTE t8't,n3 LIIìR,\fiY The Ecology of the Bird Cherry-Oat Àphid, RhopaTosiphun padi (t. ) (Heniptera: Aphididae) in the Low Rainfall llheat Belt of South Australia. By PauI Joseph De Barro B.Ag.Sc. (Hons) The University of Àdelaide A thesis submitted for the Degree of Doctor of Philosophy in the Faculty Agricultural and Natural Resource Sciences at The University of Àdelaide. Department of crop Protection Waite Àgricultural Research fnstitute The University of Adelaide December L99I TO ELIZÀBETH ÀNNE CARTER Table of Contents Page SUI,TII{ÀRY xi DECI,ÀRATION xiii ÀCKNO¡{LEDGT,TENTS xiv INTRODUCTION 1 RESEÀRCH PI-ÀN 3 CTIÀPTER 1 CEREÀL APHIDS IN AUSTRALIÀ 5 CHÀPTER 2 BÀRLEY YELLOI,{ DÍ{ÀRF VIRUS IN AUSTRÀLIA 15 CTIÀPTER 3 A CHEAP LIGHTWEIGHT EFFICIENT VÀCUUM SÀMPLER. 24 Abstract 24 Introduction 24 Materials and Methods 24 Results and Discussion 27 CHÀPTER 4. KARYOTYPES OF CEREAL ÀPHIDS IN SOUTH AUSTRÀLIÀ WTTH SPECIÀL REFERENCE TO R. MATDÏg. 30 Àbstract 30 Introduction 30 Materials and Methods 33 Results 34 Discussion 34 CHÀPTER 5. STUDIES ON THE BIOLOGY OF ÀPTEROUS R. PADI. 38 Àbstract 38 Introduction 38 Materials and Methods 39 Results and Discussion 4I CHÄPTER 6. THE ROLE OF REFUGE AREÀS IN THE PHENOLOGY OF R. PADT IN LOhI RÀINFÀLL CROPPING AREAS OF SOUTH ÀUSTRÀLIÀ. 44 Abstract 44 Introduction 44 Materials and Methods 49 Results 53 Discussion 65 111 CHÀPTER 7 THE ROLE OF TEMPERÀTURE, PHOTOPERIOD, CROWDING ÀND PLÀNT QUALITY ON THE DEVELOPMENT OF THE ÀLATE EXULE FORM OF R. PADÏ. 69 Abstract 69 Introduction 70 Materials and Methods 7L Results 77 Discussion 88 CIIÀPTER 8. -
A Study of the Biology of Rhopalosiphum Padi (Homoptera: Aphididae) in Winter Wheat in Northwestern Indiana J
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 1987 A STUDY OF THE BIOLOGY OF RHOPALOSIPHUM PADI (HOMOPTERA: APHIDIDAE) IN WINTER WHEAT IN NORTHWESTERN INDIANA J. E. Araya Universidad de Chile John E. Foster University of Nebraska-Lincoln, [email protected] S. E. Cambron Purdue University, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Araya, J. E.; Foster, John E.; and Cambron, S. E., "A STUDY OF THE BIOLOGY OF RHOPALOSIPHUM PADI (HOMOPTERA: APHIDIDAE) IN WINTER WHEAT IN NORTHWESTERN INDIANA" (1987). Faculty Publications: Department of Entomology. 543. http://digitalcommons.unl.edu/entomologyfacpub/543 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 1987 THE GREAT LAKES ENTOMOLOGIST 47 A STUDY OF THE BIOLOGY OF RHOPALOSIPHUM PADI (HOMOPTERA: APHIDIDAE) IN WINTER WHEAT IN NORTHWESTERN INDIANAI J. E. Araya2, J, E. Foster3, and S. E. Cambron 3 ABSTRACT Periodic collections of the bird cherry-oat aphid, Rhopalosiphum padi, dtring two years revealed small populations on winter wheat in Lafayette, Indiana. The greatest numbers were found on volunteer wheat plants before planting. In the autumn, aphids were detected on one-shoot plants by mid-October and also early March. The populations remained small until mid-June. We conclude that the aphid feeding did not significantly affect the plants, but helped spread barley yellow dwarf virus. -
Population Dynamics and Integrated Control of the Damson-Hop Aphid Phorodon Humuli (Schrank) on Hops in Spain A
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Spanish Journal of Agricultural Research 2013 11(2), 505-517 Available online at www.inia.es/sjar ISSN: 1695-971-X http://dx.doi.org/10.5424/sjar/2013112-2968 eISSN: 2171-9292 Population dynamics and integrated control of the damson-hop aphid Phorodon humuli (Schrank) on hops in Spain A. Lorenzana1*, A. Hermoso-de-Mendoza2, M. V. Seco1 and P. A. Casquero1 1 Departamento de Ingeniería y Ciencias Agrarias. Universidad de León. Avda. Portugal, 41. 24071 León, Spain 2 Instituto Valenciano de Investigaciones Agrarias (IVIA). Ctra. Moncada-Náquera, km 4,5. 46113 Moncada (Valencia), Spain Abstract The hop aphid Phorodon humuli (Schrank) (Hemiptera: Aphididae) is a serious pest in most areas where hops are grown. A field trial was performed on a hop yard throughout 2002, 2003 and 2004 in León (Spain) in order to analyse the population development of Phorodon humuli and its natural enemies, as well as to determine the most effective integrated program of insecticide treatments. The basic population development pattern of P. humuli was similar in the three years: the population peaked between mid to late June, and then decreased in late June/early July, rising again and reaching another peak in mid-July, after which it began to decline, rising once more in late August; this last rise is characteristic of Spain and has not been recorded in the rest of Europe. The hop aphid’s main natural enemy found on the leaves was Coccinella septempunctata (Coleoptera: Coccinellidae). The multiple regression analysis showed that aphids are positively related with the presence of beetle eggs and mean daily temperatures and negatively related with maximum daily temperature integral above 27°C in plots without insecticide treatment. -
Full Article
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 48 August 1995 Number 2 Natural occurrence of entomopathogenic fungi on Aphids at an agricultural field site TOVE STEENBERG and J0RGEN E il e n b e r g Department of Ecology and Molecular Biology Royal Veterinary and Agricultural University Biilowsvej 13, 1870 Frb. C., Denmark « Steenberg T. and Eilenberg J. (1995): Natural occurence of entomopathogenic fungi on Aphids at an agricultural field site. - Czech Mycol. 48: 89-96 The occurrence of insect pathogenic fungi on cereal aphids (Sitobion avenae, Rhopalosiphum padi and Metopolophium dirhodum) and other aphid species was studied at an agricultural field site over two years. Aphids were sampled from crops (Tricitum sativum, Avena sativa and Secale cereale) and weeds (Chenopodium album, Polygonum spp., Lamium sp., Capsella bursa-pastoris and others) and the following fungal species were documented: Erynia neoaphidis, Entomophthora planchoniana, Conidiobolus obscurus, Conidiobolus thromboides, Neozygites fresenii and Verticillium lecanii. Epizootic development from mid July onwards occurred in a population of S. avenae. The dominant fungus species in 1993 was E. neoaphidis, and in 1994 E. planchoniana. It was possible to infect S. avenae with E. neoaphidis originating from other aphid species. K ey words: Entomopathogenic fungi, cereal aphids, weeds, Erynia neoaphidis, Entomoph thora planchoniana Steenberg T. a Eilenberg J. (1995): Přirozený výskyt entomopotogennich hub na mšicích v polních podmínkách. - Czech Mycol. 48: 89-96 Po dobu dvou let byl v polních podmínkách sledován výskyt hub patogenních pro hmyz na mšicích na obilninách - kyjatce osenní (Sitobion avenae), mšici střemchové (Rhopalosiphum padi) a kyjatce travní (Metopolophium dirhodum) a dalších druzích mšic. -
Phylogenetic Relationships and Subgeneric Classification of European
A peer-reviewed open-access journal ZooKeys 878:Phylogenetic 1–22 (2019) relationships and subgeneric classification of EuropeanEphedrus species 1 doi: 10.3897/zookeys.878.38408 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Phylogenetic relationships and subgeneric classification of European Ephedrus species (Hymenoptera, Braconidae, Aphidiinae) Korana Kocić1, Andjeljko Petrović1, Jelisaveta Čkrkić1, Milana Mitrović2, Željko Tomanović1 1 University of Belgrade-Faculty of Biology, Institute of Zoology. Studentski Trg 16, 11000 Belgrade, Serbia 2 Institute for Plant Protection and Environment, Department of Plant Pests, Banatska 33, 11000 Belgrade, Serbia Corresponding author: Korana Kocić ([email protected]) Academic editor: K. van Achterberg | Received 21 July 2019 | Accepted 2 September 2019 | Published 7 October 2019 http://zoobank.org/9B51B440-ACFC-4E1A-91EA-32B28554AF56 Citation: Kocić K, Petrović A, Čkrkić J, Mitrović M, Tomanović Ž (2019) Phylogenetic relationships and subgeneric classification of EuropeanEphedrus species (Hymenoptera, Braconidae, Aphidiinae). ZooKeys 878: 1–22. https://doi. org/10.3897/zookeys.878.38408 Abstract In this study two molecular markers were used to establish taxonomic status and phylogenetic relation- ships of Ephedrus subgenera and species distributed in Europe. Fifteen of the nineteen currently known species have been analysed, representing three subgenera: Breviephedrus Gärdenfors, 1986, Lysephedrus Starý, 1958 and Ephedrus Haliday, 1833. The results of analysis of COI and EF1α molecular markers and morphological studies did not support this classification. Three clades separated by the highest genetic distances reported for the subfamily Aphidiinae on intrageneric level. Ephedrus brevis is separated from persicae and plagiator species groups with genetic distances of 19.6 % and 16.3 % respectively, while the distance between persicae and plagiator groups was 20.7 %. -
A Contribution to the Aphid Fauna of Greece
Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively). -
Rvk-Diss Digi
University of Groningen Of dwarves and giants van Klink, Roel IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Klink, R. (2014). Of dwarves and giants: How large herbivores shape arthropod communities on salt marshes. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 01-10-2021 Of Dwarves and Giants How large herbivores shape arthropod communities on salt marshes Roel van Klink This PhD-project was carried out at the Community and Conservation Ecology group, which is part of the Centre for Ecological and Environmental Studies of the University of Groningen, The Netherlands. -
THE APHID FAUNA (Hemiptera: Aphidoidea) of WATERMELONS
Entomol. Croat. 2011, Vol. 15. Num. 1-4: 177-183 Proceedings of the XXII Symposium Internationale Entomofaunisticum Europae Centralis THE APHID FAUNA (Hemiptera: Aphidoidea) OF WATERMELONS Tanja GOTLIN ČULJAK1, Katja ŽANIĆ2, Smiljana GORETA BAN2, Dean BAN3, Gvozden DUMIČIĆ2 & Dinka GRUBIŠIĆ1 1Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb Croatia; [email protected] 2 Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000, Split , Croatia 3 Institute of Agriculture and Tourism, Carla Huguesa 8, 52440 Poreč, Croatia Accepted: December 19th 2011 In this paper the fauna of aphids appearing on watermelons in the area of the Neretva valley is presented. Not only do they feed on the plants, but aphids can transmit virus diseases. The natural spread of aphid transmitted cucurbit viruses is often accomplished by Acyrthosiphon pisum (Harris), Aphis craccivora Koch, Aphis gossypii Glover and Myzus persicae (Sulzer). Aphid- transmitted viruses in cucurbits have been poorly investigated in Croatia, although Cucumber mosaic cucumovirus (CMV) sporadically occurs on cucurbits. The aim of this study was to investigate and identify aphid species in a watermelon field. The field experiment with watermelons [Citrullus lanatus (Thunb.) Matsum & Nakai] was conducted during 2004 and 2005 at Opuzen (43°00’N, 17°34’E, 3 m elevation), located in the Mediterranean area of Croatia. Opuzen is situated in the delta of the river Neretva River, the most important watermelon-growing area in Croatia. Aphid sampling was carried out using yellow water traps (70x70x12 cm). Traps were installed at the date of transplanting and observed daily in order to determine initial aphid flight prior to the first sampling.