Insecta Mundi 0662: 1–12 Zoobank Registered: Urn:Lsid:Zoobank.Org:Pub:21F39645-D23B-4532-AA49-E07C46B2ECF3

Total Page:16

File Type:pdf, Size:1020Kb

Insecta Mundi 0662: 1–12 Zoobank Registered: Urn:Lsid:Zoobank.Org:Pub:21F39645-D23B-4532-AA49-E07C46B2ECF3 September 28 2018 INSECTA 0662 1–12 urn:lsid:zoobank.org:pub:21F39645-D23B-4532-AA49-E07C- A Journal of World Insect Systematics 46B2ECF3 MUNDI 0662 Phorodon cannabis Passerini (Hemiptera: Aphididae), a newly recognized pest in North America found on industrial hemp Whitney S. Cranshaw Colorado State University C201 Plant Sciences 1177 Campus Delivery Fort Collins, CO 80523-1177 Susan E. Halbert Florida Department of Agriculture and Consumer Services, Division of Plant Industry P.O. Box 147100 Gainesville, FL 32614-7100, USA Colin Favret University of Montreal, Biodiversity Centre 4101 rue Sherbrooke est, Montreal QC, H1X 2B2, Canada Kadie E. Britt Department of Entomology, Virginia Tech 170 Drillfield Drive, 220 Price Hall Blacksburg, VA 24061, USA Gary L. Miller USDA, ARS, Henry A. Wallace Beltsville Agricultural Resource Center Systematic Entomology Laboratory Beltsville, MD, 20705-2350, USA Date of issue: September 28, 2018 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Whitney S. Cranshaw, Susan E. Halbert, Colin Favret, Kadie E. Britt and Gary L. Miller Phorodon cannabis Passerini (Hemiptera: Aphididae), a newly recognized pest in North America found on industrial hemp Insecta Mundi 0662: 1–12 ZooBank Registered: urn:lsid:zoobank.org:pub:21F39645-D23B-4532-AA49-E07C46B2ECF3 Published in 2018 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources, including the Zoological Record and CAB Abstracts. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Guidelines and requirements for the preparation of manuscripts are available on the Insecta Mundi website at http://centerforsystematicentomology.org/insectamundi/ Chief Editor: David Plotkin, [email protected] Assistant Editor: Paul E. Skelley, [email protected] Head Layout Editor: Robert G. Forsyth Editorial Board: J. H. Frank, M. J. Paulsen, Michael C. Thomas Review Editors: Listed on the Insecta Mundi webpage Printed copies (ISSN 0749-6737) annually deposited in libraries CSIRO, Canberra, ACT, Australia Museu de Zoologia, São Paulo, Brazil Agriculture and Agrifood Canada, Ottawa, ON, Canada The Natural History Museum, London, UK Muzeum i Instytut Zoologii PAN, Warsaw, Poland National Taiwan University, Taipei, Taiwan California Academy of Sciences, San Francisco, CA, USA Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA Field Museum of Natural History, Chicago, IL, USA National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia Electronic copies (Online ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico. Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/ Goethe-Universität, Frankfurt am Main: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-135240 Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/licenses/by-nc/3.0/ Layout Editor for this article: Robert G. Forsyth 0662: 1–12 2018 Phorodon cannabis Passerini (Hemiptera: Aphididae), a newly recognized pest in North America found on industrial hemp Whitney S. Cranshaw Colorado State University C201 Plant Sciences 1177 Campus Delivery Fort Collins, CO 80523-1177 [email protected] 970-491-6781 Susan E. Halbert Florida Department of Agriculture and Consumer Services, Division of Plant Industry P.O. Box 147100 Gainesville, FL 32614-7100, USA [email protected] Colin Favret University of Montreal, Biodiversity Centre 4101 rue Sherbrooke est, Montreal QC, H1X 2B2, Canada [email protected] Kadie E. Britt Department of Entomology, Virginia Tech 170 Drillfield Drive, 220 Price Hall Blacksburg, VA 24061, USA [email protected] Gary L. Miller USDA, ARS, Henry A. Wallace Beltsville Agricultural Resource Center Systematic Entomology Laboratory Beltsville, MD, 20705-2350, USA [email protected] Abstract. Phorodon cannabis Passerini (Hemiptera: Aphididae: Macrosiphini) is reported for the first time as a pest of Cannabis L. crops in North America. The insect has been confirmed from fields of industrial hemp in Colorado and Virginia and has been found present within greenhouses in at least several American states and one Canadian province. The generic position of the aphid species is discussed and other known members of the genus are ruled out. Phorodon cannabis is placed in genus Phorodon Passerini and subgenus (Diphorodon Börner). Pho- rodon persifoliae Shinji is transferred to Hyalopterus Koch as a nomen dubium. Key words. Cannabis, Sternorrhyncha. Introduction North American cultivation of industrial hemp for ship rigging and other cordage dates to the Colonial period (Purvis 1999). However, interest and production of various species of Cannabis L. (Cannabaceae) (hemp, marijuana) crops in the United States has increased greatly in recent years, stimulated in large part by language in the 2014 Farm Bill that provided a means for legal production of industrial hemp and has been adopted in various forms by a majority of states. As production has increased and regulation changed, there are opportunities to better document the insects that are associated with these crops. In Colorado, a state that has had extensive outdoor production of hemp since 2015, a widespread and potentially damaging species is Phorodon cannabis Passerini (Hemiptera: Aphididae), variously 2 • INSECTA MUNDI 0662, September 2018 CRANSHAW ET AL. known as the “cannabis aphid”, “hemp aphid”, or “bhang aphid” (McPartland et al. 2000; Anonymous 2017). Long known from central and southwest Asia, central and southern Europe, and North Africa (Blackman and Eastop 2006, 2018), where the host plants are native or have had long history of culture, P. cannabis only recently has been confirmed from North America (Halbert 2016). This paper reports the aphid species as new to North America, rules out other species in the genus, discusses the generic placement, provides identification information, and reports the known distribu- tion of the species in outdoor situations in Colorado and elsewhere in North America in greenhouses. Materials and Methods After the initial discovery of P. cannabis, field visits were expanded in 2017 to include an expanded survey of commercial hemp fields in eastern Colorado conducted in 2016–2017 by the first author. Specimens were preserved in ethanol and sent to the Florida Department of Agriculture and Consumer Services, Division of Plant Industry (DPI) (S. E. Halbert) for identification. Voucher specimens from this field survey are deposited at the Florida State Collection of Arthropods (FSCA) and at the National Aphidomorpha Collection, United States National Museum of Natural History (NMNH). A separate field collection of P. cannabis made on September 27, 2017 (K. E. Britt) from a hemp field in Blacksburg, Virginia was subsequently confirmed (G. L. Miller), and voucher specimens are deposited at NMNH. Additional specimens of greenhouse-collected material are deposited at the NMNH (confirmed by G. L. Miller) and the Ouellet-Robert Entomological Collection at the University of Montreal (QMOR). The cannabis aphid also has been observed on several occasions on indoor/greenhouse-grown Cannabis in Colorado, Oregon (Anonymous 2017), and Ontario, Canada (confirmed by C. Favret). Representative samples of natural enemies found associated with P cannabis in Colorado will be deposited in the C.P. Gillette Museum of Arthropod Diversity at Colorado State University. Our taxonomic identifications are based on comparisons of North American specimens fromCannabis and Humulus L. (Cannabaceae) in association with original descriptions and other relevant literature for all species of Phorodon. Our goal is to rule out other described species and to document efforts lead- ing to our identification. Photographs of microscope slide-mounted specimens were taken using a Zeiss Axio Image.M1, line drawings were outlined using a camera lucida on a Nikon E600, and plates were constructed using GIMP 2.8.22. Results and Discussion Field observations. Phorodon cannabis has been observed in Colorado since
Recommended publications
  • Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
    Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L].
    [Show full text]
  • Large-Scale Gene Expression Reveals Different Adaptations of Hyalopterus Persikonus to Winter and Summer Host Plants
    Insect Science (2017) 24, 431–442, DOI 10.1111/1744-7917.12336 ORIGINAL ARTICLE Large-scale gene expression reveals different adaptations of Hyalopterus persikonus to winter and summer host plants Na Cui1,4,∗, Peng-Cheng Yang2,∗, Kun Guo1,3, Le Kang1,4 and Feng Cui1 1State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; 2Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101; 3Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, and 4University of Chinese Academy of Sciences, Beijing 100049, China Abstract Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large-scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme–copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin-converting enzyme, cadherin, and calreticulin, were highly expressed in H.
    [Show full text]
  • Population Dynamics and Integrated Control of the Damson-Hop Aphid Phorodon Humuli (Schrank) on Hops in Spain A
    Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Spanish Journal of Agricultural Research 2013 11(2), 505-517 Available online at www.inia.es/sjar ISSN: 1695-971-X http://dx.doi.org/10.5424/sjar/2013112-2968 eISSN: 2171-9292 Population dynamics and integrated control of the damson-hop aphid Phorodon humuli (Schrank) on hops in Spain A. Lorenzana1*, A. Hermoso-de-Mendoza2, M. V. Seco1 and P. A. Casquero1 1 Departamento de Ingeniería y Ciencias Agrarias. Universidad de León. Avda. Portugal, 41. 24071 León, Spain 2 Instituto Valenciano de Investigaciones Agrarias (IVIA). Ctra. Moncada-Náquera, km 4,5. 46113 Moncada (Valencia), Spain Abstract The hop aphid Phorodon humuli (Schrank) (Hemiptera: Aphididae) is a serious pest in most areas where hops are grown. A field trial was performed on a hop yard throughout 2002, 2003 and 2004 in León (Spain) in order to analyse the population development of Phorodon humuli and its natural enemies, as well as to determine the most effective integrated program of insecticide treatments. The basic population development pattern of P. humuli was similar in the three years: the population peaked between mid to late June, and then decreased in late June/early July, rising again and reaching another peak in mid-July, after which it began to decline, rising once more in late August; this last rise is characteristic of Spain and has not been recorded in the rest of Europe. The hop aphid’s main natural enemy found on the leaves was Coccinella septempunctata (Coleoptera: Coccinellidae). The multiple regression analysis showed that aphids are positively related with the presence of beetle eggs and mean daily temperatures and negatively related with maximum daily temperature integral above 27°C in plots without insecticide treatment.
    [Show full text]
  • Phylogenetic Relationships and Subgeneric Classification of European
    A peer-reviewed open-access journal ZooKeys 878:Phylogenetic 1–22 (2019) relationships and subgeneric classification of EuropeanEphedrus species 1 doi: 10.3897/zookeys.878.38408 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Phylogenetic relationships and subgeneric classification of European Ephedrus species (Hymenoptera, Braconidae, Aphidiinae) Korana Kocić1, Andjeljko Petrović1, Jelisaveta Čkrkić1, Milana Mitrović2, Željko Tomanović1 1 University of Belgrade-Faculty of Biology, Institute of Zoology. Studentski Trg 16, 11000 Belgrade, Serbia 2 Institute for Plant Protection and Environment, Department of Plant Pests, Banatska 33, 11000 Belgrade, Serbia Corresponding author: Korana Kocić ([email protected]) Academic editor: K. van Achterberg | Received 21 July 2019 | Accepted 2 September 2019 | Published 7 October 2019 http://zoobank.org/9B51B440-ACFC-4E1A-91EA-32B28554AF56 Citation: Kocić K, Petrović A, Čkrkić J, Mitrović M, Tomanović Ž (2019) Phylogenetic relationships and subgeneric classification of EuropeanEphedrus species (Hymenoptera, Braconidae, Aphidiinae). ZooKeys 878: 1–22. https://doi. org/10.3897/zookeys.878.38408 Abstract In this study two molecular markers were used to establish taxonomic status and phylogenetic relation- ships of Ephedrus subgenera and species distributed in Europe. Fifteen of the nineteen currently known species have been analysed, representing three subgenera: Breviephedrus Gärdenfors, 1986, Lysephedrus Starý, 1958 and Ephedrus Haliday, 1833. The results of analysis of COI and EF1α molecular markers and morphological studies did not support this classification. Three clades separated by the highest genetic distances reported for the subfamily Aphidiinae on intrageneric level. Ephedrus brevis is separated from persicae and plagiator species groups with genetic distances of 19.6 % and 16.3 % respectively, while the distance between persicae and plagiator groups was 20.7 %.
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Phragmites Australis
    Journal of Ecology 2017, 105, 1123–1162 doi: 10.1111/1365-2745.12797 BIOLOGICAL FLORA OF THE BRITISH ISLES* No. 283 List Vasc. PI. Br. Isles (1992) no. 153, 64,1 Biological Flora of the British Isles: Phragmites australis Jasmin G. Packer†,1,2,3, Laura A. Meyerson4, Hana Skalov a5, Petr Pysek 5,6,7 and Christoph Kueffer3,7 1Environment Institute, The University of Adelaide, Adelaide, SA 5005, Australia; 2School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; 3Institute of Integrative Biology, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich,€ Switzerland; 4University of Rhode Island, Natural Resources Science, Kingston, RI 02881, USA; 5Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, CZ-25243, Pruhonice, Czech Republic; 6Department of Ecology, Faculty of Science, Charles University, CZ-12844, Prague 2, Czech Republic; and 7Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa Summary 1. This account presents comprehensive information on the biology of Phragmites australis (Cav.) Trin. ex Steud. (P. communis Trin.; common reed) that is relevant to understanding its ecological char- acteristics and behaviour. The main topics are presented within the standard framework of the Biologi- cal Flora of the British Isles: distribution, habitat, communities, responses to biotic factors and to the abiotic environment, plant structure and physiology, phenology, floral and seed characters, herbivores and diseases, as well as history including invasive spread in other regions, and conservation. 2. Phragmites australis is a cosmopolitan species native to the British flora and widespread in lowland habitats throughout, from the Shetland archipelago to southern England.
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]
  • Mites and Aphids in Washington Hops 189
    _________________________________________________Mites and aphids in Washington hops 189 MITES AND APHIDS IN WASHINGTON HOPS: CANDIDATES FOR AUGMENTATIVE OR CONSERVATION BIOLOGICAL CONTROL? D.G. James, T.S. Price, and L.C. Wright Department of Entomology, Washington State University, Prosser, Washington, U.S.A. INTRODUCTION Hop plants, Humulus lupulus L., are attacked by several arthropod pests, the most important being the hop aphid, Phorodon humuli (Schrank), and the two-spotted spider mite, Tetranychus urticae Koch (Campbell, 1985; Cranham, 1985). Currently, insecticides and miticides are routinely used to control these pests on hops grown in Washington state. In many horticultural crops, T. urticae is often an economic problem on crops only when its natural enemies are removed by the use of broad-spec- trum pesticides (Helle and Sabelis, 1985). The degree to which pesticides induce or exacerbate spider mite outbreaks in Washington hops has not been studied. Insect and mite management in Washington hops is currently being reevaluated due to in- creasing concerns over the cost-effectiveness, reliability, and sustainability of pesticide inputs. Chemical control of mites in hops is often difficult due to the large canopy of the crop and problems with miticide resistance (James and Price, 2000). Research to date on the biological control of mites in hops has centered on the use of phytoseiid mites through conservation or augmentation of populations (Pruszynski and Cone, 1972; Strong and Croft, 1993, 1995, 1996; Campbell and Lilley, 1999), but has not shown much commercial promise, despite some partial successes. While phytoseiid mites are un- doubtedly important predators of T. urticae in hops, support from other mite predators may be nec- essary to provide levels of biological control acceptable to growers.
    [Show full text]
  • Cannabis Aphid
    Insects/Mites that Feed on Hemp – Fluid Feeders Cannabis Aphid Cannabis aphid (Phorodon cannabis) is found on the leaves and stems of Cannabis. It is a light colored species and forms found indoors and forms found outdoors early in the season are cream- colored to pale yellow. Late in the season, as shortened day length triggers changes in the insect, forms that range from light green, to pale pink, to light brown predominate. This insect, only newly recognized from North America, is widespread in Colorado and known to occur in several other states and parts of Canada. Both wingless and winged forms occur. Some dark spotting occurs on winged forms. Wingless forms lack this patterning but may have pale striping running along the top of the body. Cannabis aphid feeds on fluids of the plant phloem, which it extracts through its "piercing-sucking" mouthparts. Very little, if any, injury occurs to cells from this feeding, so there are no symptoms on leaves of white flecking or surface scarring, such as is produced by spider mites or Wingless forms of cannabis aphid. thrips. Damage is caused by the loss of plant fluids. When high numbers of aphids are present and sustained this can cause reductions in plant vigor that can result in slowed growth, wilting, and leaf yellowing. As cannabis aphids feed, they also continuously excrete a sticky fluid, known as honeydew. This is produced in the form of tiny droplets which drop onto leaf surfaces below where it can be noticed as small shiny spots. This excreted honeydew can be an excellent diagnostic sign for detecting cannabis aphid infestations.
    [Show full text]
  • Reporting Service 2003, No
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service Paris, 2003-04-01 Reporting Service 2003, No. 04 CONTENTS 2003/049 - New data on quarantine pests and pests of the EPPO Alert List 2003/050 - Situation of several quarantine pests in Lithuania in 2002 2003/051 - First report of Xanthomonas axonopodis pv. dieffenbachiae in Turkey 2003/052 - Isolated finding of Citrus tristeza closterovirus in Algeria 2003/053 - Results of the 2002 survey on Plum pox potyvirus in Canada 2003/054 - Plum pox potyvirus isolated from Prunus spinosa in Hungary 2003/055 - Studies on Plum pox potyvirus recombinants 2003/056 - First report of Beet necrotic yellow vein benyvirus (rhizomania) in Egypt 2003/057 - First report of Chrysanthemum stem necrosis tospovirus in United Kingdom 2003/058 - Situation of Grapevine flavescence dorée phytoplasma in Italy 2003/059 - Grapevine flavescence dorée is suspected in Serbia (YU) 2003/060 - First report of Cameraria ohridella in the United Kingdom 2003/061 - Introduction of Dryocosmus kuriphilus into Piemonte, Italy: Addition to the EPPO Alert List 2003/062 - Phyllonorycter issikii (Lime leaf miner): addition to the EPPO Alert List 2003/063 - Introduction of Paratachardina lobata lobata into Florida, US 2003/064 - Further findings of Ralstonia solanacearum on Pelargonium in USA 2003/065 - Detection methods for Ralstonia solanacearum 2003/066 - EPPO report on notifications of non-compliance (detection of regulated pests) 1, rue Le Nôtre Tel. : 33 1 45 20 77 94 E-mail : [email protected] 75016 Paris Fax : 33 1 42 24 89 43 Web : www.eppo.org EPPO Reporting Service 2003/049 New data on quarantine pests and pests of the EPPO Alert List By browsing through the literature, the EPPO Secretariat has extracted the following new data concerning quarantine pests and pests included on the EPPO Alert List.
    [Show full text]
  • 2019 Pest Rating Profile for Phorodon Cannabis
    California Pest Rating Profile for Phorodon cannabis Passerini: cannabis aphid Hemiptera: Aphididae Pest Rating: A Comment Period CLOSED: 4/30/2019 through 6/14/2019 Initiating Event: On February 26, 2019, Phorodon cannabis was found on cannabis plants in a nursery in Mendocino County. This aphid has not been rated. A permanent pest rating proposal is required to support an official pest rating. History & Status: Background: Multiple sources report cannabis (Cannabis sativa) to be the sole host plant of P. cannabis (Bodlah et al., 2011; Heie, 1993; Khan and Shah, 2017). However, it has also been reported from other plants, including other Cannabis species and the genera Artemisia, Cnicus, Humulus (including hops, Humulus lupulus), and Prunus (Das, 1918; Higuchi and Miyazaki, 1969; Müller and Karl, 1976). The ability of P. cannabis to feed on and complete development on plants other than C. sativa is somewhat in doubt for the following two reasons. The similar species P. humuli (Schrank) (hops aphid) feeds on hops and Prunus species, and reports of P. cannabis on some of these plants could represent misidentifications of P. humuli (Oregon Department of Agriculture, 2017). Transfer trials failed to establish P. cannabis on hops (Cranshaw, 2018). Feeding by P. cannabis is reported to cause wilting and yellowing of cannabis (Oregon Department of Agriculture, 2017). In examination of outdoor hemp plants infested with P. cannabis, Cranshaw et al. (2018) did not observe any plant injuries resulting from aphid feeding, but they did report large quantities of honeydew. They observed large numbers of predaceous insects with P. cannabis in the field that they speculated were exerting pressure on the aphids, and they noted that that damage in greenhouses (where there would likely be less control by natural enemies) could be more significant.
    [Show full text]
  • Food Plant Records of Aphidini (Aphidinae: Aphididae: Hemiptera
    Journal of Entomology and Zoology Studies 2017; 5(2): 1280-1302 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(2): 1280-1302 Food plant records of Aphidini (Aphidinae: © 2017 JEZS Aphididae: Hemiptera) in India Received: 24-01-2017 Accepted: 25-02-2017 Garima Singh Garima Singh and Rajendra Singh Department of Zoology, Rajasthan Universityersity, Jaipur, Rajasthan, India Abstract The Aphidini is one of the 2 tribes of the subfamily Aphidinae (Aphididae: Hemiptera) containing about Rajendra Singh 830 species/subspecies assigned to 33 genera. Out of these, only 9 genera and 70 species/subspecies were Department of Zoology, D.D.U. recorded from India infesting 940 plant species belonging to 138 families, out of which only 19 families Gorakhpur Universityersity, are monocot. Indian Aphidini are recorded mostly on the plant family Asteraceae (102 plant species), Gorakhpur, U.P, India followed by Fabaceae (96 plant species), Poaceae (92 plant species), Lamiaceae (46 plant species), Rosaceae (38 plant species), Solanaceae (34 plant species), Apocyanaceae (28 plant species), Rubiaceae (26 plant species), Malvaceae (25 plant species), Rutaceae (22 plant species), Cucurbitaceae (22 plant species), Polygonaceae (21 plant species), etc. Out of 70 described species of Aphidini from India, 14 species are monophagous; 40 species are oligophagous infesting 2 to 20 plant species; and 8 species are moderately polyphagous infesting 21 to 55 plant species while 8 species are highly polyphagous feeding on 55 upto 569 plant species. The present contribution provides updated checklist of Indian Aphidini with the valid scientific name of the aphids as well as their food plants. Keywords: Aphidinae, Aphidini, food plant, aphids, checklist Introduction Aphids (Insecta: Homoptera : Aphididae), popularly known as plant-lice or ant-cows are tiny plant sap sucking insects varying in size between 0.7 and 7.0 mm in length [1].
    [Show full text]