World's Tallest Buildings with Dampers

Total Page:16

File Type:pdf, Size:1020Kb

World's Tallest Buildings with Dampers Tall Buildings in Numbers World’s Tallest Buildings with Dampers As tall buildings continue to be built in seismically-active and cyclone-prone areas, the need to augment the structures of Types of Dampers these buildings with dynamic modification devices (in this case, dampers) to counteract these forces is growing. This AMD = Active Mass Damper TLD = Tuned Liquid Damper data report graphically summarizes the findings of the ATMD = Active Tuned Mass Damper TMD = Tuned Mass Damper BRB = Buckling Restrained Brace VD = Viscous Damper CTBUH Research project Study on Tall Building Damping HMD = Hybrid Mass Damper VED = Viscoelastic Damper Technologies, sponsored by Bouygues Construction (see also TLCD = Tuned Liquid Column Damper Damping Technologies for Tall Buildings, page 42). See the research paper on page 42 for more details about each damper type. ›› See the full list of buildings with dampers at ctbuh.org/damping Tallest 10 Completed Buildings with Dampers Shanghai World Financial Center Princess Tower Ping An Finance Center Shanghai, 2008 Dubai, 2012 Shenzhen, 2017 Building Height: 492 m Building Height: 413 m Shanghai Tower Building Height: 599 m Damper Position: 90F/394 m Damper Position: 98F/363 m (estimated) Shanghai, 2015 Damper Position: 113F/556 m Type of Damper: ATMD Type of Damper: TLD Type of Damper: TMD Building Height: 632 m Petronas Twin Towers 1 & 2 23 Marina Damper Position: Kuala Lumpur, 1998 125F/581 m Dubai, 2012 TAIPEI 101 Building Height: 452 m Type of Damper: TMD Building Height: 392 m Taipei, 2004 Damper Position: within four legs under Damper Position: 86F/306 m Building Height: 508 m skybridge (approx. 150 m above ground floor) Type of Damper: TMD Damper Position: Type of Damper: TMD 600 m 88F/378 m 432 Park Avenue Type of Damper: TMD New York City, 2015 Almas Tower Building Height: 426 m Dubai, 2008 Damper Position: Building Height: 360 m 85F/397 m Damper Position: 450 m Type of Damper: TMD 48–49F/212 m Type of Damper: TMD 300 m 150 m Shanghai Tower’s damper The ball-shaped pendulum Only 30% of the is celebrated by a special damper at TAIPEI 101 % World’s 20 Tallest public “skyspace” with an is on public view, and is Buildings are equipped abstract scultpure atop commemorated with a with dampers. the damper enclosure. 30 mascot called “Damper Baby.” 48 | Tall Buildings in Numbers CTBUH Journal | 2018 Issue III BRB Tallest 50 Buildings with Dampers HMD 2% Mixed Includes buildings under construction 2% 2% AMD VED Hotel 2% 4% Steel 2% TLCD 8% 4% Steel/Concrete ATMD 8% 4% Office Composite 22% Mixed-Use Concrete/Steel 36% TLD TMD 48% 14% 14% 48% Residential VD 26% Concrete 34% 20% By Function By Primary Structural Material By Damper Type All 250 m+ Buildings with Dampers, by Location Moscow Toronto Seattle 2 Tianjin 11 2 Incheon Chicago 3 New York Urumqi Beijing Osaka Philadelphia 2 Tokyo Shanghai Los Angeles Chongqing Yokohama 6 3 Izumisano Doha Suzhou 2 Taipei 8 Shenzhen Kaohsiung Jeddah Dubai Hong Kong Taguig City 2 Kuala Lumpur 2 Sydney Melbourne HIGHEST LOWEST Wind Risk Single 250 m+ building in city Seismic Risk # Number of 250 m+ buildings in city The Shinjuku Center Tower, Tokyo The damper at 111 West 57th (1979) was retrofi tted with 288 Street, New York City, will weigh distributed oil dampers in 2009, 726 metric tons – more than 3.5 which reduced movement by 20% Statues of Liberty. 288 during the 2011 Tohuku earthquake. CTBUH Journal | 2018 Issue III Tall Buildings in Numbers | 49.
Recommended publications
  • Shanghai Tower Construction & Development Co., Ltd
    Autodesk Customer Success Story Shanghai Tower Construction & Development Co., Ltd. COMPANY Shanghai Tower Rising to new heights with BIM. Construction & Development Co., Ltd. Shanghai Tower owner champions BIM PROJECT TEAM for design and construction of one of the Gensler Thornton Tomasetti Cosentini Associates world’s tallest (and greenest) buildings. Architectural Design and Research Institute of Tongji University Shanghai Xiandai Engineering Consultants Co., Ltd. Shanghai Construction Group Shanghai Installation Engineering Engineering Co., Ltd. Autodesk Consulting SOFTWARE Autodesk® Revit® Autodesk® Navisworks® Manage Autodesk® Ecotect® Analysis AutoCAD® Autodesk BIM solutions enable the different design disciplines to work together in a seamless fashion on a single information platform—improving efficiency, reducing Image courtesy of Shanghai Tower Construction and Development Co., Ltd. Rendering by Gensler. errors, and improving Project summary featuring a public sky garden, together with cafes, both project and building restaurants, and retail space. The double-skinned A striking new addition to the Shanghai skyline is performance. facade creates a thermal buffer zone to minimize currently rising in the heart of the city’s financial heat gain, and the spiraling nature of the outer district. The super high-rise Shanghai Tower will — Jianping Gu facade maximizes daylighting and views while Director and General Manager soon stand as the world’s second tallest building, reducing wind loads and conserving construction Shanghai Tower Construction and adjacent to two other iconic structures, the materials. To save energy, the facility includes & Development Co., Ltd. Jin Mao Tower and the Shanghai World Financial its own wind farm and geothermal system. In Center. The 121-story transparent glass tower will addition, rainwater recovery and gray water twist and taper as it rises, conveying a unique recycling systems reduce water usage.
    [Show full text]
  • CTBUH Journal
    About the Council The Council on Tall Buildings and Urban Habitat, based at the Illinois Institute of Technology in CTBUH Journal Chicago and with a China offi ce at Tongji International Journal on Tall Buildings and Urban Habitat University in Shanghai, is an international not-for-profi t organization supported by architecture, engineering, planning, development, and construction professionals. Founded in 1969, the Council’s mission is to disseminate multi- Tall buildings: design, construction, and operation | 2014 Issue IV disciplinary information on tall buildings and sustainable urban environments, to maximize the international interaction of professionals involved Case Study: One Central Park, Sydney in creating the built environment, and to make the latest knowledge available to professionals in High-Rise Housing: The Singapore Experience a useful form. The Emergence of Asian Supertalls The CTBUH disseminates its fi ndings, and facilitates business exchange, through: the Achieving Six Stars in Sydney publication of books, monographs, proceedings, and reports; the organization of world congresses, Ethical Implications of international, regional, and specialty conferences The Skyscraper Race and workshops; the maintaining of an extensive website and tall building databases of built, under Tall Buildings in Numbers: construction, and proposed buildings; the Unfi nished Projects distribution of a monthly international tall building e-newsletter; the maintaining of an Talking Tall: Ben van Berkel international resource center; the bestowing of annual awards for design and construction excellence and individual lifetime achievement; the management of special task forces/working groups; the hosting of technical forums; and the publication of the CTBUH Journal, a professional journal containing refereed papers written by researchers, scholars, and practicing professionals.
    [Show full text]
  • Residential Building Evacuation-Simulation of Potential
    R. JEVTIĆ RESIDENTIAL BUILDING EVACUATION-SIMULATION OF POTENTIAL Residential Building Evacuation-Simulation of Potential Evacuation Scenarios With Presence of Immobile Persons RADOJE B. JEVTIĆ, Electrotechnical school „Nikola Tesla“, Niš Professional paper UDC: 614.8.084 DOI: 10.5937/tehnika2006814J The increase in urban population leads to the lack of housing in cities. One of potential solutions for this problem is to build tall residential buildings. The height of this objects, in recent times, ranges from several tens of meters even to several hundreds of meters, while the number of residents ranges from several hundred even to several thousands. Although these objects have built related to modern standards and technologies, with usage of modern materials and machines, problems can happen. One of particularly complex and hard problem presents the evacuation of residents in case of some disaster. Problem is much more severe and complicated if there are people with disabilities or people with special needs in the building. The potential solution for this problem can be the usage of simulation software. This paper was written to show the usage of simulation software Pathfinder in calculation of evacuation times for different evacuation scenarios, without the presence of immobile occupants, with presence of immobile occupants in the percentage of 5 % from complete occupant’s number and with presence of immobile occupants in the percentage of 10 % from complete occupant’s number. Key words: evacuation, residential, immobile, scenario 1. INTRODUCTION The advancement of science, the usage of many new technics and materials has led to the advancement High residential buildings present the past, the in architecture, unthinkable before.
    [Show full text]
  • Active Control of Pendulum Tuned Mass Dampers for Tall
    ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Engineering By Mohamed A. Eltaeb, M.S. UNIVERSITY OF DAYTON Dayton, Ohio December, 2017 ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Name: Eltaeb, Mohamed Ali APPROVED BY: ------------------------------------- ------------------------------------- Reza Kashani, Ph.D. Dave Myszka, Ph.D. Committee Chairperson Committee Member Professor Associate Professor Department of Mechanical Department of Mechanical and Aerospace Engineering and Aerospace Engineering ------------------------------------- ------------------------------------- Elias Toubia, Ph.D. Muhammad Islam, Ph.D. Committee Member Committee Member Assistant Professor Professor Department of Civil and Department of Mathematics Environmental Engineering ------------------------------------- ------------------------------------- Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Mohamed A. Eltaeb All rights reserved 2017 ABSTRACT ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Name: Eltaeb, Mohamed A. University of Dayton Advisor: Dr. Reza Kashani Wind induced vibration in tall structures is an important problem that needs effective and practical solutions. TMDs in either passive, active or semi-active form are the most common devices used to reduce wind-induced vibration. The objective of this research is to investigate and develop an effective model of a single multi degree of freedom (MDOF) active pendulum tuned mass damper (APTMD) controlled by hydraulic system in order to mitigate the dynamic response of the proposed tall building perturbed by wind loads in different directions.
    [Show full text]
  • Read Book Skyscrapers: a History of the Worlds Most Extraordinary
    SKYSCRAPERS: A HISTORY OF THE WORLDS MOST EXTRAORDINARY BUILDINGS PDF, EPUB, EBOOK Judith Dupre, Adrian Smith | 176 pages | 05 Nov 2013 | Black Dog & Leventhal Publishers Inc | 9781579129422 | English | New York, United States Skyscrapers: A History of the Worlds Most Extraordinary Buildings PDF Book By crossing the boundaries of strict geometry and modern technologies in architecture, he came up with a masterpiece that has more than a twist in its tail. Item added to your basket. Sophia McCutchen rated it it was amazing Nov 27, The lowest-priced brand-new, unused, unopened, undamaged item in its original packaging where packaging is applicable. Standing meters high and weighing half a million tons, Burj Khalifa towers above its city like a giant redwood in a field of daisies. The observation deck on the 43rd floor offers stunning views of Central, one of Hong Kong's busiest districts. It was the tallest of all buildings in the European Union until London's The Shard bumped it to second in The Shard did it, slicing up the skyline and the record books with its meter height overtaking the Commerzbank Headquarters in Frankfurt by nine meters, to become the highest building in the European Union. That it came about due to auto mogul Walter P. Marina Bay Sands , 10 Bayfront Ave. Heather Tribe rated it it was amazing Dec 01, Standing 1, feet tall, the building was one of the first to use new advanced structural engineering that could withstand typhoon winds as well as earthquakes ranging up to a seven on the Richter scale. Construction — mainly using concrete and stone — began around 72AD and finished in 80AD.
    [Show full text]
  • Leseprobe 9783791384900.Pdf
    NYC Walks — Guide to New Architecture JOHN HILL PHOTOGRAPHY BY PAVEL BENDOV Prestel Munich — London — New York BRONX 7 Columbia University and Barnard College 6 Columbus Circle QUEENS to Lincoln Center 5 57th Street, 10 River to River East River MANHATTAN by Ferry 3 High Line and Its Environs 4 Bowery Changing 2 West Side Living 8 Brooklyn 9 1 Bridge Park Car-free G Train Tour Lower Manhattan of Brooklyn BROOKLYN Contents 16 Introduction 21 1. Car-free Lower Manhattan 49 2. West Side Living 69 3. High Line and Its Environs 91 4. Bowery Changing 109 5. 57th Street, River to River QUEENS 125 6. Columbus Circle to Lincoln Center 143 7. Columbia University and Barnard College 161 8. Brooklyn Bridge Park 177 9. G Train Tour of Brooklyn 195 10. East River by Ferry 211 20 More Places to See 217 Acknowledgments BROOKLYN 2 West Side Living 2.75 MILES / 4.4 KM This tour starts at the southwest corner of Leonard and Church Streets in Tribeca and ends in the West Village overlooking a remnant of the elevated railway that was transformed into the High Line. Early last century, industrial piers stretched up the Hudson River from the Battery to the Upper West Side. Most respectable New Yorkers shied away from the working waterfront and therefore lived toward the middle of the island. But in today’s postindustrial Manhattan, the West Side is a highly desirable—and expensive— place, home to residential developments catering to the well-to-do who want to live close to the waterfront and its now recreational piers.
    [Show full text]
  • Entuitive Tall Buildings
    TALL BUILDINGS HIGH PERFORMANCE ENTUITIVE IS COLLABORATING WITH DEVELOPERS, ARCHITECTS AND BUILDERS TO DESIGN AND ENGINEER HIGH PERFORMANCE TALL BUILDINGS THAT ARE DEFINING CITY SKYLINES Urban centres around the globe are experiencing unprecedented growth. With limited land resources, cities are increasingly building towers – both for commercial and residential developments. Entuitive’s Tall Buildings team consists of structural engineers, building envelope specialists and technologists with decades of experience in delivering high-rise buildings through innovative and value driven solutions. DELIVERING VALUE It’s our ambition to help clients realize the best performing buildings that support their vision and commercial objectives. Through a holistic, integrated and highly collaborative approach, we draw on the wide-range of expertise wielded by Entuitive’s professionals to develop advanced structural and envelope solutions that deliver multiple dimensions of building performance with greater life-cycle economies. OPTIMIZING PERFORMANCE With extensive experience in tall buildings, deep knowledge of the latest building materials and construction methods, and sophisticated modeling techniques, our engineers and building envelope specialists focusing on solutions that enhance building performance. We strive to deliver a high degree of occupant comfort by mitigating the effects of wind-induced vibration. Our designs consider building resilience to natural and man-made events including seismic, extreme weather and blast. And we consistently optimize our structural and envelope solutions with an eye to improving efficiency at every stage while minimizing costs. AN ADVANCED APPROACH We use BIM and the latest technologies to enhance collaboration and coordination in order to deliver projects on-time and on- budget. We also go beyond BIM and utilize computational design and parametric modelling to assist architects in unleashing their creativity while optimizing the building structure – affording greater constructability, cost-savings and reduced time to market.
    [Show full text]
  • Structural Developments in Tall Buildings: Current Trends and Future Prospects
    © 2007 University of Sydney. All rights reserved. Architectural Science Review www.arch.usyd.edu.au/asr Volume 50.3, pp 205-223 Invited Review Paper Structural Developments in Tall Buildings: Current Trends and Future Prospects Mir M. Ali† and Kyoung Sun Moon Structures Division, School of Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA †Corresponding Author: Tel: + 1 217 333 1330; Fax: +1 217 244 2900; E-mail: [email protected] Received 8 May; accepted 13 June 2007 Abstract: Tall building developments have been rapidly increasing worldwide. This paper reviews the evolution of tall building’s structural systems and the technological driving force behind tall building developments. For the primary structural systems, a new classification – interior structures and exterior structures – is presented. While most representative structural systems for tall buildings are discussed, the emphasis in this review paper is on current trends such as outrigger systems and diagrid structures. Auxiliary damping systems controlling building motion are also discussed. Further, contemporary “out-of-the-box” architectural design trends, such as aerodynamic and twisted forms, which directly or indirectly affect the structural performance of tall buildings, are reviewed. Finally, the future of structural developments in tall buildings is envisioned briefly. Keywords: Aerodynamics, Building forms, Damping systems, Diagrid structures, Exterior structures, Interior structures, Outrigger systems, Structural performance, Structural systems, Tall buildings Introduction Tall buildings emerged in the late nineteenth century in revolution – the steel skeletal structure – as well as consequent the United States of America. They constituted a so-called glass curtain wall systems, which occurred in Chicago, has led to “American Building Type,” meaning that most important tall the present state-of-the-art skyscraper.
    [Show full text]
  • Citicorp Center + Citigroup Center + 601 Lexington (Current)
    http://www.601lexington.com/gallery/?pp_fID_1156=504 Ana Larranaga | Allie McGehee | Lisa Valdivia | Madison Van Pelt | Yiwen Zhang Location: 601 Lexington Avenue + 54th Street, New York NY 10022 Other Names: CitiCorp Center + CitiGroup Center + 601 Lexington (Current) Architects: Hugh Stubbins, William LeMessurier Chief Structural Engineer: William LeMessurier Years Built: 1974 - 1977 Year Opened: 1977 Cost: $195,000,000 http://adamkanemacchia.com/gallery/home/_akm0205-edit/ - CitiCorp Center is the first skyscraper in the U.S to be built with a tuned mass damper - The tower is the 6th highest building in NYC - The building was built for commercial office - Design for the building was drawn by William LeMessurier on his restaurant napkin - The office lobby was renovated in 1997 and a new lobby was built in 2010 - The structure was being fixed secretly at night Born: January 11th, 1912 - July 5th 2006 Birthplace: Birmingham, Alabama Education: Georgia Institute of Technology(Undergrad) Harvard University (Masters) Firm: Hugh Stubbins and Associates (won one of the 1st AIA Firm Awards) Projects: CitiCorp Center, Boston’s Federal Reserve Bank, Ronald Reagan Presidential Library, Landmark tower in Yokohama Awards: Gold Medal (Tau Sigma Delta), Honor Award AIA 1979 Born: June 1926 - June 2007 Birthplace: Pontiac, Michigan Education: Harvard University(BA Mathematics), Harvard Graduate School of Design, MIT (Masters in Engineering) Firm: LeMessurier Consultants Projects: Mah - LeMessurier System, Staggered Truss System, Tuned Mass Damper,
    [Show full text]
  • Modern Engineering Tools and Tech
    odern engineering tools and tech- as partitions, glazing, and the façade. Beyond niques enable structural engineers any noticeable harm caused by a single large dis- STRUCTURAL to continually redefine the limits placement, the accumulation of many cycles of of possibility. Nowhere is this amplitude can also cause fatigue failures. Mmore evident than in supertall buildings, where Wind-induced movement can cause two other PERFORMANCE controlling wind-induced sway has become a significant problems that affect a building’s critical aspect of project success. usability. The first, audible creaking and groan- The use of tuned mass damping systems has ing, seems to be especially prevalent where there performance issues relative become a mainstay in attaining this control, in is the greatest amount of relative motion between to extreme events large part because each custom-designed system building parts as the building deflects. Often can be tuned to match the as-built characteristics of occurring on the lower levels, these potentially the building. They also provide a much more effi- loud noises can make even a new building sound cient solution than adding more mass or stiffness. like a rickety old ship. One recent example is the Shanghai Tower which, The most common problem, however, is the when it opened in 2014, became China’s tallest perception of movement that comes from the building and the second tallest building in the acceleration of the ®building as it sways back and world. Even though the design of the 2,073-foot forth. This is an issue that designers must address (632-meter) tower was optimized to reduce wind to ensure occupants remain comfortable even as effects, the developer also chose to include a tuned the building moves.
    [Show full text]
  • Structural Design Challenges of Shanghai Tower
    Structural Design Challenges of Shanghai Tower Author: Yi Zhu Affiliation: American Society of Social Engineers Street Address: 398 Han Kou Road, Hang Sheng Building City: Shanghai State/County: Zip/Postal Code: 200001 Country: People’s Republic of China Email Address: [email protected] Fax: 1.917.661.7801 Telephone: 011.86.21.6057.0902 Website: http://www.thorntontomasetti.com Author: Dennis Poon Affiliation: Council on Tall Buildings and Urban Habitat Street Address: 51 Madison Avenue City: New York State/County: NY Zip/Postal Code: 10010 Country: United States of America Email Address: [email protected] Fax: 1.917.661.7801 Telephone: 1.917.661.7800 Website: http://www.thorntontomasetti.com Author: Emmanuel E. Velivasakis Affiliation: American Society of Civil Engineers Street Address: 51 Madison Avenue City: New York State/County: NY Zip/Postal Code: 10010 Country: Unites States of America Email Address: [email protected] Fax: +1.917.661.7801 Telephone: +1.917.661.8072 Website: http://www.thorntontomasetti.com Author: Steve Zuo Affiliation: American Institute of Steel Construction; Structural Engineers Association of New York; American Society of Civil Engineers Street Address: 51 Madison Avenue City: New York State/County: NY Zip/Postal Code: 10010 Country: United States of America Email Address: [email protected] Fax: 1.917.661.7801 Telephone: 1.917.661.7800 Website: http://www.thorntontomasetti.com/ Author: Paul Fu Affiliation: Street Address: 51 Madison Avenue City: New York State/County: NY Zip/Postal Code: 10010 Country: United States of America Email Address: [email protected] Fax: 1.917.661.7801 Telephone: 1.917.661.7800 Website: http://www.thorntontomasetti.com/ Author Bios Yi Zhu, Senior Principal of Thornton Tomasetti, has extensive experience internationally in the structural analysis, design and review of a variety of building types, including high-rise buildings and mixed-use complexes, in both steel and concrete.
    [Show full text]
  • Rajesh Kannan
    RAJESH KANNAN Address: No: 911, Al Bustan Building, Masfouth Street, Ajman, UAE. Mob:+ 971-0507305273 E-Mail: [email protected] ---------------------------------------------------------------------------------------------------- Career Objective: To attain growth oriented, challenging and rewarding career in a highly professional company, where I can apply and develop my acquired knowledge and skills for continuous career development. Work Experience : Total 21+ Years of hands on experience in Blasting and Painting, production, Inspection, Quality Assurance & Quality control in India, Malayisa & U.A.E. Experience (At India) : 5.6 years, Experience (At Gulf) : 13 years, (At Malaysia):3 years Educational Qualifications : Diploma in Mechanical Engineering: Technical Education, Tamilnadu, India. IT Skills Technical : Auto CAD, Well versed in Ms office (Word,Excel,Powerpoint) DPCS - Data preparation computer software Govt Industrial Training Institute, Tamil Nadu, India Current Position : Painting Engineer in Eversendai Engineering FZE , Sharjah, U.A.E, from : 19-10-2006 to till date. Present Job Responsibilities : Planning and organizing of production schedules as per Project Requirements. Review of Blasting/Painting Procedure as per applicable Codes and Standards to meet Project Specification. Providing necessary training to blasters, painters & staffs to meet the required level of standard as per project specifications. Qualifying the blasters/painters by conducting the test as per the standard practices. Ensuring that health and safety regulations are met Monitoring the QA/QC System as per the established Quality System at Paint shop and report the discrepancies if any. Identify and report the project non-conformities and initiate necessary corrective actions in co-ordination with Project QA/QC Engineers. Developing the team sprit to achieve more productivity through HSE & Quality aspects.
    [Show full text]