Modern Engineering Tools and Tech

Total Page:16

File Type:pdf, Size:1020Kb

Modern Engineering Tools and Tech odern engineering tools and tech- as partitions, glazing, and the façade. Beyond niques enable structural engineers any noticeable harm caused by a single large dis- STRUCTURAL to continually redefine the limits placement, the accumulation of many cycles of of possibility. Nowhere is this amplitude can also cause fatigue failures. Mmore evident than in supertall buildings, where Wind-induced movement can cause two other PERFORMANCE controlling wind-induced sway has become a significant problems that affect a building’s critical aspect of project success. usability. The first, audible creaking and groan- The use of tuned mass damping systems has ing, seems to be especially prevalent where there performance issues relative become a mainstay in attaining this control, in is the greatest amount of relative motion between to extreme events large part because each custom-designed system building parts as the building deflects. Often can be tuned to match the as-built characteristics of occurring on the lower levels, these potentially the building. They also provide a much more effi- loud noises can make even a new building sound cient solution than adding more mass or stiffness. like a rickety old ship. One recent example is the Shanghai Tower which, The most common problem, however, is the when it opened in 2014, became China’s tallest perception of movement that comes from the building and the second tallest building in the acceleration of the ®building as it sways back and world. Even though the design of the 2,073-foot forth. This is an issue that designers must address (632-meter) tower was optimized to reduce wind to ensure occupants remain comfortable even as effects, the developer also chose to include a tuned the building moves. Although their homes can mass damper (TMD) to reduce accelera- be literally in the clouds, people want to feel like tions further and eliminate any feeling they are on solid ground. Feeling at Home in of structuralCopyright movement. The resulting The inherently low structural damping in 1,100-ton system is the world’s largest modern high-rise structures is a significant factor the Clouds eddy current TMD, discussed in more in managing occupant perceptions of movement. detail below. The challenge is made even more problematic because of the relatively high uncertainty in By Trevor Haskett, P.Eng. and Problems assuming an appropriate level of inherent struc- Andy Smith, P.Eng. tural damping. As buildings are designed to be taller and more slender, they also are designed to be lighter and, Challenges relatively speaking, not as stiff. As a result, wind tends to cause much more flexure in these struc- Adding movement criteria to the building design tures than magazinein shorter, more squat buildings. To process increases the complexity of coming up S Tput it anotherR way,U the taller Cand more Tslender a Uwith a goodR design. E Fortunately, a structure’s modern building is, the more lively it is likely to be. dynamic characteristics can be estimated using If left uncontrolled, excessive wind-induced the structural engineer’s computer model through building movement can cause various problems. a back-and-forth approach. For example, large oscillatory displacements may Many years ago, wind tunnel testing on an make it necessary to reduce the speed of elevators instrumented flexure was used principally to Trevor Haskett is the Senior during strong wind events. Displacements can come up with foundation loads to determine Technical Director and Principal also damage more brittle secondary elements such the building’s overturning moment. However, and leads RWDI’s team that works on structural vibration and tuned mass damper projects. Andy Smith is the Engineering Leader of mechanical design for RWDI’s tuned mass damper projects. Wind tunnel testing of the tall and slender 432 Park Avenue played a key role in evaluating the effects of vortex shedding created by its very uniform shape. 14 December 2017 Located within blocks of New York’s Central Park, 432 Park Avenue is more Two 660-ton opposed pendulum tuned mass dampers (TMDs), located near ® than twice the height of any of its nearby neighbors, leaving the upper portion the top of the tower on the east and west sides of the core, provide supplemental of the structure fully exposed to the wind. damping for 432 Park Avenue. in more recent times, it was realized that the performance. However, data is less prevalent a much smaller value that ideally should be test data already being collected could also be for a supertall building’s inherent damping imperceptible to most people. used to estimate accelerations. This is now a except to know that it is going to be very low. Traditionally, the industry has found that routine activity. In fact, the trendCopyright is that the typical amount of keeping residential building accelerations For many current projects, the structural inherent damping is decreasing in new build- below about 18 milli-g for the worst storm engineer begins by laying out the structural ings as designs get leaner and more efficient, expected only once every 10 years heads off system to resist the gravity loads vertically and which brings us back to the observation that most complaints. For office towers, accelera- the wind loads laterally – and sometimes earth- new buildings tend to be more lively. So, tions of 25 milli-g might be acceptable. That quake loads, as applicable – based on the selected what are the implications when you know means, essentially, that weather patterns could primary structural materials (which is to say you cannot expect much damping from the be expected to produce building swaying that concrete and steel) and their configuration. This building structure, but you are going to reach would be noticeable and uncomfortable on initial layout includes the lion’s share of what for the sky anyway? the uppermost floors – causing chandeliers or determines the building’s mass and stiffness. draperies to move, or doors to swing on their This typically leads to an initial design based Setting Limits hinges – once in 10 years. on a finite element model. The output from magazineAlthough 10-year acceleration targets have that model provides the dynamicS characterT - RHow peopleU feel aboutC perceived T moveU- proven R to be usefulE guideposts for designers istics of the building. Using that information ment and acceleration is highly subjective, over the years, here again the liveliness of coupled with wind tunnel data and analysis, so trying to define how much acceleration newer buildings comes into play. Whereas, the structural engineer is given a set of equiva- is too much yields only a fuzzy threshold. for older buildings, most plots of peak lent distributed static wind loads, based on However, there is a consensus that build- acceleration versus average time between the specific dynamic characteristics of the ing occupancy type and anticipated return occurrences typically had roughly the same building and local meteorological climate. periods (or mean recurrence intervals) factor slope, such plots for lighter, more flexible This data can be put back into the same finite into setting a reasonable range of such limits. structures can have much flatter slopes. In element model to confirm the adequacy of all Residential buildings have tighter limits these cases, it is not unusual for the 1-month structural members for the ultimate design. on movement than other buildings, such and 1-year accelerations to govern. Further Another check is conducted to ensure service- as offices or commercial space. People in complicating the picture, the cyclic frequency ability requirements are met during regularly a condominium or apartment are going of the building’s sway also affects occupant occurring wind events. to be much more particular about how sensitivity. One level of acceleration that All of the secondary members in buildings comfortable their residence is, on an around- is acceptable on a very slow swaying, low- – everything from the glazing to the interior the-clock-basis, than the same people would frequency building may be objectionable on drywall and partitions – also contribute be in an office building. When acceleration a higher frequency building. to building stiffness in minor ways, but guidelines for buildings are set, they also This type of limit is reflected in the International these additions are not taken into consid- include an anticipated recurrence interval. Standards Organization’s standard ISO 10137: eration by the structural engineer, making For example, larger accelerations that the 2007, which provides acceleration criteria for the findings a bit conservative with regard majority of people would sense might be residential and office structures at the 1-year to safety. Conventional thinking is that, as acceptable if they occur only infrequently, return period across a range of frequencies. By far as loads are concerned, more stiffness is such as once a year or once every 10 years. aligning these limits with logarithmic graphs almost always better. For weekly or monthly occurrences, how- showing a building’s total peak accelerations Researchers have gleaned a significant ever, the acceleration would be limited to plotted against the typical mean time between amount of data on building performance NOTE – The accelerations experienced in a swaying building are most frequently expressed in characteristics, including damping ratios as thousandths of a G, the constant acceleration due to gravity, which is 9.81 meters per second a function of height and building type. These squared. Applying the metric prefix milli yields the term milli-g. characteristics help to estimate structural STRUCTURE magazine15 December 2017 these occurrences, when and to what extent Staying in Control is linked to a second mass supported pendu- structural performance improvements are neces- lum-style. This configuration can be used to sary can be determined.
Recommended publications
  • Active Control of Pendulum Tuned Mass Dampers for Tall
    ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Engineering By Mohamed A. Eltaeb, M.S. UNIVERSITY OF DAYTON Dayton, Ohio December, 2017 ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Name: Eltaeb, Mohamed Ali APPROVED BY: ------------------------------------- ------------------------------------- Reza Kashani, Ph.D. Dave Myszka, Ph.D. Committee Chairperson Committee Member Professor Associate Professor Department of Mechanical Department of Mechanical and Aerospace Engineering and Aerospace Engineering ------------------------------------- ------------------------------------- Elias Toubia, Ph.D. Muhammad Islam, Ph.D. Committee Member Committee Member Assistant Professor Professor Department of Civil and Department of Mathematics Environmental Engineering ------------------------------------- ------------------------------------- Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Mohamed A. Eltaeb All rights reserved 2017 ABSTRACT ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Name: Eltaeb, Mohamed A. University of Dayton Advisor: Dr. Reza Kashani Wind induced vibration in tall structures is an important problem that needs effective and practical solutions. TMDs in either passive, active or semi-active form are the most common devices used to reduce wind-induced vibration. The objective of this research is to investigate and develop an effective model of a single multi degree of freedom (MDOF) active pendulum tuned mass damper (APTMD) controlled by hydraulic system in order to mitigate the dynamic response of the proposed tall building perturbed by wind loads in different directions.
    [Show full text]
  • Leseprobe 9783791384900.Pdf
    NYC Walks — Guide to New Architecture JOHN HILL PHOTOGRAPHY BY PAVEL BENDOV Prestel Munich — London — New York BRONX 7 Columbia University and Barnard College 6 Columbus Circle QUEENS to Lincoln Center 5 57th Street, 10 River to River East River MANHATTAN by Ferry 3 High Line and Its Environs 4 Bowery Changing 2 West Side Living 8 Brooklyn 9 1 Bridge Park Car-free G Train Tour Lower Manhattan of Brooklyn BROOKLYN Contents 16 Introduction 21 1. Car-free Lower Manhattan 49 2. West Side Living 69 3. High Line and Its Environs 91 4. Bowery Changing 109 5. 57th Street, River to River QUEENS 125 6. Columbus Circle to Lincoln Center 143 7. Columbia University and Barnard College 161 8. Brooklyn Bridge Park 177 9. G Train Tour of Brooklyn 195 10. East River by Ferry 211 20 More Places to See 217 Acknowledgments BROOKLYN 2 West Side Living 2.75 MILES / 4.4 KM This tour starts at the southwest corner of Leonard and Church Streets in Tribeca and ends in the West Village overlooking a remnant of the elevated railway that was transformed into the High Line. Early last century, industrial piers stretched up the Hudson River from the Battery to the Upper West Side. Most respectable New Yorkers shied away from the working waterfront and therefore lived toward the middle of the island. But in today’s postindustrial Manhattan, the West Side is a highly desirable—and expensive— place, home to residential developments catering to the well-to-do who want to live close to the waterfront and its now recreational piers.
    [Show full text]
  • Citicorp Center + Citigroup Center + 601 Lexington (Current)
    http://www.601lexington.com/gallery/?pp_fID_1156=504 Ana Larranaga | Allie McGehee | Lisa Valdivia | Madison Van Pelt | Yiwen Zhang Location: 601 Lexington Avenue + 54th Street, New York NY 10022 Other Names: CitiCorp Center + CitiGroup Center + 601 Lexington (Current) Architects: Hugh Stubbins, William LeMessurier Chief Structural Engineer: William LeMessurier Years Built: 1974 - 1977 Year Opened: 1977 Cost: $195,000,000 http://adamkanemacchia.com/gallery/home/_akm0205-edit/ - CitiCorp Center is the first skyscraper in the U.S to be built with a tuned mass damper - The tower is the 6th highest building in NYC - The building was built for commercial office - Design for the building was drawn by William LeMessurier on his restaurant napkin - The office lobby was renovated in 1997 and a new lobby was built in 2010 - The structure was being fixed secretly at night Born: January 11th, 1912 - July 5th 2006 Birthplace: Birmingham, Alabama Education: Georgia Institute of Technology(Undergrad) Harvard University (Masters) Firm: Hugh Stubbins and Associates (won one of the 1st AIA Firm Awards) Projects: CitiCorp Center, Boston’s Federal Reserve Bank, Ronald Reagan Presidential Library, Landmark tower in Yokohama Awards: Gold Medal (Tau Sigma Delta), Honor Award AIA 1979 Born: June 1926 - June 2007 Birthplace: Pontiac, Michigan Education: Harvard University(BA Mathematics), Harvard Graduate School of Design, MIT (Masters in Engineering) Firm: LeMessurier Consultants Projects: Mah - LeMessurier System, Staggered Truss System, Tuned Mass Damper,
    [Show full text]
  • Analysis of Technical Problems in Modern Super-Slim High-Rise Residential Buildings
    Budownictwo i Architektura 20(1) 2021, 83-116 DOI: 10.35784/bud-arch.2141 Received: 09.07.2020; Revised: 19.11.2020; Accepted: 15.12.2020; Avaliable online: 09.02.2020 © 2020 Budownictwo i Architektura Orginal Article This is an open-access article distributed under the terms of the CC-BY-SA 4.0 Analysis of technical problems in modern super-slim high-rise residential buildings Jerzy Szołomicki1, Hanna Golasz-Szołomicka2 1 Faculty of Civil Engineering; Wrocław University of Science and Technology; 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław; Poland, [email protected] 0000-0002-1339-4470 2 Faculty of Architecture; Wrocław University of Science and Technology; 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław; Poland [email protected] 0000-0002-1125-6162 Abstract: The purpose of this paper is to present a new skyscraper typology which has developed over the recent years – super-tall and slender, needle-like residential towers. This trend appeared on the construction market along with the progress of advanced struc- tural solutions and the high demand for luxury apartments with spectacular views. Two types of constructions can be distinguished within this typology: ultra-luxury super-slim towers with the exclusivity of one or two apartments per floor (e.g. located in Manhattan, New York) and other slender high-rise towers, built in Dubai, Abu Dhabi, Hong Kong, Bangkok, and Melbourne, among others, which have multiple apartments on each floor. This paper presents a survey of selected slender high-rise buildings, where structural improvements in tall buildings developed over the recent decade are considered from the architectural and structural view.
    [Show full text]
  • January 2016 the Future of NYC Real Estate
    January 2016 http://therealdeal.com/issues_articles/the-future-of-nyc-real-estate-2/ The Future of NYC real estate Kinetic buildings and 2,000-foot skyscrapers are just around the corner By Kathryn Brenzel The Hudson Yards Culture Shed, a yet-to-be-built arts and performance space at 10 Hudson Yards, just might wind up being the Batmobile of buildings. Dormant, it’s a glassy fortress. Animated, it will be able to extend its wings so-to-speak by sliding out a retractable exterior as a canopy. The design is a window into the future of New York City construction — and the role technology will play. This isn’t to say that a fleet of moving buildings will invade New York anytime soon, but the projects of the future will be smarter, more adaptive and, of course, more awe-inspiring. “I think you’re going to start having more and more facades that are more kinetic, that react to the environment,” said Tom Scarangello, CEO of Thornton Tomasetti, a New York-based engineering firm that’s working on the Culture Shed. For example, Westfield’s Oculus, the World Trade Center’s new bird-like transit hub, features a retractable skylight whose function is more symbolic than practical: It opens only on Sept. 11. As a whole, developers are moving away from the shamelessly reflective glass boxes of the past, instead opting for transparent-yet-textured buildings as well as slender, soaring towers à la Billionaires’ Row. They are already beginning to experiment with different building materials, such as trading steel for wood in the city’s first “plyscraper,” which is being planned at 475 West 18th Street.
    [Show full text]
  • Structural Design of Taipei 101, the World's Tallest Building
    ctbuh.org/papers Title: Structural Design of Taipei 101, the World's Tallest Building Authors: Dennis Poon, Managing Principal, Thornton Tomasetti Shaw-Song Shieh, President, Evergreen Engineering Leonard Joseph, Principal, Thornton Tomasetti Ching-Chang Chang, Project Manager, Evergreen Engineering Subjects: Building Case Study Structural Engineering Keywords: Concrete Outriggers Structure Tuned Mass Damper Publication Date: 2004 Original Publication: CTBUH 2004 Seoul Conference Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Dennis Poon; Shaw-Song Shieh; Leonard Joseph; Ching- Chang Chang Structural Design of Taipei 101, the World's Tallest Building Dennis C. K. Poon, PE, M.S.1, Shaw-song Shieh, PE, SE, M.S.2, Leonard M. Joseph, PE, SE, M.S.3, Ching-Chang Chang, PE, SE, M.S.4 1Managing Principal, Thornton-Tomasetti Group, New York 2President, Evergreen Consulting Engineering, Inc., Taipei 3Principal, Thornton-Tomasetti Group, Irvine, California 4Project Manager, Evergreen Consulting Engineering, Inc., Taipei Abstract At 101 stories and 508 m above grade, the Taipei 101 tower is the newest World’s Tallest Building. Collaboration between architects and engineers satisfied demands of esthetics, real estate economics, construction, occupant comfort in mild-to-moderate winds, and structural safety in typhoons and earthquakes. Its architectural design, eight eight-story modules standing atop a tapering base, evokes indigenous jointed bamboo and tiered pagodas. Building shape refinements from wind tunnel studies dramatically reduced accelerations and overturning forces from vortex shedding. The structural framing system of braced core and multiple outriggers accommodates numerous building setbacks.
    [Show full text]
  • THE SHANGHAI TOWER Reviewing Key Structural Design Components
    MEGATALL STRUCTURES: THE SHANGHAI TOWER Reviewing Key Structural Design Components by JOSEPH M. KAUFMAN JR. University of Cincinnati Civil Engineering Student Personal Visit to Shanghai, China June 2017 Kaufman 1 Abstract Megatall skyscrapers are a prominent staple in many countries around the world. Standing at over 2,000 feet tall, the Shanghai Tower boasts the tallest building in China and is the 2nd tallest building in the world (MASS). As with any megatall structure, the Shanghai Tower has overcome a variety of unique design challenges. Introduction The Shanghai Tower is unlike any other megatall skyscraper built in the world. Standing proud along the city skyline, it vertically transforms S zones, the building creatively turns a horizontal city into a vertical metropolis. The 127 stories are divided among the nine zones of 12 to 15 floors each and include retail, office and hotel space as well as an observation deck (CIM). Special to the Shanghai Tower is its double-shell design. The exterior glass curtain wall acts as an oversized skin interior skeleton and provides plenty of community green space and common atriums for meetings and socials. These shared interior spaces provide a welcoming environment for the occupants as well as the ability to achieve LEED Gold Certification (Singh). Building 2,000 feet into the sky requires experienced and skilled engineers, and ingenious structural designers. Design engineers had to consider challenging wind load conditions, develop a composite structural core, and manage building sway. Figure 1. These sketches show the building interior and exterior working together. Notice the double- shell design in the Sectional View of the Tower.
    [Show full text]
  • Seismic Effectiveness of Tuned Mass Damper (Tmd) for Different Ground Motion Parameters
    1 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2325 SEISMIC EFFECTIVENESS OF TUNED MASS DAMPER (TMD) FOR DIFFERENT GROUND MOTION PARAMETERS Dr. Mohan M. Murudi1 2 Mr. Sharadchandra M. Mane ABSTRACT Tuned Mass Damper (TMD) has been found to be most effective for controlling the structural responses for harmonic and wind excitations. In the present paper, the effectiveness of TMD in controlling the seismic response of structures and the influence of various ground motion parameters on the seismic effectiveness of TMD have been investigated. The structure considered is an idealized single-degree-of-freedom (SDOF) structure characterized by its natural period of vibration and damping ratio. Various structures subjected to different actual recorded earthquake ground motions and artificially generated ground motions are considered. It is observed that TMD is effective in controlling earthquake response of lightly damped structures, both for actual recorded and artificially generated earthquake ground motions. The effectiveness of TMD for a given structure depends on the frequency content, bandwidth and duration of strong motion, however the seismic effectiveness of TMD is not affected by the intensity of ground motion. INTRODUCTION Structural vibrations are caused due to dynamic excitations. Traditional methods of design for strength alone do not necessarily ensure that the structure will respond dynamically in such a way that the comfort and safety of the occupants is maintained, thus losing their relevance and are becoming economically non-viable. Many researchers have made efforts to find some alternate method to control the structural response to manageable levels for economical design for earthquake.
    [Show full text]
  • VIBRATION CONTROL of a FRAMES STRUCTURE USING TUNED MASS DAMPER Haruna Ibrahim1, Daha S
    VIBRATION CONTROL OF A FRAMES STRUCTURE USING TUNED MASS DAMPER Haruna Ibrahim1, Daha S. Aliyu2, Hafizu Hamza3 1.2P.G Student (Dept. of Civil Engg.) Sharda University, (India) 3Ministry of Environment (Planning Dept.) Kano State ABSTRACT Vibrations are one of many environmental factors that act on a buildings and potentially reduce their lifetime. Current trends in construction industry demands taller and lighter structures, which are also more flexible and having quite low damping value. This increases failure possibilities and also problems from serviceability point of view. Now-a-days several techniques are available to minimize the vibration of the structure, out of the several techniques available for vibration control; concept of using Tuned Mass Damper is a newer one. This study was made to study the effectiveness of using Tuned Mass Damper for controlling vibration of a frames structure. This report proposes a passive control of vibration of single degree of freedom and multi-degree of freedom structural frames subjected to dynamic (wind) excitation and a general understanding of the structural dynamics through MATLAB simulations. Preliminary results on the passive control of the structural response of single degree of freedom (SDOF) and two dimensional multi-storeyed frames using Tuned Mass Damper (TMD) are presented. At first a numerical analysis was developed to investigate the response of a shear building fitted with a tune mass damper. Then another numerical was developed to investigate the response of a 2D frame model fitted with a Tuned Mass Damper and then without Tuned Mass Damper (TDM). From the study it was found that, tuned mass damper can be effectively used for vibration control of structures.
    [Show full text]
  • Tuned Mass Damper Systems
    ConCh04v2.fm Page 217 Thursday, July 11, 2002 4:33 PM C H A PT E R 4 Tuned Mass Damper Systems 4.1 INTRODUCTION A tuned mass damper (TMD) is a device consisting of a mass, a spring, and a damper that is attached to a structure in order to reduce the dynamic response of the structure. The frequency of the damper is tuned to a particular structural frequency so that when that frequency is excited, the damper will resonate out of phase with the structural motion. Energy is dissipated by the damper inertia force acting on the structure. The TMD concept was first applied by Frahm in 1909 (Frahm, 1909) to reduce the rolling motion of ships as well as ship hull vibrations. A theory for the TMD was presented later in the paper by Ormondroyd and Den Hartog (1928), followed by a detailed discussion of optimal tuning and damping parameters in Den Hartog’s book on mechanical vibrations (1940). The initial theory was applicable for an undamped SDOF system subjected to a sinusoidal force excitation. Extension of the theory to damped SDOF systems has been investigated by numerous researchers. Significant contributions were made by Randall et al. (1981), Warburton (1981, 1982), Warburton and Ayorinde (1980), and Tsai and Lin (1993). This chapter starts with an introductory example of a TMD design and a brief description of some of the implementations of tuned mass dampers in building structures. A rigorous theory of tuned mass dampers for SDOF systems subjected to harmonic force excitation and harmonic ground motion is discussed next.
    [Show full text]
  • Burj Khalifa, the Shard, and Rivals by Eva Bogomil
    Burj Khalifa, The Shard, and Rivals by Eva Bogomil Introduction From the early days, we have invariably been interested in the world we live in, exploring, analysing, and altering it at our will. Humanity has gone a long way from caves to modern skyscrapers, aiming for ever greater heights. The power of human ingenuity has conquered the elements to reach the sky and beyond. Nowadays technologies allow us to build skyscrapers that totally change our idea of a modern world. Throughout the centuries brilliant engineers have been inventing more advanced and complex technologies, expanding our abilities. The Acropolis, St Paul’s Cathedral, the Eiffel Tower and the Sydney Opera House are all marvellous buildings that have remained objects of admiration for historians, architects, and artists, as well as a source of inspiration for many generations. Even to the general public the structures appear breathtaking. The 21st century saw the dawn of super-skyscraper construction. The Shard, Taipei 101, the Princess Tower, the Abraj Al-Bait Towers, and the Shanghai Tower are just some of the outstanding examples the modern world can be proud of. Burj Khalifa, currently the tallest building in the world, crowns this list of our achievements (Figure 1.0) which keep attracting people, making them wonder how such structures could have been built. Figure 1.0: Height comparison of some of the tallest buildings in the world This essay will focus mainly on London’s Shard and Dubai’s Burj Khalifa. Both of these skyscrapers are unique in their own way, yet similar. The Shard — currently the tallest building in the United Kingdom — dominates London skyline.
    [Show full text]
  • Passive Protection of Structures Using Innovative Rotational Inertia Dampers and Rotational Energy Conversion Devices
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2020 Passive Protection of Structures using Innovative Rotational Inertia Dampers and Rotational Energy Conversion Devices Abdollah Javidialesaadi University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Javidialesaadi, Abdollah, "Passive Protection of Structures using Innovative Rotational Inertia Dampers and Rotational Energy Conversion Devices. " PhD diss., University of Tennessee, 2020. https://trace.tennessee.edu/utk_graddiss/5860 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Abdollah Javidialesaadi entitled "Passive Protection of Structures using Innovative Rotational Inertia Dampers and Rotational Energy Conversion Devices." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Civil Engineering. Nicholas Edward Wierschem, Major Professor We have read this dissertation and recommend its acceptance: Mark Denavit, Brian Phillips, Eric Wade Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Passive Protection of Structures using Innovative Rotational Inertia Dampers and Rotational Energy Conversion Devices A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Abdollah Javidialesaadi May 2020 Copyright © 2020 by Abdollah Javidialesaadi All rights reserved.
    [Show full text]