Real Time Tuned Mass Damper Simulation System Nimisha Rao

Total Page:16

File Type:pdf, Size:1020Kb

Real Time Tuned Mass Damper Simulation System Nimisha Rao Real time tuned mass damper simulation system by Nimisha Rao B.E., Civil and Environmental Engineering R.KN.E.C. Nagpur, India, 2002 Submitted to the Department of Civil and Environmental Engineering in partial fulfillment for the degree of MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2003 @ 2003 Nimisha Rao. All Rights Reserved. The author hereby grants to MIT permission to reproduce and distributepublicly paper and electronic copies of this thesis document in whole and in part. Author... ............................................... Departncgt of Civil and Environmental Engineering May 9, 2003 Certified by....... / Professor Jerome J. Connor Department of Civil and Environmental Engineering Thesis Supervisor Accepted by Jral Buyukozturk Chairman, Departnent of Committee on Graduate Students MASSACHUSET ISTIiUTE OF TECHNOLOGY JUN 0 2 2003 LIBRARIES Real time tuned mass damper simulation system by Nimisha Rao Submitted to the Department of Civil and Environmental Engineering on May 9, 2003, in partial fulfillment of the requirements for the degree of Master of Engineering in Civil and Environmental Engineering Abstract The major concern in the construction industry in constructing tall structures is vibration due to wind and earthquake. Tuned mass dampers are an effective and practical ways to reduce the effect of vibration in structures. This thesis presents a tool, which simulates the effect of tuned mass dampers on the structure. This tool has been proposed to form a part of the website, moment.mit.edu. Java applets have been used to represent the working of the tuned mass damper, graphically. This would provide a better understanding for the students, so that they can design tuned mass damper effectively and use it appropriately. Strong dynamic figurers and graphs are used to convey the concept and the idea. Thesis Supervisor: Prof. Jerome J. Connor Title: Professor, Civil and Environmental Engineering Real Time Tuned Mass Damper Simulation System -2 - Acknowledgements I would like to thank my advisor, J.J.Connor, for his constant guidance, advice and encouragement through out my stay at MIT. His support, suggestion and comment have been very vital for the completion of this thesis. It is my great privilege and honor to have had the opportunity of working with him for the past one year. I would also like to thank Paul Kassabian, for his constant help and support. His valuable guidance and advice was helpful throughout the writing of my thesis. Finally, I am grateful to all the faculties, students and administrative staffs at the Department of Civil and Environmental Engineering for making my education a valuable learning experience. Family I would like to thanks my parents, brotherand my friend, Sakshi,for their never ending love, patience and support. Without you, I would not be the woman I am today Real Time Tuned Mass Damper Simulation System - 3- Table Of Contents A bstract ............................................................................................................................ 2 A cknow ledgem ents ...................................................................................................... 3 List of Figures and Tables........................................................................................... 5 C hapter 1: Introduction ............................................................................................... 6 C hapter 2:Tuned m ass dam per .................................................................................. 10 2.1 INTRODUCTION TO TUNED M ASS DAMPERS: ........................................................ 10 2.1.1 Working: ......................................................................................................... 11 2.1.2 Performance [11] ...................................................................................... 12 2.1.3 Safety issues [11]:....................................................................................... 12 2.2 CASE STUDIES: EXAMPLE OF EXISTING TUNED MASS DAMPER SYSTEM................. 13 2.2.1. TranslationalTuned Mass Damper: ........................................................... 13 2.2.2 Pendulum Tuned Mass Damper.................................................................. 17 2.3 TYPES OF TUNED MASS DAMPERS......................................................................... 19 Tuned mass damper theory'for SD OF system ...................................................... 19 Tuned mass damper/br MD OF system ................................................................ 22 Chapter 3:M om ent.m it.edu: ...................................................................................... 23 3.1 INTRODUCTION ....................................................................................................... 23 3.2 INTERACTIVE LEARNING MODULE: ....................................................................... 24 Static M odule:.......................................................................................................... 24 Dynam ic Module: ................................................................................................. 27 C hapter 4:The problem and the proposed solution .................................................... 32 4.1 BACKGROUND: ..................................................................................................... 32 4.2 THE PREVIOUS D ESIGN: ...................................................................................... 33 4.3 THE PROPOSED DESIGN: ...................................................................................... 40 C hapter 5:Conclusion: ............................................................................................... 44 References ...................................................................................................................... 46 A ppendices ..................................................................................................................... 47 Real Time Tuned Mass Damper Simulation System -4- List of Figures and Tables Figure 1: W ithout Damper [11] ..................................................................................... 6 Figure 2: W ith Damper [11]..........................................................................................6 Figure 3: Effect of TMD [11]........................................................................................ 7 Figure 4:Tuned Mass [12]...............................................................................................7 Figure 5: Translational tuned mass damper [9].............................................................13 Figure 6: Tuned mass damper for Chiba-Port Tower [9]............................................. 16 Figure 7: TMD-Huis Ten Bosch Tower, Nagasaki [9]................................................ 17 Figure 8:An active tuned mass damper configuration [9]........................................... 17 Figure 9:A simple pendulum tuned mass damper [9]................................................. 18 Figure 10:Simple Pendulum [II]....................................................................................18 Figure 11:Multi-Stage Pendulum [11].......................................................................... 19 Figure 12: Undamped structure: Undamped TMD [9]..................................................20 Figure 13: Undamped Structure: Damped TMD[9]...................................................... 21 Figure 14: Damped Structure: Damped TMD [9]........................................................ 21 Figure 15: Tuned mass damper for MDOF system [9].................................................... 22 Figure 16: Interactive Learning Module on stability of a Single Body [14]................ 24 Figure 17: Simply Supported Beam with 2 Point Loads: [14]...................................... 25 Figure 18: Beam Control [14].......................................................................................... 26 Figure 19: Load Paths [14] .......................................................................................... 26 Figure 20: Tuned Mass Damper [14].......................................................................... 27 Figure 21: Ground Excitation of a Single Degree of Freedom Building [14]...............28 Figure 22: Mass Shaker on the Same Building [14] ................................................... 29 Figure 23: Structural Analysis tool for Trusses [14].................................................... 29 Figure 24: Motion Lab for Undergrads [14].................................................................30 Figure 25: Sakuta's Exercises [14]............................................................................... 30 Figure 26: Previous Design [13]................................................................................. 35 Figure 27: Original Model [13].................................................................................... 35 Figure 28: Previous Design [13]................................................................................. 36 Figure 29: Previous Design [13]................................................................................. 37 Figure 30: Previous Design [13]................................................................................... 37 Figure 31: Previous Design [13]................................................................................. 38 Figure 32: Previous
Recommended publications
  • Active Control of Pendulum Tuned Mass Dampers for Tall
    ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Engineering By Mohamed A. Eltaeb, M.S. UNIVERSITY OF DAYTON Dayton, Ohio December, 2017 ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Name: Eltaeb, Mohamed Ali APPROVED BY: ------------------------------------- ------------------------------------- Reza Kashani, Ph.D. Dave Myszka, Ph.D. Committee Chairperson Committee Member Professor Associate Professor Department of Mechanical Department of Mechanical and Aerospace Engineering and Aerospace Engineering ------------------------------------- ------------------------------------- Elias Toubia, Ph.D. Muhammad Islam, Ph.D. Committee Member Committee Member Assistant Professor Professor Department of Civil and Department of Mathematics Environmental Engineering ------------------------------------- ------------------------------------- Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Mohamed A. Eltaeb All rights reserved 2017 ABSTRACT ACTIVE CONTROL OF PENDULUM TUNED MASS DAMPERS FOR TALL BUILDINGS SUBJECT TO WIND LOAD Name: Eltaeb, Mohamed A. University of Dayton Advisor: Dr. Reza Kashani Wind induced vibration in tall structures is an important problem that needs effective and practical solutions. TMDs in either passive, active or semi-active form are the most common devices used to reduce wind-induced vibration. The objective of this research is to investigate and develop an effective model of a single multi degree of freedom (MDOF) active pendulum tuned mass damper (APTMD) controlled by hydraulic system in order to mitigate the dynamic response of the proposed tall building perturbed by wind loads in different directions.
    [Show full text]
  • Leseprobe 9783791384900.Pdf
    NYC Walks — Guide to New Architecture JOHN HILL PHOTOGRAPHY BY PAVEL BENDOV Prestel Munich — London — New York BRONX 7 Columbia University and Barnard College 6 Columbus Circle QUEENS to Lincoln Center 5 57th Street, 10 River to River East River MANHATTAN by Ferry 3 High Line and Its Environs 4 Bowery Changing 2 West Side Living 8 Brooklyn 9 1 Bridge Park Car-free G Train Tour Lower Manhattan of Brooklyn BROOKLYN Contents 16 Introduction 21 1. Car-free Lower Manhattan 49 2. West Side Living 69 3. High Line and Its Environs 91 4. Bowery Changing 109 5. 57th Street, River to River QUEENS 125 6. Columbus Circle to Lincoln Center 143 7. Columbia University and Barnard College 161 8. Brooklyn Bridge Park 177 9. G Train Tour of Brooklyn 195 10. East River by Ferry 211 20 More Places to See 217 Acknowledgments BROOKLYN 2 West Side Living 2.75 MILES / 4.4 KM This tour starts at the southwest corner of Leonard and Church Streets in Tribeca and ends in the West Village overlooking a remnant of the elevated railway that was transformed into the High Line. Early last century, industrial piers stretched up the Hudson River from the Battery to the Upper West Side. Most respectable New Yorkers shied away from the working waterfront and therefore lived toward the middle of the island. But in today’s postindustrial Manhattan, the West Side is a highly desirable—and expensive— place, home to residential developments catering to the well-to-do who want to live close to the waterfront and its now recreational piers.
    [Show full text]
  • Citicorp Center + Citigroup Center + 601 Lexington (Current)
    http://www.601lexington.com/gallery/?pp_fID_1156=504 Ana Larranaga | Allie McGehee | Lisa Valdivia | Madison Van Pelt | Yiwen Zhang Location: 601 Lexington Avenue + 54th Street, New York NY 10022 Other Names: CitiCorp Center + CitiGroup Center + 601 Lexington (Current) Architects: Hugh Stubbins, William LeMessurier Chief Structural Engineer: William LeMessurier Years Built: 1974 - 1977 Year Opened: 1977 Cost: $195,000,000 http://adamkanemacchia.com/gallery/home/_akm0205-edit/ - CitiCorp Center is the first skyscraper in the U.S to be built with a tuned mass damper - The tower is the 6th highest building in NYC - The building was built for commercial office - Design for the building was drawn by William LeMessurier on his restaurant napkin - The office lobby was renovated in 1997 and a new lobby was built in 2010 - The structure was being fixed secretly at night Born: January 11th, 1912 - July 5th 2006 Birthplace: Birmingham, Alabama Education: Georgia Institute of Technology(Undergrad) Harvard University (Masters) Firm: Hugh Stubbins and Associates (won one of the 1st AIA Firm Awards) Projects: CitiCorp Center, Boston’s Federal Reserve Bank, Ronald Reagan Presidential Library, Landmark tower in Yokohama Awards: Gold Medal (Tau Sigma Delta), Honor Award AIA 1979 Born: June 1926 - June 2007 Birthplace: Pontiac, Michigan Education: Harvard University(BA Mathematics), Harvard Graduate School of Design, MIT (Masters in Engineering) Firm: LeMessurier Consultants Projects: Mah - LeMessurier System, Staggered Truss System, Tuned Mass Damper,
    [Show full text]
  • Modern Engineering Tools and Tech
    odern engineering tools and tech- as partitions, glazing, and the façade. Beyond niques enable structural engineers any noticeable harm caused by a single large dis- STRUCTURAL to continually redefine the limits placement, the accumulation of many cycles of of possibility. Nowhere is this amplitude can also cause fatigue failures. Mmore evident than in supertall buildings, where Wind-induced movement can cause two other PERFORMANCE controlling wind-induced sway has become a significant problems that affect a building’s critical aspect of project success. usability. The first, audible creaking and groan- The use of tuned mass damping systems has ing, seems to be especially prevalent where there performance issues relative become a mainstay in attaining this control, in is the greatest amount of relative motion between to extreme events large part because each custom-designed system building parts as the building deflects. Often can be tuned to match the as-built characteristics of occurring on the lower levels, these potentially the building. They also provide a much more effi- loud noises can make even a new building sound cient solution than adding more mass or stiffness. like a rickety old ship. One recent example is the Shanghai Tower which, The most common problem, however, is the when it opened in 2014, became China’s tallest perception of movement that comes from the building and the second tallest building in the acceleration of the ®building as it sways back and world. Even though the design of the 2,073-foot forth. This is an issue that designers must address (632-meter) tower was optimized to reduce wind to ensure occupants remain comfortable even as effects, the developer also chose to include a tuned the building moves.
    [Show full text]
  • Analysis of Technical Problems in Modern Super-Slim High-Rise Residential Buildings
    Budownictwo i Architektura 20(1) 2021, 83-116 DOI: 10.35784/bud-arch.2141 Received: 09.07.2020; Revised: 19.11.2020; Accepted: 15.12.2020; Avaliable online: 09.02.2020 © 2020 Budownictwo i Architektura Orginal Article This is an open-access article distributed under the terms of the CC-BY-SA 4.0 Analysis of technical problems in modern super-slim high-rise residential buildings Jerzy Szołomicki1, Hanna Golasz-Szołomicka2 1 Faculty of Civil Engineering; Wrocław University of Science and Technology; 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław; Poland, [email protected] 0000-0002-1339-4470 2 Faculty of Architecture; Wrocław University of Science and Technology; 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław; Poland [email protected] 0000-0002-1125-6162 Abstract: The purpose of this paper is to present a new skyscraper typology which has developed over the recent years – super-tall and slender, needle-like residential towers. This trend appeared on the construction market along with the progress of advanced struc- tural solutions and the high demand for luxury apartments with spectacular views. Two types of constructions can be distinguished within this typology: ultra-luxury super-slim towers with the exclusivity of one or two apartments per floor (e.g. located in Manhattan, New York) and other slender high-rise towers, built in Dubai, Abu Dhabi, Hong Kong, Bangkok, and Melbourne, among others, which have multiple apartments on each floor. This paper presents a survey of selected slender high-rise buildings, where structural improvements in tall buildings developed over the recent decade are considered from the architectural and structural view.
    [Show full text]
  • January 2016 the Future of NYC Real Estate
    January 2016 http://therealdeal.com/issues_articles/the-future-of-nyc-real-estate-2/ The Future of NYC real estate Kinetic buildings and 2,000-foot skyscrapers are just around the corner By Kathryn Brenzel The Hudson Yards Culture Shed, a yet-to-be-built arts and performance space at 10 Hudson Yards, just might wind up being the Batmobile of buildings. Dormant, it’s a glassy fortress. Animated, it will be able to extend its wings so-to-speak by sliding out a retractable exterior as a canopy. The design is a window into the future of New York City construction — and the role technology will play. This isn’t to say that a fleet of moving buildings will invade New York anytime soon, but the projects of the future will be smarter, more adaptive and, of course, more awe-inspiring. “I think you’re going to start having more and more facades that are more kinetic, that react to the environment,” said Tom Scarangello, CEO of Thornton Tomasetti, a New York-based engineering firm that’s working on the Culture Shed. For example, Westfield’s Oculus, the World Trade Center’s new bird-like transit hub, features a retractable skylight whose function is more symbolic than practical: It opens only on Sept. 11. As a whole, developers are moving away from the shamelessly reflective glass boxes of the past, instead opting for transparent-yet-textured buildings as well as slender, soaring towers à la Billionaires’ Row. They are already beginning to experiment with different building materials, such as trading steel for wood in the city’s first “plyscraper,” which is being planned at 475 West 18th Street.
    [Show full text]
  • Structural Design of Taipei 101, the World's Tallest Building
    ctbuh.org/papers Title: Structural Design of Taipei 101, the World's Tallest Building Authors: Dennis Poon, Managing Principal, Thornton Tomasetti Shaw-Song Shieh, President, Evergreen Engineering Leonard Joseph, Principal, Thornton Tomasetti Ching-Chang Chang, Project Manager, Evergreen Engineering Subjects: Building Case Study Structural Engineering Keywords: Concrete Outriggers Structure Tuned Mass Damper Publication Date: 2004 Original Publication: CTBUH 2004 Seoul Conference Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Dennis Poon; Shaw-Song Shieh; Leonard Joseph; Ching- Chang Chang Structural Design of Taipei 101, the World's Tallest Building Dennis C. K. Poon, PE, M.S.1, Shaw-song Shieh, PE, SE, M.S.2, Leonard M. Joseph, PE, SE, M.S.3, Ching-Chang Chang, PE, SE, M.S.4 1Managing Principal, Thornton-Tomasetti Group, New York 2President, Evergreen Consulting Engineering, Inc., Taipei 3Principal, Thornton-Tomasetti Group, Irvine, California 4Project Manager, Evergreen Consulting Engineering, Inc., Taipei Abstract At 101 stories and 508 m above grade, the Taipei 101 tower is the newest World’s Tallest Building. Collaboration between architects and engineers satisfied demands of esthetics, real estate economics, construction, occupant comfort in mild-to-moderate winds, and structural safety in typhoons and earthquakes. Its architectural design, eight eight-story modules standing atop a tapering base, evokes indigenous jointed bamboo and tiered pagodas. Building shape refinements from wind tunnel studies dramatically reduced accelerations and overturning forces from vortex shedding. The structural framing system of braced core and multiple outriggers accommodates numerous building setbacks.
    [Show full text]
  • THE SHANGHAI TOWER Reviewing Key Structural Design Components
    MEGATALL STRUCTURES: THE SHANGHAI TOWER Reviewing Key Structural Design Components by JOSEPH M. KAUFMAN JR. University of Cincinnati Civil Engineering Student Personal Visit to Shanghai, China June 2017 Kaufman 1 Abstract Megatall skyscrapers are a prominent staple in many countries around the world. Standing at over 2,000 feet tall, the Shanghai Tower boasts the tallest building in China and is the 2nd tallest building in the world (MASS). As with any megatall structure, the Shanghai Tower has overcome a variety of unique design challenges. Introduction The Shanghai Tower is unlike any other megatall skyscraper built in the world. Standing proud along the city skyline, it vertically transforms S zones, the building creatively turns a horizontal city into a vertical metropolis. The 127 stories are divided among the nine zones of 12 to 15 floors each and include retail, office and hotel space as well as an observation deck (CIM). Special to the Shanghai Tower is its double-shell design. The exterior glass curtain wall acts as an oversized skin interior skeleton and provides plenty of community green space and common atriums for meetings and socials. These shared interior spaces provide a welcoming environment for the occupants as well as the ability to achieve LEED Gold Certification (Singh). Building 2,000 feet into the sky requires experienced and skilled engineers, and ingenious structural designers. Design engineers had to consider challenging wind load conditions, develop a composite structural core, and manage building sway. Figure 1. These sketches show the building interior and exterior working together. Notice the double- shell design in the Sectional View of the Tower.
    [Show full text]
  • Seismic Effectiveness of Tuned Mass Damper (Tmd) for Different Ground Motion Parameters
    1 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2325 SEISMIC EFFECTIVENESS OF TUNED MASS DAMPER (TMD) FOR DIFFERENT GROUND MOTION PARAMETERS Dr. Mohan M. Murudi1 2 Mr. Sharadchandra M. Mane ABSTRACT Tuned Mass Damper (TMD) has been found to be most effective for controlling the structural responses for harmonic and wind excitations. In the present paper, the effectiveness of TMD in controlling the seismic response of structures and the influence of various ground motion parameters on the seismic effectiveness of TMD have been investigated. The structure considered is an idealized single-degree-of-freedom (SDOF) structure characterized by its natural period of vibration and damping ratio. Various structures subjected to different actual recorded earthquake ground motions and artificially generated ground motions are considered. It is observed that TMD is effective in controlling earthquake response of lightly damped structures, both for actual recorded and artificially generated earthquake ground motions. The effectiveness of TMD for a given structure depends on the frequency content, bandwidth and duration of strong motion, however the seismic effectiveness of TMD is not affected by the intensity of ground motion. INTRODUCTION Structural vibrations are caused due to dynamic excitations. Traditional methods of design for strength alone do not necessarily ensure that the structure will respond dynamically in such a way that the comfort and safety of the occupants is maintained, thus losing their relevance and are becoming economically non-viable. Many researchers have made efforts to find some alternate method to control the structural response to manageable levels for economical design for earthquake.
    [Show full text]
  • VIBRATION CONTROL of a FRAMES STRUCTURE USING TUNED MASS DAMPER Haruna Ibrahim1, Daha S
    VIBRATION CONTROL OF A FRAMES STRUCTURE USING TUNED MASS DAMPER Haruna Ibrahim1, Daha S. Aliyu2, Hafizu Hamza3 1.2P.G Student (Dept. of Civil Engg.) Sharda University, (India) 3Ministry of Environment (Planning Dept.) Kano State ABSTRACT Vibrations are one of many environmental factors that act on a buildings and potentially reduce their lifetime. Current trends in construction industry demands taller and lighter structures, which are also more flexible and having quite low damping value. This increases failure possibilities and also problems from serviceability point of view. Now-a-days several techniques are available to minimize the vibration of the structure, out of the several techniques available for vibration control; concept of using Tuned Mass Damper is a newer one. This study was made to study the effectiveness of using Tuned Mass Damper for controlling vibration of a frames structure. This report proposes a passive control of vibration of single degree of freedom and multi-degree of freedom structural frames subjected to dynamic (wind) excitation and a general understanding of the structural dynamics through MATLAB simulations. Preliminary results on the passive control of the structural response of single degree of freedom (SDOF) and two dimensional multi-storeyed frames using Tuned Mass Damper (TMD) are presented. At first a numerical analysis was developed to investigate the response of a shear building fitted with a tune mass damper. Then another numerical was developed to investigate the response of a 2D frame model fitted with a Tuned Mass Damper and then without Tuned Mass Damper (TDM). From the study it was found that, tuned mass damper can be effectively used for vibration control of structures.
    [Show full text]
  • Tuned Mass Damper Systems
    ConCh04v2.fm Page 217 Thursday, July 11, 2002 4:33 PM C H A PT E R 4 Tuned Mass Damper Systems 4.1 INTRODUCTION A tuned mass damper (TMD) is a device consisting of a mass, a spring, and a damper that is attached to a structure in order to reduce the dynamic response of the structure. The frequency of the damper is tuned to a particular structural frequency so that when that frequency is excited, the damper will resonate out of phase with the structural motion. Energy is dissipated by the damper inertia force acting on the structure. The TMD concept was first applied by Frahm in 1909 (Frahm, 1909) to reduce the rolling motion of ships as well as ship hull vibrations. A theory for the TMD was presented later in the paper by Ormondroyd and Den Hartog (1928), followed by a detailed discussion of optimal tuning and damping parameters in Den Hartog’s book on mechanical vibrations (1940). The initial theory was applicable for an undamped SDOF system subjected to a sinusoidal force excitation. Extension of the theory to damped SDOF systems has been investigated by numerous researchers. Significant contributions were made by Randall et al. (1981), Warburton (1981, 1982), Warburton and Ayorinde (1980), and Tsai and Lin (1993). This chapter starts with an introductory example of a TMD design and a brief description of some of the implementations of tuned mass dampers in building structures. A rigorous theory of tuned mass dampers for SDOF systems subjected to harmonic force excitation and harmonic ground motion is discussed next.
    [Show full text]
  • Burj Khalifa, the Shard, and Rivals by Eva Bogomil
    Burj Khalifa, The Shard, and Rivals by Eva Bogomil Introduction From the early days, we have invariably been interested in the world we live in, exploring, analysing, and altering it at our will. Humanity has gone a long way from caves to modern skyscrapers, aiming for ever greater heights. The power of human ingenuity has conquered the elements to reach the sky and beyond. Nowadays technologies allow us to build skyscrapers that totally change our idea of a modern world. Throughout the centuries brilliant engineers have been inventing more advanced and complex technologies, expanding our abilities. The Acropolis, St Paul’s Cathedral, the Eiffel Tower and the Sydney Opera House are all marvellous buildings that have remained objects of admiration for historians, architects, and artists, as well as a source of inspiration for many generations. Even to the general public the structures appear breathtaking. The 21st century saw the dawn of super-skyscraper construction. The Shard, Taipei 101, the Princess Tower, the Abraj Al-Bait Towers, and the Shanghai Tower are just some of the outstanding examples the modern world can be proud of. Burj Khalifa, currently the tallest building in the world, crowns this list of our achievements (Figure 1.0) which keep attracting people, making them wonder how such structures could have been built. Figure 1.0: Height comparison of some of the tallest buildings in the world This essay will focus mainly on London’s Shard and Dubai’s Burj Khalifa. Both of these skyscrapers are unique in their own way, yet similar. The Shard — currently the tallest building in the United Kingdom — dominates London skyline.
    [Show full text]