Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 34, 2009, 401–436 MEAN ERGODIC OPERATORS IN FRÉCHET SPACES Angela A. Albanese, José Bonet* and Werner J. Ricker Università del Salento, Dipartimento di Matematica “Ennio De Giorgi” C.P. 193, I-73100 Lecce, Italy;
[email protected] Universidad Politécnica de Valencia, Instituto Universitario de Matemática Pura y Aplicada Edificio IDI5 (8E), Cubo F, Cuarta Planta, E-46071 Valencia, Spain;
[email protected] Katholische Universität Eichstätt-Ingolstadt, Mathematisch-Geographische Fakultät D-85072 Eichstätt, Germany;
[email protected] Abstract. Classical results of Pelczynski and of Zippin concerning bases in Banach spaces are extended to the Fréchet space setting, thus answering a question posed by Kalton almost 40 years ago. Equipped with these results, we prove that a Fréchet space with a basis is reflexive (resp. Montel) if and only if every power bounded operator is mean ergodic (resp. uniformly mean ergodic). New techniques are developed and many examples in classical Fréchet spaces are exhibited. 1. Introduction and statement of the main results A continuous linear operator T in a Banach space X (or a locally convex Haus- dorff space, briefly lcHs) is called mean ergodic if the limits 1 Xn (1.1) P x := lim T mx; x 2 X; n!1 n m=1 exist (in the topology of X). von Neumann (1931) proved that unitary operators in Hilbert space are mean ergodic. Ever since, intensive research has been undertaken concerning mean ergodic operators and their applications; for the period up to the 1980’s see [19, Ch. VIII Section 4], [25, Ch.