[Math.KT] 29 Jun 1999 Nltccci Cohomology Cyclic Analytic Afmeyer Ralf 1999 Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bornologically Isomorphic Representations of Tensor Distributions
Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products. -
Linear Operators and Adjoints
Chapter 6 Linear operators and adjoints Contents Introduction .......................................... ............. 6.1 Fundamentals ......................................... ............. 6.2 Spaces of bounded linear operators . ................... 6.3 Inverseoperators.................................... ................. 6.5 Linearityofinverses.................................... ............... 6.5 Banachinversetheorem ................................. ................ 6.5 Equivalenceofspaces ................................. ................. 6.5 Isomorphicspaces.................................... ................ 6.6 Isometricspaces...................................... ............... 6.6 Unitaryequivalence .................................... ............... 6.7 Adjoints in Hilbert spaces . .............. 6.11 Unitaryoperators ...................................... .............. 6.13 Relations between the four spaces . ................. 6.14 Duality relations for convex cones . ................. 6.15 Geometric interpretation of adjoints . ............... 6.15 Optimization in Hilbert spaces . .............. 6.16 Thenormalequations ................................... ............... 6.16 Thedualproblem ...................................... .............. 6.17 Pseudo-inverseoperators . .................. 6.18 AnalysisoftheDTFT ..................................... ............. 6.21 6.1 Introduction The field of optimization uses linear operators and their adjoints extensively. Example. differentiation, convolution, Fourier transform, -
Models of Linear Logic Based on the Schwartz $\Varepsilon $-Product
MODELS OF LINEAR LOGIC BASED ON THE SCHWARTZ ε-PRODUCT. YOANN DABROWSKI AND MARIE KERJEAN Abstract. From the interpretation of Linear Logic multiplicative disjunction as the ε-product de- fined by Laurent Schwartz, we construct several models of Differential Linear Logic based on usual mathematical notions of smooth maps. This improves on previous results in [BET] based on con- venient smoothness where only intuitionist models were built. We isolate a completeness condition, called k-quasi-completeness, and an associated notion stable by duality called k-reflexivity, allow- ing for a ∗-autonomous category of k-reflexive spaces in which the dual of the tensor product is the reflexive version of the ε product. We adapt Meise’s definition of Smooth maps into a first model of Differential Linear Logic, made of k-reflexive spaces. We also build two new models of Linear Logic with conveniently smooth maps, on categories made respectively of Mackey-complete Schwartz spaces and Mackey-complete Nuclear Spaces (with extra reflexivity conditions). Varying slightly the notion of smoothness, one also recovers models of DiLL on the same ∗-autonomous cat- egories. Throughout the article, we work within the setting of Dialogue categories where the tensor product is exactly the ε-product (without reflexivization). Contents 1. Introduction 2 1.1. A first look at the interpretation of Linear Logic constructions 6 Part 1. Three Models of MALL 7 2. Preliminaries 7 2.1. Reminder on topological vector spaces 7 2.2. Reminder on tensor products and duals of locally convex spaces. 8 2.3. Dialogue and ∗-autonomous categories 10 2.4. -
A Note on Riesz Spaces with Property-$ B$
Czechoslovak Mathematical Journal Ş. Alpay; B. Altin; C. Tonyali A note on Riesz spaces with property-b Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 2, 765–772 Persistent URL: http://dml.cz/dmlcz/128103 Terms of use: © Institute of Mathematics AS CR, 2006 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 56 (131) (2006), 765–772 A NOTE ON RIESZ SPACES WITH PROPERTY-b S¸. Alpay, B. Altin and C. Tonyali, Ankara (Received February 6, 2004) Abstract. We study an order boundedness property in Riesz spaces and investigate Riesz spaces and Banach lattices enjoying this property. Keywords: Riesz spaces, Banach lattices, b-property MSC 2000 : 46B42, 46B28 1. Introduction and preliminaries All Riesz spaces considered in this note have separating order duals. Therefore we will not distinguish between a Riesz space E and its image in the order bidual E∼∼. In all undefined terminology concerning Riesz spaces we will adhere to [3]. The notions of a Riesz space with property-b and b-order boundedness of operators between Riesz spaces were introduced in [1]. Definition. Let E be a Riesz space. A set A E is called b-order bounded in ⊂ E if it is order bounded in E∼∼. A Riesz space E is said to have property-b if each subset A E which is order bounded in E∼∼ remains order bounded in E. -
Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic
Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic Richard Blute University of Ottawa ongoing discussions with Geoff Crutwell, Thomas Ehrhard, Alex Hoffnung, Christine Tasson June 20, 2011 Richard Blute Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic Goals Develop a theory of (smooth) manifolds based on differential linear logic. Or perhaps develop a differential linear logic based on manifolds. Convenient vector spaces were recently shown to be a model. There is a well-developed theory of convenient manifolds, including infinite-dimensional manifolds. Convenient manifolds reveal additional structure not seen in finite dimensions. In particular, the notion of tangent space is much more complex. Synthetic differential geometry should also provide information. Convenient vector spaces embed into an extremely good model. Richard Blute Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic Convenient vector spaces (Fr¨olicher,Kriegl) Definition A vector space is locally convex if it is equipped with a topology such that each point has a neighborhood basis of convex sets, and addition and scalar multiplication are continuous. Locally convex spaces are the most well-behaved topological vector spaces, and most studied in functional analysis. Note that in any topological vector space, one can take limits and hence talk about derivatives of curves. A curve is smooth if it has derivatives of all orders. The analogue of Cauchy sequences in locally convex spaces are called Mackey-Cauchy sequences. The convergence of Mackey-Cauchy sequences implies the convergence of all Mackey-Cauchy nets. The following is taken from a long list of equivalences. Richard Blute Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic Convenient vector spaces II: Definition Theorem Let E be a locally convex vector space. -
Uniqueness of Von Neumann Bornology in Locally C∗-Algebras
Scientiae Mathematicae Japonicae Online, e-2009 91 UNIQUENESS OF VON NEUMANN BORNOLOGY IN LOCALLY C∗-ALGEBRAS. A BORNOLOGICAL ANALOGUE OF JOHNSON’S THEOREM M. Oudadess Received May 31, 2008; revised March 20, 2009 Abstract. All locally C∗- structures on a commutative complex algebra have the same bound structure. It is also shown that a Mackey complete C∗-convex algebra is semisimple. By the well-known Johnson’s theorem [4], there is on a given complex semi-simple algebra a unique (up to an isomorphism) Banach algebra norm. R. C. Carpenter extended this result to commutative Fr´echet locally m-convex algebras [3]. Without metrizability, it is not any more valid even in the rich context of locally C∗-convex algebras. Below there are given telling examples where even a C∗-algebra structure is involved. We follow the terminology of [5], pp. 101-102. Let E be an involutive algebra and p a vector space seminorm on E. We say that p is a C∗-seminorm if p(x∗x)=[p(x)]2, for every x. An involutive topological algebra whose topology is defined by a (saturated) family of C∗-seminorms is called a C∗-convex algebra. A complete C∗-convex algebra is called a locally C∗-algebra (by Inoue). A Fr´echet C∗-convex algebra is a metrizable C∗- convex algebra, that is equivalently a metrizable locally C∗-algebra, or also a Fr´echet locally C∗-algebra. All the bornological notions can be found in [6]. The references for m-convexity are [5], [8] and [9]. Let us recall for convenience that the bounded structure (bornology) of a locally convex algebra (l.c.a.)(E,τ) is the collection Bτ of all the subsets B of E which are bounded in the sense of Kolmogorov and von Neumann, that is B is absorbed by every neighborhood of the origin (see e.g. -
Marie Kerjean
Tensor products and *-autonomous categories Marie Kerjean Laboratory PPS, Universit´eParis Diderot [email protected] The main use of ∗-autonomous categories is in the semantic study of Linear Logic. For this reason, it is thus natural to look for a ∗-autonomous category of locally convex topological vector spaces (tvs). On one hand, Linear Logic inherits its semantics from Linear Algebra, and it is thus natural to build models of Linear Logic from vector spaces [3,5,6,4]. On the other hand, denotational semantics has sought continuous models of computation through Scott domains [9]. Moreover, the infinite nature of the exponential of Linear Logic calls for infinite dimensional spaces, for which topology becomes necessary. One of the first intuitions that comes to mind when thinking about objects in a ∗-autonomous category is the notion of reflexive vector space, i.e. a a tvs which equals its double dual. When A is a vector space, the transpose dA : A ! (A !?) !? of the evaluation map evA :(A !?) × A !? is exactly the canonical injection of a vector space in its bidual. Then, requiring dA to be an isomorphism amounts to requiring A to be reflexive. However, the category of reflexive topological vector spaces is not ∗-autonomous, as it is not closed. Barr [2] constructs two closed subcategories of the category of tvs by re- stricting to tvs endowed with their weak topology (wtvs) or with their Mackey topology (mtvs), which are both polar topologies. Indeed, if E is a tvs, one can define its dual E0 as the space of all continuous linear form on E. -
Weak Topologies for Linear Logic
Weak topologies for Linear Logic Marie Kerjean Laboratoire PPS, Universit´eParis Diderot, Paris, France [email protected] Abstract We construct a denotational model of Linear Logic, whose objects are all the locally convex and separated topological vector spaces endowed with their weak topology. Linear proofs are interpreted as continuous linear functions, and non-linear proofs as sequences of monomials. The duality in this interpretation of Linear Logic does not come from an orthogonality relation, thus we do not complete our constructions by a double-orthogonality operation. This yields an interpretation of polarities with respect to weak topologies. 1 Introduction Linear Logic [Gir88] can be seen as a fine analysis of classical logic, through polarities and involutive linear negation [LR03]. The linearity hypothesis has been made by Girard [Gir87] after a semantical investigation of Intuitionistic Logic. Semantics has in turn led to various discoveries around Linear Logic, as in Game Semantics or Differential λ-calculus [ER06]. However, the linear negation is often modelized with an orthogonality relation [Ehr02, Ehr05, Gir04] or with a Chu construction [Gir99]. We try to generalize this approach by considering a model whose objects are general topological vector spaces. It allows us to get closer to the algebraic intuitions of Linear Logic, and to reach analogies with functional analysis. As in Scott Domains, we interpret our functions by continuous functions, and especially our linear proofs will be interpreted by linear continuous functions between topological vector spaces. As the topological dual of a space E is not constructed from E with an orthogonality relation, we have the opportunity to construct a new kind of negation. -
CHAPTER I I the Borndlogfy Off the SPACES ACX.I.S) and A
CHAPTER II THE BORNDLOGfY Off THE SPACES ACX.I.S) AND A(X.(t.s) • In this chapter we introduce a homology on A(X, (JJ, S) in a natural way and present some of its basic and useful properties. It is observed that this homology is not only different from the Yon-Neumann homology of the space A(X, (f, s) but it is not topologisable even. We also study the properties of a homology introduced on the dual space A(X, (f , s) in a manner analogoios to the one on A(X, C^, s). Finally, as an application, we make some interesting remarks on the topological as well as the bornol'ogical versions of the closed graph Theorem, 2.1 THE BORNOLOGg OF THE SPACE A(X. t. s) , We begin by defining a homology on A(X, (f, s) with the help of jj Jj introduced iji (1.3.2), For each r = l, 2, 3,,.. we denote by B^ the set 37 {a e A(X, (j:, s) / Ij alii r } . Then the family IB* »{BJral, 2, 3»..»} forms a base (see Definition 1,5«5) for a bornology B on A(X, C{ , s). IB thus consists of those subsets of A(X, (jl , s) vrtiioh are contained in some B , It is straightforward that (A(X, (JI, S), IB) is a separated convex bornological vector space (b.c.s, in short) with a countable base. In the sequel we shall mean by a bouinded set a set boxinded in this homology, unless stated to the contrary. -
On Bornivorous Set
On Bornivorous Set By Fatima Kamil Majeed Al-Basri University of Al-Qadisiyah College Of Education Department of Mathematics E-mail:[email protected] Abstract :In this paper, we introduce the concept of the bornivorous set and its properties to construct bornological topological space .Also, we introduce and study the properties related to this concepts like bornological base, bornological subbase , bornological closure set, bornological interior set, bornological frontier set and bornological subspace . Key words : bornivorous set , bornological topological space,b-open set 1.Introduction- The space of entire functions over the complex field C was introduced by Patwardhan who defined a metric on this space by introducing a real-valued map on it[6]. In(1971), H.Hogbe- Nlend introduced the concepts of bornology on a set [3].Many workers such as Dierolf and Domanski, Jan Haluska and others had studied various bornological properties[2]. In this paper at the second section ,bornivorous set has been introduced with some related concepts. While in the third section a new space “Bornological topological space“ has been defined and created in the base of bornivorous set . The bornological topological space also has been explored and its properties .The study also extended to the concepts of the bornological base and bornological subbase of bornological topological space .In the last section a new concepts like bornological closure set, bornological drived set, bornological dense set, bornological interior set, bornological exterior set, bornological frontier set and bornological topological subspace, have been studied with supplementary properties and results which related to them. 1 Definition1.1[3] Let A and B be two subsets of a vector space E. -
NONARCHIMEDEAN COALGEBRAS and COADMISSIBLE MODULES 2 of Y
NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES ANTON LYUBININ Abstract. We show that basic notions of locally analytic representation the- ory can be reformulated in the language of topological coalgebras (Hopf alge- bras) and comodules. We introduce the notion of admissible comodule and show that it corresponds to the notion of admissible representation in the case of compact p-adic group. Contents Introduction 1 1. Banach coalgebras 4 1.1. Banach -Coalgebras 5 ̂ 1.2. Constructions⊗ in the category of Banach -coalgebras 6 ̂ 1.3. Banach -bialgebras and Hopf -algebras⊗ 8 ̂ ̂ 1.4. Constructions⊗ in the category of⊗ Banach -bialgebras and Hopf ̂ -algebras. ⊗ 9 ̂ 2. Banach comodules⊗ 9 2.1. Basic definitions 9 2.2. Constructions in the category of Banach -comodules 10 ̂ 2.3. Induction ⊗ 11 2.4. Rational -modules 14 ̂ 2.5. Tensor identities⊗ 15 3. Locally convex -coalgebras 16 ̂ Preliminaries ⊗ 16 3.1. Topological Coalgebras 18 3.2. Topological Bialgebras and Hopf algebras. 20 4. modules and comodules 21 arXiv:1410.3731v2 [math.RA] 26 Jul 2017 4.1. Definitions 21 4.2. Rationality 22 4.3. Quotients, subobjects and simplicity 22 4.4. Cotensor product 23 5. Admissibility 24 Appendix 28 References 29 Introduction The study of p-adic locally analytic representation theory of p-adic groups seems to start in 1980s, with the first examples of such representations studied in the works 1 NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES 2 of Y. Morita [M1, M2, M3] (and A. Robert, around the same time), who considered locally analytic principal series representations for p-adic SL2. -
Arxiv:1811.04430V2 [Math.OA]
TRACES AND PEDERSEN IDEALS OF TENSOR PRODUCTS OF NONUNITAL C*-ALGEBRAS, CRISTIAN IVANESCU AND DAN KUCEROVSKˇ Y´ Abstract. We show that positive elements of a Pedersen ideal of a tensor product can be approximated in a particularly strong sense by sums of tensor products of positive elements. This has a range of applications to the structure of tracial cones and related topics, such as the Cuntz-Pedersen space or the Cuntz semigroup. For example, we determine the cone of lower semicontinuous traces of a tensor product in terms of the traces of the tensor factors, in an arbitrary C*-tensor norm. We show that the positive elements of a Pedersen ideal are sometimes stable under Cuntz equivalence. We generalize a result of Pedersen’s by showing that certain classes of completely positive maps take a Pedersen ideal into a Pedersen ideal. We provide theorems that in many cases compute the Cuntz semigroup of a tensor product. Key words and phrases. C∗-algebra, tensor product. 1. Introduction A unital C∗-algebra is a noncommutative generalization of the algebra C(X) of continuous functions on a compact topological space; in the nonunital case, it is a generalization of the algebra C0(X) of continuous functions that vanish at infinity, or more accurately, functions that are each arbitrarily small outside a sufficient large compact set. This paper studies the structure and applications of the Pedersen ideals of tensor products of nonunital C∗- algebras. The Pedersen ideal of a nonunital C∗-algebra is a noncommutative analogue of the space of compactly supported functions in the space of continuous complex-valued functions on a locally compact Hausdorff space.