Models of Linear Logic Based on the Schwartz Ε-Product

Total Page:16

File Type:pdf, Size:1020Kb

Models of Linear Logic Based on the Schwartz Ε-Product Theory and Applications of Categories, Vol. 34, No. 45, 2019, pp. 1440–1525. MODELS OF LINEAR LOGIC BASED ON THE SCHWARTZ "-PRODUCT. YOANN DABROWSKI AND MARIE KERJEAN Abstract. From the interpretation of Linear Logic multiplicative disjunction as the epsilon product defined by Laurent Schwartz, we construct several models of Differential Linear Logic based on the usual mathematical notions of smooth maps. This improves on previous results by Blute, Ehrhard and Tasson based on convenient smoothness where only intuitionist models were built. We isolate a completeness condition, called k-quasi-completeness, and an associated no- tion which is stable under duality called k-reflexivity, allowing for a star-autonomous category of k-reflexive spaces in which the dual of the tensor product is the reflexive version of the epsilon- product. We adapt Meise’s definition of smooth maps into a first model of Differential Linear Logic, made of k-reflexive spaces. We also build two new models of Linear Logic with con- veniently smooth maps, on categories made respectively of Mackey-complete Schwartz spaces and Mackey-complete Nuclear Spaces (with extra reflexivity conditions). Varying slightly the notion of smoothness, one also recovers models of DiLL on the same star-autonomous cate- gories. Throughout the article, we work within the setting of Dialogue categories where the tensor product is exactly the epsilon-product (without reflexivization). Contents 1 Introduction 1441 I. Models of MALL 1447 2 Preliminaries 1447 3 The original setting for the Schwartz "-product and smooth maps. 1457 4 Models of MALL coming from classes of smooth maps 1471 5 Schwartz locally convex spaces, Mackey-completeness and the ρ-dual. 1485 II. Models of LL and DiLL 1493 6 Smooth maps and new models of LL 1493 7 Models of DiLL 1502 8 Conclusion 1517 9 Appendix 1518 The authors are grateful to Richard Blute for his numerous suggestions and grammar corrections. Received by the editors 2018-04-19 and, in final form, 2019-12-16. Transmitted by Richard Blute. Published on 2019-12-18. 2010 Mathematics Subject Classification: 03B47, 18C50, 18D15, 46A20, 46M05, 46E50, 68Q55 . Key words and phrases: Topological vector spaces, ∗-autonomous and dialogue categories, differential linear logic. c Yoann Dabrowski and Marie Kerjean, 2019. Permission to copy for private use granted. 1440 MODELS OF LINEAR LOGIC BASED ON THE SCHWARTZ "-PRODUCT. 1441 1. Introduction Smooth models of classical Linear Logic. Since the discovery of linear logic by Girard [Gir87], thirty years ago, many attempts have been made to obtain denotational models of linear logic in the context of categories of vector spaces with linear proofs interpreted as linear maps [Blu96, Ehr02, Gir04, Ehr05, BET]. Models of linear logic are often inspired by coherent spaces, or by the relational model of linear logic. Coherent Banach spaces [Gir99], coherent probabilistic or coherent quantum spaces [Gir04] are Girard’s attempts to extend the first model, as finiteness spaces [Ehr05] or Kothe¨ spaces [Ehr02] were designed by Ehrhard as a vectorial version of the relational model. Following the construction of Differential linear logic [ER06], one would want moreover to find natural models of it where non-linear proofs are interpreted by some classes of smooth maps. This requires the use of more general objects of functional anal- ysis which were not directly constructed from coherent spaces. We see this as a strong point, as it paves the way towards new computational interpretations of functional analytic constructions, and a denotational interpretation of continuous or infinite data objects. A consequent categorical analysis of the theory of differentiation was tackled by Blute, Cockett and Seely [BCS06, BCS09]. They gave several structures in which a differentiation operator is well-behaved. Their definition then restricts to models of Intuitionistic Differential Linear Logic. Our paper takes another point of view as we look for models of classical DiLL, in which spaces equal some double dual. We want to emphasize the classical computational nature of Differential Linear Logic. Three difficulties appear in this semantical study of linear logic. The equivalence between a formula and its double negation in linear logic asks for the considered vector spaces to be iso- morphic to their double duals. This is constraining in infinite dimension. This infinite dimen- sionality is strongly needed to interpret exponential connectives. Then one needs to find a good category with smooth functions as morphisms, which should give a cartesian closed category. This is not at all trivial, and was solved by using a quantative setting, i.e. power series as the in- terpretation for non-linear proofs, in most of the previous works [Gir99, Gir04, Ehr05, Ehr02]. Finally, imposing a reflexivity condition to respect the first requirement usually implies issues of stability by natural tensor products of this condition, needed to model multiplicative connec- tives. This corresponds to the hard task of finding ∗-autonomous categories [Ba79]. As pointed out in [Ehr16], the only model of differential linear logic using smooth maps [BET] fails to satisfy the ∗-autonomous property for classical linear logic. Our paper solves all these issues simultaneously and produces several denotational models of classical linear logic with some classes of smooth maps as morphism in the Kleisli cate- gory of the monad. We will show that the constraint of finding a ∗-autonomous category in a compatible way with a cartesian closed category of smooth maps is even relevant to find better mathematical notions of smooth maps in locally convex spaces. Let us explain this mathemati- cal motivation first. A framework for differential calculus. It seems that, historically, the development of differential calculus beyond normed spaces suffered from the lack of interplay between analytic considerations and categorical, synthetic or logical ones. As a consequence, analysts often gave 1442 YOANN DABROWSKI AND MARIE KERJEAN up looking for good properties stable under duality and focused on one side of the topological or bornological viewpoint. An analytic summary of the early theory can be found in Keller’s book [Kel]. It already gives a unified and simplified approach based on continuity conditions of derivatives in various senses. But it is well-known that in order to look for strong categorical properties such as carte- sian closedness, the category of continuous maps is not a good starting point, the category of maps continuous on compact sets would be better. This appears strongly in all the developments made to recover continuity of evaluation on the topological product (instead of considering the product of a cartesian closed category), which is unavoidable for full continuity of composition of derivatives in the chain rule. This leads to considering convergence notions beyond topo- logical spaces on spaces of linear maps, but then, no abstract duality theory of those vector convergence spaces or abstract tensor product theory is developed. In the end, everything goes well only on restricted classes of spaces that lack almost any categorical stability properties, and nobody understands half of the notions introduced. The situation became slightly better when [Me] considered k-space conditions and obtained what analysts call kernel representation theorems (Seely isomorphisms for linear logicians), but still the only classes stable by products were Frechet´ spaces and (DFM)-spaces, which are by their very nature not stable under duality. The general lesson here is that, if one wants to stay within better studied and commonly used locally convex spaces, one had better not stick to functions continuous on products, and the corresponding projective topological tensor product, but always take tensor products that come from a ∗-autonomous category, since one also needs duality, or at least a closed category, to control the spaces of linear maps in which the derivatives take values. ∗-autonomous categories are the better behaved categories having all those data. Ideally, following developments inspired by game semantics [MT], we will be able to get more flexibility and allow larger dialogue categories containing such ∗-autonomous categories as their category of continuation. We will get slightly better categorical properties on those larger categories. A better categorical framework was later found and summarized in [FK,KM] the so-called convenient smoothness. A posteriori, as seen in [Ko], the notion is closely related to synthetic differential geometry as diffeological spaces are. It chooses a very liberal notion of smoothness, that does not imply continuity except on very special compact sets, the images of finite dimen- sional compact sets by smooth maps. It gives a nice cartesian closed category and this enabled [BET] to obtain a model of intuitionistic differential linear logic. As we will see, this may give the wrong idea that this very liberal notion of smoothness is the only way of getting cartesian closedness and it also takes the viewpoint of focusing on bornological properties. This is the main reason why, in our view, they don’t obtain ∗-autonomous categories since bornological locally convex spaces have complete duals which gives an asymmetric requirement on duals since they only need a much weaker Mackey-completeness on their spaces to work with their notion of smooth maps. We will obtain in this paper several models of linear logic using con- veniently smooth maps, and we will explain logically this Mackey-completeness
Recommended publications
  • Models of Linear Logic Based on the Schwartz $\Varepsilon $-Product
    MODELS OF LINEAR LOGIC BASED ON THE SCHWARTZ ε-PRODUCT. YOANN DABROWSKI AND MARIE KERJEAN Abstract. From the interpretation of Linear Logic multiplicative disjunction as the ε-product de- fined by Laurent Schwartz, we construct several models of Differential Linear Logic based on usual mathematical notions of smooth maps. This improves on previous results in [BET] based on con- venient smoothness where only intuitionist models were built. We isolate a completeness condition, called k-quasi-completeness, and an associated notion stable by duality called k-reflexivity, allow- ing for a ∗-autonomous category of k-reflexive spaces in which the dual of the tensor product is the reflexive version of the ε product. We adapt Meise’s definition of Smooth maps into a first model of Differential Linear Logic, made of k-reflexive spaces. We also build two new models of Linear Logic with conveniently smooth maps, on categories made respectively of Mackey-complete Schwartz spaces and Mackey-complete Nuclear Spaces (with extra reflexivity conditions). Varying slightly the notion of smoothness, one also recovers models of DiLL on the same ∗-autonomous cat- egories. Throughout the article, we work within the setting of Dialogue categories where the tensor product is exactly the ε-product (without reflexivization). Contents 1. Introduction 2 1.1. A first look at the interpretation of Linear Logic constructions 6 Part 1. Three Models of MALL 7 2. Preliminaries 7 2.1. Reminder on topological vector spaces 7 2.2. Reminder on tensor products and duals of locally convex spaces. 8 2.3. Dialogue and ∗-autonomous categories 10 2.4.
    [Show full text]
  • Marie Kerjean
    Tensor products and *-autonomous categories Marie Kerjean Laboratory PPS, Universit´eParis Diderot [email protected] The main use of ∗-autonomous categories is in the semantic study of Linear Logic. For this reason, it is thus natural to look for a ∗-autonomous category of locally convex topological vector spaces (tvs). On one hand, Linear Logic inherits its semantics from Linear Algebra, and it is thus natural to build models of Linear Logic from vector spaces [3,5,6,4]. On the other hand, denotational semantics has sought continuous models of computation through Scott domains [9]. Moreover, the infinite nature of the exponential of Linear Logic calls for infinite dimensional spaces, for which topology becomes necessary. One of the first intuitions that comes to mind when thinking about objects in a ∗-autonomous category is the notion of reflexive vector space, i.e. a a tvs which equals its double dual. When A is a vector space, the transpose dA : A ! (A !?) !? of the evaluation map evA :(A !?) × A !? is exactly the canonical injection of a vector space in its bidual. Then, requiring dA to be an isomorphism amounts to requiring A to be reflexive. However, the category of reflexive topological vector spaces is not ∗-autonomous, as it is not closed. Barr [2] constructs two closed subcategories of the category of tvs by re- stricting to tvs endowed with their weak topology (wtvs) or with their Mackey topology (mtvs), which are both polar topologies. Indeed, if E is a tvs, one can define its dual E0 as the space of all continuous linear form on E.
    [Show full text]
  • Weak Topologies for Linear Logic
    Weak topologies for Linear Logic Marie Kerjean Laboratoire PPS, Universit´eParis Diderot, Paris, France [email protected] Abstract We construct a denotational model of Linear Logic, whose objects are all the locally convex and separated topological vector spaces endowed with their weak topology. Linear proofs are interpreted as continuous linear functions, and non-linear proofs as sequences of monomials. The duality in this interpretation of Linear Logic does not come from an orthogonality relation, thus we do not complete our constructions by a double-orthogonality operation. This yields an interpretation of polarities with respect to weak topologies. 1 Introduction Linear Logic [Gir88] can be seen as a fine analysis of classical logic, through polarities and involutive linear negation [LR03]. The linearity hypothesis has been made by Girard [Gir87] after a semantical investigation of Intuitionistic Logic. Semantics has in turn led to various discoveries around Linear Logic, as in Game Semantics or Differential λ-calculus [ER06]. However, the linear negation is often modelized with an orthogonality relation [Ehr02, Ehr05, Gir04] or with a Chu construction [Gir99]. We try to generalize this approach by considering a model whose objects are general topological vector spaces. It allows us to get closer to the algebraic intuitions of Linear Logic, and to reach analogies with functional analysis. As in Scott Domains, we interpret our functions by continuous functions, and especially our linear proofs will be interpreted by linear continuous functions between topological vector spaces. As the topological dual of a space E is not constructed from E with an orthogonality relation, we have the opportunity to construct a new kind of negation.
    [Show full text]
  • Metrizable Barrelled Spaces, by J . C. Ferrando, M. López Pellicer, And
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 34, Number 1, January 1997 S 0273-0979(97)00706-4 Metrizable barrelled spaces,byJ.C.Ferrando,M.L´opez Pellicer, and L. M. S´anchez Ruiz, Pitman Res. Notes in Math. Ser., vol. 332, Longman, 1995, 238 pp., $30.00, ISBN 0-582-28703-0 The book targeted by this review is the next monograph written by mathemati- cians from Valencia which deals with barrelledness in (metrizable) locally convex spaces (lcs) over the real or complex numbers and applications in measure theory. This carefully written and well-documented book complements excellent mono- graphs by Valdivia [21] and by P´erez Carreras, Bonet [12] in this area. Although for the reader some knowledge of locally convex spaces is requisite, the book under re- view is self-contained with all proofs included and may be of interest to researchers and graduate students interested in locally convex spaces, normed spaces and mea- sure theory. Most chapters contain some introductory facts (with proofs), which for the reader greatly reduces the need for original sources. Also a stimulating Notes and Remarks section ends each chapter of the book. The classical Baire category theorem says that if X is either a complete metric space or a locally compact Hausdorff space, then the intersection of countably many dense, open subsets of X is a dense subset of X. This theorem is a principal one in analysis, with applications to well-known theorems such as the Closed Graph Theorem, the Open Mapping Theorem and the Uniform Boundedness Theorem.
    [Show full text]
  • NONARCHIMEDEAN COALGEBRAS and COADMISSIBLE MODULES 2 of Y
    NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES ANTON LYUBININ Abstract. We show that basic notions of locally analytic representation the- ory can be reformulated in the language of topological coalgebras (Hopf alge- bras) and comodules. We introduce the notion of admissible comodule and show that it corresponds to the notion of admissible representation in the case of compact p-adic group. Contents Introduction 1 1. Banach coalgebras 4 1.1. Banach -Coalgebras 5 ̂ 1.2. Constructions⊗ in the category of Banach -coalgebras 6 ̂ 1.3. Banach -bialgebras and Hopf -algebras⊗ 8 ̂ ̂ 1.4. Constructions⊗ in the category of⊗ Banach -bialgebras and Hopf ̂ -algebras. ⊗ 9 ̂ 2. Banach comodules⊗ 9 2.1. Basic definitions 9 2.2. Constructions in the category of Banach -comodules 10 ̂ 2.3. Induction ⊗ 11 2.4. Rational -modules 14 ̂ 2.5. Tensor identities⊗ 15 3. Locally convex -coalgebras 16 ̂ Preliminaries ⊗ 16 3.1. Topological Coalgebras 18 3.2. Topological Bialgebras and Hopf algebras. 20 4. modules and comodules 21 arXiv:1410.3731v2 [math.RA] 26 Jul 2017 4.1. Definitions 21 4.2. Rationality 22 4.3. Quotients, subobjects and simplicity 22 4.4. Cotensor product 23 5. Admissibility 24 Appendix 28 References 29 Introduction The study of p-adic locally analytic representation theory of p-adic groups seems to start in 1980s, with the first examples of such representations studied in the works 1 NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES 2 of Y. Morita [M1, M2, M3] (and A. Robert, around the same time), who considered locally analytic principal series representations for p-adic SL2.
    [Show full text]
  • Arxiv:1811.04430V2 [Math.OA]
    TRACES AND PEDERSEN IDEALS OF TENSOR PRODUCTS OF NONUNITAL C*-ALGEBRAS, CRISTIAN IVANESCU AND DAN KUCEROVSKˇ Y´ Abstract. We show that positive elements of a Pedersen ideal of a tensor product can be approximated in a particularly strong sense by sums of tensor products of positive elements. This has a range of applications to the structure of tracial cones and related topics, such as the Cuntz-Pedersen space or the Cuntz semigroup. For example, we determine the cone of lower semicontinuous traces of a tensor product in terms of the traces of the tensor factors, in an arbitrary C*-tensor norm. We show that the positive elements of a Pedersen ideal are sometimes stable under Cuntz equivalence. We generalize a result of Pedersen’s by showing that certain classes of completely positive maps take a Pedersen ideal into a Pedersen ideal. We provide theorems that in many cases compute the Cuntz semigroup of a tensor product. Key words and phrases. C∗-algebra, tensor product. 1. Introduction A unital C∗-algebra is a noncommutative generalization of the algebra C(X) of continuous functions on a compact topological space; in the nonunital case, it is a generalization of the algebra C0(X) of continuous functions that vanish at infinity, or more accurately, functions that are each arbitrarily small outside a sufficient large compact set. This paper studies the structure and applications of the Pedersen ideals of tensor products of nonunital C∗- algebras. The Pedersen ideal of a nonunital C∗-algebra is a noncommutative analogue of the space of compactly supported functions in the space of continuous complex-valued functions on a locally compact Hausdorff space.
    [Show full text]
  • Arxiv:2105.06358V1 [Math.FA] 13 May 2021 Xml,I 2 H.3,P 31.I 7,Qudfie H Ocp Fa of Concept the [7]) Defined in Qiu Complete [7], Quasi-Fast for in As See (Denoted 1371]
    INDUCTIVE LIMITS OF QUASI LOCALLY BAIRE SPACES THOMAS E. GILSDORF Department of Mathematics Central Michigan University Mt. Pleasant, MI 48859 USA [email protected] May 14, 2021 Abstract. Quasi-locally complete locally convex spaces are general- ized to quasi-locally Baire locally convex spaces. It is shown that an inductive limit of strictly webbed spaces is regular if it is quasi-locally Baire. This extends Qiu’s theorem on regularity. Additionally, if each step is strictly webbed and quasi- locally Baire, then the inductive limit is quasi-locally Baire if it is regular. Distinguishing examples are pro- vided. 2020 Mathematics Subject Classification: Primary 46A13; Sec- ondary 46A30, 46A03. Keywords: Quasi locally complete, quasi-locally Baire, inductive limit. arXiv:2105.06358v1 [math.FA] 13 May 2021 1. Introduction and notation. Inductive limits of locally convex spaces have been studied in detail over many years. Such study includes properties that would imply reg- ularity, that is, when every bounded subset in the in the inductive limit is contained in and bounded in one of the steps. An excellent introduc- tion to the theory of locally convex inductive limits, including regularity properties, can be found in [1]. Nevertheless, determining whether or not an inductive limit is regular remains important, as one can see for example, in [2, Thm. 34, p. 1371]. In [7], Qiu defined the concept of a quasi-locally complete space (denoted as quasi-fast complete in [7]), in 1 2 THOMASE.GILSDORF which each bounded set is contained in abounded set that is a Banach disk in a coarser locally convex topology, and proves that if an induc- tive limit of strictly webbed spaces is quasi-locally complete, then it is regular.
    [Show full text]
  • Časopis Pro Pěstování Matematiky
    Časopis pro pěstování matematiky Pedro Pérez Carreras Some aspects of the theory of barreled spaces Časopis pro pěstování matematiky, Vol. 112 (1987), No. 2, 123--161 Persistent URL: http://dml.cz/dmlcz/118303 Terms of use: © Institute of Mathematics AS CR, 1987 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz 112(1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 2,123—161 SOME ASPECTS OF THE THEORY OF BARRELED SPACES PEDRO PEREZ CARRERAS, Valencia (Received December 27, 1983) Summary. This is an expository article in which certain aspects of the theory of barreled spaces are discussed. Recent results concerning the problem about conditions on spaces assuring continuity of mappings between them which have the closed graph are presented. Further, if a metrizable barreled space is the union of a nondecreasing sequence of closed absolutely convex sets then at least one of them is a neighbourhood of the origin. Recent research related to this property is analysed as well as the question of preservation of barreledness in pro­ jective tensor products. Keywords: Barrel space, Br complete space, Baire space. This is an expository article and contains a somewhat expanded version of the content of the talk given by the author at Cesky Krumlov in the 14th Seminar in Functional Analysis in May 83.
    [Show full text]
  • The Closed Graph Theorem and the Space of Henstock-Kurzweil Integrable Functions with the Alexiewicz Norm
    Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 476287, 4 pages http://dx.doi.org/10.1155/2013/476287 Research Article The Closed Graph Theorem and the Space of Henstock-Kurzweil Integrable Functions with the Alexiewicz Norm Luis Ángel Gutiérrez Méndez, Juan Alberto Escamilla Reyna, Maria Guadalupe Raggi Cárdenas, and Juan Francisco Estrada García Facultad de Ciencias F´ısico Matematicas,´ Benemerita´ Universidad Autonoma´ de Puebla, Avenida San Claudio y 18 Sur, ColoniaSanManuel,72570Puebla,PUE,Mexico Correspondence should be addressed to Luis Angel´ Gutierrez´ Mendez;´ [email protected] Received 5 June 2012; Accepted 25 December 2012 Academic Editor: Martin Schechter Copyright © 2013 Luis Angel´ Gutierrez´ Mendez´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. WeprovethatthecardinalityofthespaceHK([a, b]) is equal to the cardinality of real numbers. Based on this fact we show that there exists a norm on HK([a, b]) under which it is a Banach space. Therefore if we equip HK([a, b]) with the Alexiewicz topology then HK([a, b]) is not K-Suslin, neither infra-(u) nor a webbed space. 1. Introduction Afterwards, using the same technique used byHoning,¨ Merino improves Honing’s¨ results in the sense that those [, ] R Let be a compact interval in .Inthevectorspaceof results arise as corollaries of the following theorem. Henstock-Kurzweil integrable functions on [, ] with values in R the Alexiewicz seminorm is defined as Theorem 1 (see [2]). There exists no ultrabornological, infra- (), natural, and complete topology on HK([, ]).
    [Show full text]
  • Infinite Systems of Linear Equations for Real Analytic Functions
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 12, Pages 3607{3614 S 0002-9939(04)07435-0 Article electronically published on July 20, 2004 INFINITE SYSTEMS OF LINEAR EQUATIONS FOR REAL ANALYTIC FUNCTIONS P. DOMANSKI´ AND D. VOGT (Communicated by N. Tomczak-Jaegermann) Abstract. We study the problem when an infinite system of linear functional equations µn(f)=bn for n 2 N d has a real analytic solution f on ! ⊆ R for every right-hand side (bn)n2N ⊆ C and give a complete characterization of such sequences of analytic functionals d (µn). We also show that every open set ! ⊆ R has a complex neighbourhood Ω ⊆ Cd such that the positive answer is equivalent to the positive answer for the analogous question with solutions holomorphic on Ω. Introduction One of the first classical examples of an infinite system of linear equations is related to the so-called moment problem solved by Hausdorff. It is the question of finding a Borel measure µ on [0; 1]R such that a given sequence of reals (bn)n2N is 1 n the sequence of moments of µ (i.e., t dµ(t)=bn for n 2 N). More generally, we 0 0 can look for a functional f 2 X such that for the given sequence of scalars (bn) and of vectors (xn) belonging to a locally convex (Banach) space X the following holds: (1) f(xn)=bn for n 2 N: First solutions for spaces X = C[0; 1] or Lp[0; 1] are due to F. Riesz (1909) and the functional analytic approach to the problem is contained in the famous book of Banach [1, Ch.
    [Show full text]
  • Allanyashinski-Dissertation.Pdf
    The Pennsylvania State University The Graduate School PERIODIC CYCLIC HOMOLOGY AND SMOOTH DEFORMATIONS A Dissertation in Mathematics by Allan Yashinski c 2013 Allan Yashinski Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Allan Yashinski was reviewed and approved∗ by the following: Nigel Higson Evan Pugh Professor of Mathematics Dissertation Advisor, Chair of Committee Nathanial Brown Associate Professor of Mathematics John Roe Professor of Mathematics Radu Roiban Professor of Physics Yuxi Zheng Professor of Mathematics Department Head ∗Signatures are on file in the Graduate School. Abstract Given a formal deformation of an algebra, Getzler defined a connection on the periodic cyclic homology of the deformation, which he called the Gauss-Manin connection. We define and study this connection for smooth one-parameter defor- mations. Our main example is the smooth noncommutative n-torus AΘ, viewed as a deformation of the algebra C1(Tn) of smooth functions on the n-torus. In this case, we use the Gauss-Manin connection to give a parallel translation argument that shows that the periodic cyclic homology groups HP•(AΘ) are independent of the parameter Θ. As a consequence, we obtain differentiation formulas relating various cyclic cocycles on AΘ. We generalize this to a larger class of deformations, including nontrivial crossed product algebras by the group R. The algebras of such a deformation extend nat- urally to differential graded algebras, and we show that they are fiberwise isomor- phic as A1-algebras. In particular, periodic cyclic homology is preserved under this type of deformation. This clarifies and strengthens the periodic cyclic ho- mology isomorphism for noncommutative tori, and gives another proof of Connes' Thom isomorphism in cyclic homology.
    [Show full text]
  • Non-Archimedean Closed Graph Theorems
    Filomat 32:11 (2018), 3933–3945 Published by Faculty of Sciences and Mathematics, https://doi.org/10.2298/FIL1811933L University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat Non-Archimedean Closed Graph Theorems Toivo Leigera aInstitute of Mathematics and Statistics, University of Tartu, J. Liivi Str. 2, Tartu 50409 ESTONIA Abstract. We consider linear maps T : X Y, where X and Y are polar local convex spaces over a complete ! non-archimedean field K. Recall that X is called polarly barrelled, if each weakly∗ bounded subset in the dual X0 is equicontinuous. If in this definition weakly∗ bounded subset is replaced by weakly∗ bounded sequence or sequence weakly∗ converging to zero, then X is said to be `1-barrelled or c0-barrelled, respectively. For each of these classes of locally convex spaces (as well as the class of spaces with weakly∗ sequentially complete dual) as domain class, the maximum class of range spaces for a closed graph theorem to hold is characterized. As consequences of these results, we obtain non-archimedean versions of some classical closed graph theorems. The final section deals with the necessity of the above-named barrelledness-like properties in closed graph theorems. Among others, counterparts of the classical theorems of Mahowald and Kalton are proved. 1. Introduction The Banach closed graph theorem is valid under very general circumstances. If X and Y are complete metrizable topological vector spaces over an arbitrary complete valued field K, then each linear map T : X Y with closed graph is continuous. In the classical case, where K = R or K = C, a well-known result ! of V.
    [Show full text]