The Closed Graph Theorem and the Space of Henstock-Kurzweil Integrable Functions with the Alexiewicz Norm

Total Page:16

File Type:pdf, Size:1020Kb

The Closed Graph Theorem and the Space of Henstock-Kurzweil Integrable Functions with the Alexiewicz Norm Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 476287, 4 pages http://dx.doi.org/10.1155/2013/476287 Research Article The Closed Graph Theorem and the Space of Henstock-Kurzweil Integrable Functions with the Alexiewicz Norm Luis Ángel Gutiérrez Méndez, Juan Alberto Escamilla Reyna, Maria Guadalupe Raggi Cárdenas, and Juan Francisco Estrada García Facultad de Ciencias F´ısico Matematicas,´ Benemerita´ Universidad Autonoma´ de Puebla, Avenida San Claudio y 18 Sur, ColoniaSanManuel,72570Puebla,PUE,Mexico Correspondence should be addressed to Luis Angel´ Gutierrez´ Mendez;´ [email protected] Received 5 June 2012; Accepted 25 December 2012 Academic Editor: Martin Schechter Copyright © 2013 Luis Angel´ Gutierrez´ Mendez´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. WeprovethatthecardinalityofthespaceHK([a, b]) is equal to the cardinality of real numbers. Based on this fact we show that there exists a norm on HK([a, b]) under which it is a Banach space. Therefore if we equip HK([a, b]) with the Alexiewicz topology then HK([a, b]) is not K-Suslin, neither infra-(u) nor a webbed space. 1. Introduction Afterwards, using the same technique used byHoning,¨ Merino improves Honing’s¨ results in the sense that those [, ] R Let be a compact interval in .Inthevectorspaceof results arise as corollaries of the following theorem. Henstock-Kurzweil integrable functions on [, ] with values in R the Alexiewicz seminorm is defined as Theorem 1 (see [2]). There exists no ultrabornological, infra- (), natural, and complete topology on HK([, ]). = ∫ . sup (1) ≤≤ On the basis of Corollary 7 we prove the following result: there exists a norm on HK([, ]) under which it is a The corresponding normed space is built using the Banach space; see Proposition 9.Then,basedonthisfactand quotient space determined by the relation ∼if and only if using the same techniques employed by Honing¨ and Merino, =, except in a set of Lebesgue measure zero or, equivalently, we prove that the space (HK([, ]), ‖⋅ ) does not have if they have the same indefinite integral. This normed space certain properties and we give an answer to two problems will be denoted by (HK([, ]), ‖⋅ ) and its elements as posedbyMerinoin[2, page 111]; namely, we will prove, in instead of []. particular, that the space HK([, ]) with the Alexiewicz It is a known fact that the space (HK([, ]), ‖⋅ ) is not topology is neither infra-( )norawebbedspace. complete nor of the second category [1]. However, the space (HK([, ]), ‖⋅ ) has “nice” properties, from the point of 2. Notation and Preliminaries view of functional analysis, since it is an ultrabornological space [2]. For the reader’s convenience, we restate some concepts about Honing¨ [3], using a version of the Closed Graph Theorem, topological vector spaces that will be used later in this paper proved that there is no natural Banach norm on the space which can be found particularly in [4–6]. HK([, ]); even, for functions with values in a Banach space.Also,heobservedthatthesameproofappliesto Definition 2. Let and be topological spaces and let prove that there is no natural Frechet´ topology on the space :be → a function. The graph of is defined by HK([, ]). {(, ()) .| ∈} 2 Abstract and Applied Analysis It is said that has closed graph if its graph is a closed Now, we establish the notations that we will use through- subset of ×with the product topology. out this paper. It is a known fact that if :is → a continuous (i) Let be a vector space. function between topological spaces, where is a Hausdorff space, then hasclosedgraph;however,theconverseisnot (a)Allvectorspacesthatappearthroughoutthis true in general. Precisely, the versions of the Closed Graph paper are considered over the field of the real or Theorem establish under what conditions the converse is complex numbers. fulfilled. Moreover, the importance of these theorems is that (b) The cardinality of will be denoted by card(). in certain contexts it is easier to prove that a function has (c) The cardinality of a Hamel base or algebraic base closed graph than to prove that it is continuous; Propositions is denoted by dim(). It is a known fact that 10, 12,and14 are examples of this fact. every Hamel base in a vector space has the same Definition 3. A topological vector space is locally convex if cardinality. has a local base of convex neighborhoods of 0. ℵ0 (ii) The symbols ℵ0, and will denote the cardinality Definition 4. Let be a locally convex space. Then is of the natural numbers, N,oftherealnumbers,R,and of the set { : N → R |is a function},respec- (i) barrelled if every linear mapping with closed graph tively. from into a Banach space is continuous; (iii) We will denote the set of continuous functions with (ii) infra-() if every linear mapping with closed graph real values whose domain is the compact interval [, ] (C[, ], R) from a Banach space into is continuous; by . 1[, ] (iii) infra-() if every linear mapping with closed graph (iv) will denote the space of equivalence classes of theLebesgueintegrablefunctionswithitsusualnorm. from a barrelled space into is continuous. 1 It is a known fact that [, ] ⊂ HK([, ]) and ‖‖ ≤‖‖ ∈1[, ] The above concepts have other equivalent characteri- 1,forall . zations. However, the characterizations that appear in the preceding definition are the best for the goals of this paper. The following result establishes necessary and sufficient conditions to determine when a vector space has a norm Definition 5. Let be a locally convex space. It is said that under which it is a Banach space. This result is the foundation is a of the goals of this paper. Corollary 7 (i) webbed space or De Wilde space if it admits a C-web; (see [7]). Let be a vector space. Then, is a Banach space under some norm if and only if dim() < ℵ0 or ℵ (ii) convex-Suslin space if it admits a compacting web. dim () 0 = dim(). Note. The definitions of C-web and compacting web are a bit too involved to be here. To see these definitions we refer the 3. Principal Results reader to [5]. Lemma 8. The cardinality of the space HK([, ]) is equal to Although webbed spaces are a subclass of infra-() the cardinality of real numbers. spaces, the webbed spaces have more stability properties than infra-( ) spaces in the sense that every sequentially closed Proof. Since the application :HK([, ]) →(C[, ], R) subspace and every quotient of a webbed space are webbed defined by (),where = is the indefinite integral spaces. Also the inductive and projective limits and the direct associated to ,isinjective,itholdsthatcard(HK([, ])) ≤ sums and direct products of a countable number of webbed ((C[, ], R)) = card . spaces are webbed spaces. Furthermore, if is a webbed On the other hand, as the constant functions are space, then it also will be with a weaker topology. In the other Henstock-Kurzweil integrables, it follows that direction, if isawebbedspace,italsowillbewiththe associated ultrabornological topology. =card ({ : [,] → R |is a constant function}) Some stability properties that enjoy the convex-Suslin (2) spaces are the following: the countable product of convex- ≤ card (HK ([,] )) . Suslin spaces is convex-Suslin and every closed subspace of a convex-Suslin space is a convex-Suslin space. Moreover, these Therefore, card(HK([, ])). = spaces play a version of Closed Graph Theorem as set forth below. Proposition 9. There exists a norm on HK([, ]) under which it is a Banach space. Theorem 6 (see [6]). Let be a locally convex Baire space and 1 let be a convex-Suslin space. If is a linear mapping from Proof. It is a known fact that [, ] is a Banach space of 1 into with closed graph, then is continuous. infinite dimension, which implies that ≤dim( [, ]). Abstract and Applied Analysis 3 1 1 Then, as [, ] ⊂ HK([, ]) it holds that dim( [, ]) ≤ On the basis of Corollary 13 we see that (HK([, ]), ) dim(HK([, ])) ≤ card(HK([, ])). Therefore, by is not a webbed space. Moreover, the same result implies that ℵ Lemma 8, Corollary 7 and the known fact that 0 =,we (HK([, ]), ) is not an infra-()space,afactthatMerino obtain the desired conclusion. has already proved in [2]. On the other hand, employing the same technique that we Hereafter, the Alexiewicz topology and the topology have been using entails the following result. induced by the norm of Proposition 9 will be denoted as Proposition 14. (HK([, ]), ) and ‖⋅‖,respectively. The space is not a convex- Suslin space. Proposition 10. The topology ‖⋅‖ on HK([, ]) is smaller (HK([, ]), ) than . Proof. Suppose that is a convex- Suslin space. On the basis of Proposition 9 we see that Proof. Let ‖⋅‖be the norm ensured by Proposition 9.By (HK([, ]),‖⋅‖ ) is a locally convex Baire space; therefore, [3], (HK([, ]), ) is barrelled and, therefore, the identity according to Theorem 6 the identity function function I : (HK ([,] ) ,‖⋅‖) → (HK ([,] ) ,) , (6) I :(HK ([,] ) ,)→(HK ([,] ) ,‖⋅‖), (3) which has a closed graph, is continuous, contradicting which has a closed graph, is continuous; hence ‖⋅‖ ⊆.In Proposition 10. addition, since that is not complete [3], it holds that ‖⋅‖ ⊂ SinceK-Suslinspacesareasubclassfromconvex-Suslin . spaces, [6], we can see, on the basis of Proposition 14,that (HK([, ]), ) is not a K-Suslin space. Although (HK([, ]),‖⋅‖ ) is a Banach space, according Although apparently the topology ‖⋅‖ is not directly to [3]thetopology‖⋅‖ is not natural in the sense of the following definition. related with the Henstock-Kurzweil integral, this topology allowed us to demonstrate some properties that the Alex- Definition 11. Avectortopology on HK([, ]) is natural iewicz topology does not have, which is a topology related to the Henstock-Kurzweil integral since it is a natural topology. if every sequence in HK([, ]) such that →0 implies that ∫ →0,forevery∈[,].
Recommended publications
  • Metrizable Barrelled Spaces, by J . C. Ferrando, M. López Pellicer, And
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 34, Number 1, January 1997 S 0273-0979(97)00706-4 Metrizable barrelled spaces,byJ.C.Ferrando,M.L´opez Pellicer, and L. M. S´anchez Ruiz, Pitman Res. Notes in Math. Ser., vol. 332, Longman, 1995, 238 pp., $30.00, ISBN 0-582-28703-0 The book targeted by this review is the next monograph written by mathemati- cians from Valencia which deals with barrelledness in (metrizable) locally convex spaces (lcs) over the real or complex numbers and applications in measure theory. This carefully written and well-documented book complements excellent mono- graphs by Valdivia [21] and by P´erez Carreras, Bonet [12] in this area. Although for the reader some knowledge of locally convex spaces is requisite, the book under re- view is self-contained with all proofs included and may be of interest to researchers and graduate students interested in locally convex spaces, normed spaces and mea- sure theory. Most chapters contain some introductory facts (with proofs), which for the reader greatly reduces the need for original sources. Also a stimulating Notes and Remarks section ends each chapter of the book. The classical Baire category theorem says that if X is either a complete metric space or a locally compact Hausdorff space, then the intersection of countably many dense, open subsets of X is a dense subset of X. This theorem is a principal one in analysis, with applications to well-known theorems such as the Closed Graph Theorem, the Open Mapping Theorem and the Uniform Boundedness Theorem.
    [Show full text]
  • NONARCHIMEDEAN COALGEBRAS and COADMISSIBLE MODULES 2 of Y
    NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES ANTON LYUBININ Abstract. We show that basic notions of locally analytic representation the- ory can be reformulated in the language of topological coalgebras (Hopf alge- bras) and comodules. We introduce the notion of admissible comodule and show that it corresponds to the notion of admissible representation in the case of compact p-adic group. Contents Introduction 1 1. Banach coalgebras 4 1.1. Banach -Coalgebras 5 ̂ 1.2. Constructions⊗ in the category of Banach -coalgebras 6 ̂ 1.3. Banach -bialgebras and Hopf -algebras⊗ 8 ̂ ̂ 1.4. Constructions⊗ in the category of⊗ Banach -bialgebras and Hopf ̂ -algebras. ⊗ 9 ̂ 2. Banach comodules⊗ 9 2.1. Basic definitions 9 2.2. Constructions in the category of Banach -comodules 10 ̂ 2.3. Induction ⊗ 11 2.4. Rational -modules 14 ̂ 2.5. Tensor identities⊗ 15 3. Locally convex -coalgebras 16 ̂ Preliminaries ⊗ 16 3.1. Topological Coalgebras 18 3.2. Topological Bialgebras and Hopf algebras. 20 4. modules and comodules 21 arXiv:1410.3731v2 [math.RA] 26 Jul 2017 4.1. Definitions 21 4.2. Rationality 22 4.3. Quotients, subobjects and simplicity 22 4.4. Cotensor product 23 5. Admissibility 24 Appendix 28 References 29 Introduction The study of p-adic locally analytic representation theory of p-adic groups seems to start in 1980s, with the first examples of such representations studied in the works 1 NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES 2 of Y. Morita [M1, M2, M3] (and A. Robert, around the same time), who considered locally analytic principal series representations for p-adic SL2.
    [Show full text]
  • Arxiv:2105.06358V1 [Math.FA] 13 May 2021 Xml,I 2 H.3,P 31.I 7,Qudfie H Ocp Fa of Concept the [7]) Defined in Qiu Complete [7], Quasi-Fast for in As See (Denoted 1371]
    INDUCTIVE LIMITS OF QUASI LOCALLY BAIRE SPACES THOMAS E. GILSDORF Department of Mathematics Central Michigan University Mt. Pleasant, MI 48859 USA [email protected] May 14, 2021 Abstract. Quasi-locally complete locally convex spaces are general- ized to quasi-locally Baire locally convex spaces. It is shown that an inductive limit of strictly webbed spaces is regular if it is quasi-locally Baire. This extends Qiu’s theorem on regularity. Additionally, if each step is strictly webbed and quasi- locally Baire, then the inductive limit is quasi-locally Baire if it is regular. Distinguishing examples are pro- vided. 2020 Mathematics Subject Classification: Primary 46A13; Sec- ondary 46A30, 46A03. Keywords: Quasi locally complete, quasi-locally Baire, inductive limit. arXiv:2105.06358v1 [math.FA] 13 May 2021 1. Introduction and notation. Inductive limits of locally convex spaces have been studied in detail over many years. Such study includes properties that would imply reg- ularity, that is, when every bounded subset in the in the inductive limit is contained in and bounded in one of the steps. An excellent introduc- tion to the theory of locally convex inductive limits, including regularity properties, can be found in [1]. Nevertheless, determining whether or not an inductive limit is regular remains important, as one can see for example, in [2, Thm. 34, p. 1371]. In [7], Qiu defined the concept of a quasi-locally complete space (denoted as quasi-fast complete in [7]), in 1 2 THOMASE.GILSDORF which each bounded set is contained in abounded set that is a Banach disk in a coarser locally convex topology, and proves that if an induc- tive limit of strictly webbed spaces is quasi-locally complete, then it is regular.
    [Show full text]
  • Models of Linear Logic Based on the Schwartz Ε-Product
    Theory and Applications of Categories, Vol. 34, No. 45, 2019, pp. 1440–1525. MODELS OF LINEAR LOGIC BASED ON THE SCHWARTZ "-PRODUCT. YOANN DABROWSKI AND MARIE KERJEAN Abstract. From the interpretation of Linear Logic multiplicative disjunction as the epsilon product defined by Laurent Schwartz, we construct several models of Differential Linear Logic based on the usual mathematical notions of smooth maps. This improves on previous results by Blute, Ehrhard and Tasson based on convenient smoothness where only intuitionist models were built. We isolate a completeness condition, called k-quasi-completeness, and an associated no- tion which is stable under duality called k-reflexivity, allowing for a star-autonomous category of k-reflexive spaces in which the dual of the tensor product is the reflexive version of the epsilon- product. We adapt Meise’s definition of smooth maps into a first model of Differential Linear Logic, made of k-reflexive spaces. We also build two new models of Linear Logic with con- veniently smooth maps, on categories made respectively of Mackey-complete Schwartz spaces and Mackey-complete Nuclear Spaces (with extra reflexivity conditions). Varying slightly the notion of smoothness, one also recovers models of DiLL on the same star-autonomous cate- gories. Throughout the article, we work within the setting of Dialogue categories where the tensor product is exactly the epsilon-product (without reflexivization). Contents 1 Introduction 1441 I. Models of MALL 1447 2 Preliminaries 1447 3 The original setting for the Schwartz "-product and smooth maps. 1457 4 Models of MALL coming from classes of smooth maps 1471 5 Schwartz locally convex spaces, Mackey-completeness and the ρ-dual.
    [Show full text]
  • Časopis Pro Pěstování Matematiky
    Časopis pro pěstování matematiky Pedro Pérez Carreras Some aspects of the theory of barreled spaces Časopis pro pěstování matematiky, Vol. 112 (1987), No. 2, 123--161 Persistent URL: http://dml.cz/dmlcz/118303 Terms of use: © Institute of Mathematics AS CR, 1987 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz 112(1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 2,123—161 SOME ASPECTS OF THE THEORY OF BARRELED SPACES PEDRO PEREZ CARRERAS, Valencia (Received December 27, 1983) Summary. This is an expository article in which certain aspects of the theory of barreled spaces are discussed. Recent results concerning the problem about conditions on spaces assuring continuity of mappings between them which have the closed graph are presented. Further, if a metrizable barreled space is the union of a nondecreasing sequence of closed absolutely convex sets then at least one of them is a neighbourhood of the origin. Recent research related to this property is analysed as well as the question of preservation of barreledness in pro­ jective tensor products. Keywords: Barrel space, Br complete space, Baire space. This is an expository article and contains a somewhat expanded version of the content of the talk given by the author at Cesky Krumlov in the 14th Seminar in Functional Analysis in May 83.
    [Show full text]
  • Infinite Systems of Linear Equations for Real Analytic Functions
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 12, Pages 3607{3614 S 0002-9939(04)07435-0 Article electronically published on July 20, 2004 INFINITE SYSTEMS OF LINEAR EQUATIONS FOR REAL ANALYTIC FUNCTIONS P. DOMANSKI´ AND D. VOGT (Communicated by N. Tomczak-Jaegermann) Abstract. We study the problem when an infinite system of linear functional equations µn(f)=bn for n 2 N d has a real analytic solution f on ! ⊆ R for every right-hand side (bn)n2N ⊆ C and give a complete characterization of such sequences of analytic functionals d (µn). We also show that every open set ! ⊆ R has a complex neighbourhood Ω ⊆ Cd such that the positive answer is equivalent to the positive answer for the analogous question with solutions holomorphic on Ω. Introduction One of the first classical examples of an infinite system of linear equations is related to the so-called moment problem solved by Hausdorff. It is the question of finding a Borel measure µ on [0; 1]R such that a given sequence of reals (bn)n2N is 1 n the sequence of moments of µ (i.e., t dµ(t)=bn for n 2 N). More generally, we 0 0 can look for a functional f 2 X such that for the given sequence of scalars (bn) and of vectors (xn) belonging to a locally convex (Banach) space X the following holds: (1) f(xn)=bn for n 2 N: First solutions for spaces X = C[0; 1] or Lp[0; 1] are due to F. Riesz (1909) and the functional analytic approach to the problem is contained in the famous book of Banach [1, Ch.
    [Show full text]
  • Non-Archimedean Closed Graph Theorems
    Filomat 32:11 (2018), 3933–3945 Published by Faculty of Sciences and Mathematics, https://doi.org/10.2298/FIL1811933L University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat Non-Archimedean Closed Graph Theorems Toivo Leigera aInstitute of Mathematics and Statistics, University of Tartu, J. Liivi Str. 2, Tartu 50409 ESTONIA Abstract. We consider linear maps T : X Y, where X and Y are polar local convex spaces over a complete ! non-archimedean field K. Recall that X is called polarly barrelled, if each weakly∗ bounded subset in the dual X0 is equicontinuous. If in this definition weakly∗ bounded subset is replaced by weakly∗ bounded sequence or sequence weakly∗ converging to zero, then X is said to be `1-barrelled or c0-barrelled, respectively. For each of these classes of locally convex spaces (as well as the class of spaces with weakly∗ sequentially complete dual) as domain class, the maximum class of range spaces for a closed graph theorem to hold is characterized. As consequences of these results, we obtain non-archimedean versions of some classical closed graph theorems. The final section deals with the necessity of the above-named barrelledness-like properties in closed graph theorems. Among others, counterparts of the classical theorems of Mahowald and Kalton are proved. 1. Introduction The Banach closed graph theorem is valid under very general circumstances. If X and Y are complete metrizable topological vector spaces over an arbitrary complete valued field K, then each linear map T : X Y with closed graph is continuous. In the classical case, where K = R or K = C, a well-known result ! of V.
    [Show full text]
  • Centerline1a L <[MS< Begin 1 Array L1cl 6 << I-Dieresis -U <End1
    a n centerlineRow 1 6 Rowfa 2g i-dieresis-u . sub e y-d to the power of m-e E-a n s-O-dieresis-t sub n a-T e-l h-a n-n i-d T-a sub o-l U-s u i-n-n T-e sub r-e s-r z-i t-i sub o-y g-breve lu n [MDepartment−Sn begin f ofarray Mathematicsgf cg 6 nn i−d i e r e s i s −u nendf array g l−d f e y−d ^f m−e E−a g n g s−O−d i e r e s i s −t f n a−T g e−l h−a n−n i−d T−a f o−l Ua−s u i−n−n g T−e f r−e s−r z−i g t−i f o−y nbrevefgg g lu n ] 6 M−S l−dey−dm−eE−ans − O − dieresis − tna−Te − lh − an − ni − dT − ao−lU−sui−n−nT − er−es−rz−it − io−y˘glu nnoindent iDepartment− dieresis − u of Mathematics Department of Mathematics CONTENTS n centerlineIntroductionfCONTENTS .... period .... period ....g period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... period .... periodnnoindent .... periodIntroduction .... period ....n periodh f i l l ..... periodn h f i ....l l period. n h f .... i l l period. n h .... f i lperiod l . n ....h f period i l l .
    [Show full text]
  • On the Closed Graph Theorem and the Open Mapping Theorem Henri Bourlès
    On the Closed Graph Theorem and the Open Mapping Theorem Henri Bourlès To cite this version: Henri Bourlès. On the Closed Graph Theorem and the Open Mapping Theorem. 2019. hal-02372404 HAL Id: hal-02372404 https://hal.archives-ouvertes.fr/hal-02372404 Preprint submitted on 20 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the Closed Graph Theorem and the Open Mapping Theorem Henri Bourl`es∗ Abstract Let E, F be two topological spaces and u : E → F be a map. If F is Haudorff and u is continuous, then its graph is closed. The Closed Graph Theorem establishes the converse when E and F are suitable objects of topological algebra, and more specifically topological groups, topological vector spaces (TVS’s) or locally vector spaces (LCS’s) of a special type. The Open Mapping Theo- rem, also called the Banach-Schauder theorem, states that under suitable conditions on E and F, if v : F → E is a continuous linear surjective map, it is open. When the Open Mapping The- orem holds true for v, so does the Closed Graph Theorem for u.
    [Show full text]
  • Quasi-Suprabarrelled Spaces
    J. Austral. Math. Soc. (Series A) 46 (1989), 0137-145 QUASI-SUPRABARRELLED SPACES J. C. FERRANDO and M. L6PEZ-PELLICER (Received 13 April 1987; revised 14 September 1987) Communicated by J. H. Rubinstein Abstract In this paper a proper class of barrelled spaces which strictly contains the suprabarrelled spaces is considered. A closed graph theorem and some permanence properties are given. This allows us to prove the necessity of a condition of a theorem of S. A. Saxon and P. P. Narayanaswami by constructing an example of a non-suprabarrelled Baire-like space which is a dense subspace of a Frechet space and is not an (LF)-space under any strong locally convex topology. 1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 46 A 07; secondary 46 A 30. Keywords and phrases: barrelled space. In [9], S. A. Saxon and P. P. Narayanaswami prove that if E is a Frechet space and F is a barrelled dense subspace, then F is not suprabarrelled if and only if there exists a subspace G of E such that G contains F and G with a topology stronger than the relative one is an (LF)-space. In this paper we give an example which allows us to prove that G cannot be replaced by F in the former theo- rem. We introduce the quasi-suprabarrelled spaces which satisfy the inclusion relationships indicated by suprabarrelled => quasi-suprabarrelled =>• barrelled. A closed graph theorem together with some permanence properties are given. We use some of those results later in order to construct the quoted example.
    [Show full text]
  • The Use of an Isometric Isomorphism on the Completion of the Space of Henstock-Kurzweil Integrable Functions
    Hindawi Publishing Corporation Journal of Function Spaces and Applications Volume 2013, Article ID 715789, 5 pages http://dx.doi.org/10.1155/2013/715789 Research Article The Use of an Isometric Isomorphism on the Completion of the Space of Henstock-Kurzweil Integrable Functions Luis Ángel Gutiérrez Méndez, Juan Alberto Escamilla Reyna, Francisco Javier Mendoza Torres, and María Guadalupe Morales Macías Facultad de Ciencias F´ısico Matematicas,´ Benemerita´ Universidad, Autonoma´ de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, 72570, Puebla, Mexico Correspondence should be addressed to Luis Angel´ Gutierrez´ Mendez;´ [email protected] Received 19 April 2013; Accepted 5 June 2013 Academic Editor: Nelson Merentes Copyright © 2013 Luis Angel´ Gutierrez´ Mendez´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Employing an isometrically isomorphic space, we determine new properties for the completion of the space of the Henstock- Kurzweil integrable functions with the Alexiewicz norm. 1. Introduction space of the distributions that are derivatives of the continu- ous functions on [, ], which is an isometrically isomorphic Let [, ] be a compact interval in R.Inthevectorspaceof (HK̂[, ], ‖ ⋅‖ ) Henstock-Kurzweil integrable functions on [, ] with values space to . Making use of this same isometri- in R, the Alexiewicz seminorm is defined as
    [Show full text]
  • Factorization in the Space of Henstock-Kurzweil Integrable Functions
    Azerbaijan Journal of Mathematics V. 7, No 2, 2017, July ISSN 2218-6816 Factorization in the Space of Henstock-Kurzweil Inte- grable Functions M.G. Morales, J.H. Arredondo∗ Abstract. In this work, we extend the factorization theorem of Rudin and Cohen to HK(R), the space of Henstock-Kurzweil integrable functions. This implies a factorization for the isometric spaces AC and BC . We also study in this context the Banach algebra of functions HK(R)∩BV (R), which is also a dense subspace of L2(R). In some sense this subspace is analogous to L1(R)∩L2(R). However, while L1(R)∩L2(R) factorizes as L1(R)∩L2(R)∗L1(R), via the convolution operation *, it is shown in the paper that HK(R) ∩ BV (R) ∗ L1(R) is a Banach subalgebra of HK(R) ∩ BV (R). Key Words and Phrases: factorization, Banach algebra, Henstock-Kurzweil integral, bounded variation function. 2010 Mathematics Subject Classifications: 42A85, 26A39,46J30 1. Introduction For appropriate functions f, g : R → R, the convolution is defined as f ∗ g(t)= g ∗ f(t) := f(t − y)g(y)dy. (1) ZR Thus, f ∗ g is a superposition of translates of f taken with the weights g(y)dy, and we can expect that f ∗ g inherits properties of f as well as of g, [9]. For example, the space of Lebesgue integrable functions L1(R), is a Banach algebra with the convolution (1). In fact, W. Rudin [18] proved that L1(G) ∗ L1(G)= L1(G), for G = Rn and any locally compact abelian group [19].
    [Show full text]