Surjections in Locally Convex Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Surjections in Locally Convex Spaces Ghent University Faculty of Sciences Department of Mathematics Surjections in locally convex spaces by Lenny Neyt Supervisor: Prof. Dr. H. Vernaeve Master dissertation submitted to the Faculty of Sciences to obtain the academic degree of Master of Science in Mathematics: Pure Mathematics. Academic Year 2015{2016 Preface For me, in the past five years, mathematics metamorphosed from an interest into my greatest passion. I find it truly fascinating how the combination of logical thinking and creativity can produce such rich theories. Hopefully, this master thesis conveys this sentiment. I hereby wish to thank my promotor Hans Vernaeve for the support and advice he gave me, not only during this thesis, but over the last three years. Furthermore, I thank Jasson Vindas and Andreas Debrouwere for their help and suggestions. Last but not least, I wish to express my gratitude toward my parents for the support and stimulation they gave me throughout my entire education. The author gives his permission to make this work available for consultation and to copy parts of the work for personal use. Any other use is bound by the restrictions of copyright legislation, in particular regarding the obligation to specify the source when using the results of this work. Ghent, May 31, 2016 Lenny Neyt i Contents Preface i Introduction 1 1 Preliminaries 3 1.1 Topology . 3 1.2 Topological vector spaces . 7 1.3 Banach and Fr´echet spaces . 11 1.4 The Hahn-Banach theorem . 13 1.5 Baire categories . 15 1.6 Schauder's theorem . 16 2 Locally convex spaces 18 2.1 Definition . 18 2.2 Topological aspects of locally convex spaces . 24 2.2.1 Hausdorff . 24 2.2.2 Convergence . 25 2.2.3 Continuity of linear operators . 26 2.2.4 Boundedness . 30 2.3 Quotient spaces . 34 2.4 Hahn-Banach in locally convex spaces . 36 2.5 Application: Kakutani's fixed point theorem . 41 2.6 Completions . 43 3 Duality theory 46 3.1 Classification of admissible topologies . 46 3.2 Boundedness in duality theory . 54 3.3 Reflexivity . 56 3.4 Continuity and surjectivity of linear maps . 62 3.5 Mackey spaces . 68 3.6 Equicontinuous sets . 68 ii iii 4 Projective and inductive topologies 72 4.1 Definitions . 72 4.2 Bornological spaces . 77 4.3 Schwartz spaces . 80 4.4 The open mapping theorem . 85 4.5 Imbedding spectra and (LF)-spaces . 89 5 Fr´echet spaces and (DF)-spaces 93 5.1 Metrizable spaces . 93 5.2 (DF)-spaces . 98 5.3 Weakly compact imbedding spectra . 102 6 Surjections of Fr´echet Spaces 108 6.1 Characterizing surjectivity . 108 6.2 Surjectivity between Fr´echet spaces . 111 6.3 Applications . 117 6.3.1 Formal power series and Taylor expansions . 117 6.3.2 The existence of C8 solutions of a linear partial dif- ferential equation . 121 7 Surjectivity of dual mappings 124 7.1 Surjectivity of the dual map . 124 7.2 Acyclic (LF)-spaces . 126 7.3 Retractive (LF)-spaces . 133 7.4 Inductive limits of Fr´echet-Montel spaces . 137 Conclusion 142 Indication of the used sources 144 A Nederlandstalige samenvatting 145 B Distributions 147 B.1 The distribution space D1pΩq . 147 B.2 Differentiation . 148 B.3 Fourier transform . 149 B.4 Convolution . 150 Bibliography 152 Index 154 Introduction In mathematics, it is desirable to know whether or not a problem is generally solvable. For instance, consider the partial differential equation ¢ ¸ B k a φ ; (1) n Bx kPNn over some space of sufficiently differentiable functions. We wonder if (1) is solvable for each , i.e. if we put ¢ ¸ B k D : a ; n Bx kPNn we ask ourselves if for each there is a φ such that Dφ . Now, since D is a map, this will exactly be the case if D is a surjection. While this specific problem has been studied extensively (we refer to [2] for a nice overview), we may look at it in a more comprehensive framework. In general, suppose E and F are topological vector spaces, and A : E Ñ F is a continuous linear map, then the problem we will investigate throughout this master thesis is whether or not A is a surjection. This is exactly the case if the image of A is both closed and dense in F . For the latter condition we will find a general characterization, namely injectivity of the transpose map, but for closedness we will need more structure on the spaces to find verifiable requirements. This is why an extensive knowledge about the spaces used in functional analysis is vital, and we will therefore spend a great amount of time on it. In chapter 1, we discuss some preliminary analytic concepts and results we expect the reader to be familiar with and may be bypassed at first, since all used results are referred to. On top of these results, we also expect the reader to be familiar with some basic notions in the field of algebra, such as vector spaces and groups. In chapter 2, we introduce the locally convex spaces, which are the gen- eral spaces we will be working with. These spaces can be seen as a vector spaces equipped with a family of continuous seminorms. The chapter mainly serves to establish the structure of these spaces, in order for it to be easy applicable in the sequel. Nonetheless, we will already utilize these results to 1 2 give an application in the form of a fixed point theorem due to S. Kakutani [5]. In chapter 3, we will be looking at the duals of locally convex spaces and study the possible ways to topologize them. Via this, one can discover a remarkable interplay between a space and its dual, which will greatly increase our understanding of the locally convex spaces. Our first general characterization of the surjectivity problem will also be made here. In chapter 4, we will construct new spaces out of other locally convex spaces, using projective and inductive topologies. This will pave the way for many new categories of spaces, such as the bornological spaces. The main result of this chapter is an extension of the open mapping theorem, a tool that is critical in our search for surjections, to more general spaces, due to de Wilde [18]. In chapter 5, we will focus on Fr´echet spaces and their duals. Since Fr´echet spaces are both complete and metrizable, they will have some strong properties, which we will apply in the chapter following it to characterize surjectivity between Fr´echet spaces. In chapter 6, an equivalent condition for the surjectivity of a map be- tween a Mackey webbed space and an ultra-bornological space, under certain conditions, is shown. This will be an extension of a result due to S. Banach. In particular, the characterization will work for a map between two Fr´echet spaces. Said conditions will be used to discuss two applications: an easy proof of a classical theorem by E. Borel and a characterization of C8 solu- tions of linear partial differential equations. In chapter 7, our perspective will shift by looking at the surjectivity problem for the transpose map. As it will turn out, this problem is linked with the notion of acyclicness, following the definition of Palamodov [8]. Because of this, we will investigate equivalent definitions for this notion, which were discovered by Wengenroth [17]. Chapter 1 Preliminaries This chapter serves as a quick reference to a list of important notions and results that will be used in the sequel. We expect the reader to be familiar with most of what will be discussed, hence not all results shall be given a proof. In order to confirm that all that is reviewed is fact, we refer to the books of Meise-Vogt [7] and Tr`eves [15]. 1.1 Topology Definition 1.1.1. Given a set E, a filter F is a family of subsets of E submitted to the following three conditions: (F1) the empty set H does not belong to the family F; (F2) if A1 and A2 belong to F, then A1 X A2 P F; (F3) any set which contains a set belonging to F should also belong to F. Definition 1.1.2. Let E be a set and suppose that for each x P E, there is a filter Fx of E such that: (a) for each U P Fx, we have x P U; (b) if U P Fx, then there is a V P Fx contained in U with the property that for each y P V , we have V P Fy. This family of filters is called a topology on E, and a set equipped with a topology is called a topological space. Each U P Fx is called a x- neighborhood. Notation 1.1.3. For a topological space E and a point x P E, the family of x-neighborhoods will also be denoted by UxpEq. We may now introduce the following list of notions. 3 CHAPTER 1. PRELIMINARIES 4 Definition 1.1.4. Let E be a topological space. 1. A subset U E is called open if U P UxpEq for each x P U. 2. A subset V E is called closed if EzV is open. 3. A point x of a subset W E is called an interior point of W if there is a U P UxpEq such that U W . The set of all interior points of W is called the interior of W and is denoted by W ¥. 4. The closure W of a subset W E is the intersection of all closed sets that contain W .
Recommended publications
  • An Abstract Algebraic–Topological Approach to the Notions of a First
    An abstract algebraic{topological approach to the notions of a ¯rst and a second dual space I H. Poppe, R. Bartsch 1 Introduction By IR and C= we denote the reals and the complex numbers respectively and by IK we mean IR or C= . Now let (X; jj ¢ jj) be a normed IK{vector space and X0 := ff : X ! IKj f linear and continuousg the (¯rst) dual space (dual) of X. Hence X0 consists of functions which at the same time are an algebraic homomorphism (a linear map) and a topological homomorphism (a continuous map). By the usual operatornorm, (X0; jj ¢ jj) again becomes a normed space (even a Banach{space) meaning that X and X0 belong to the same class of spaces. Hence at once we can construct the second dual space (bidual) X00 by: X00 := ((X; jj ¢ jj)0; jj ¢ jj)0. Then the canonical map J : X ! X00 is de¯ned via the evaluation map(1) ! : X £ IKX ! IK by J(x) := !(x; ¢) 2 X00 with 8x 2 X : !(x; ¢): X0 ! IK; 8x0 2 X0 : !(x; ¢)(x0) = !(x; x0) = x0(x). 1.1 Proposition X !(x; ¢):(IK ;¿p) ! IK is continuous for all x 2 X. X X ¿p Proof: For any net (fi)i2I from IK , f 2 IK , fi ¡! f implies especially fi(x) ! f(x) and thus !(x; fi) = fi(x) ! f(x) = !(x; f). 1.2 Remark So the map J is well{de¯ned since we have 8x 2 X : !(x; ¢) 2 X00, i.e. !(x; ¢): 0 (X ; jj ¢ jj) ! IK is linear and continuous (w.r.t.
    [Show full text]
  • Some Topics on the Theory of Cones
    POSITIVITY 2013 22-26 July, Leiden, The Netherlands Jointly organized by Leiden University and Delft University of Technology. Some topics on the theory of cones by Ioannis A. Polyrakis Department of Mathematics National Technical University of Athens Let X be a normed space. A convex subset P ⊆ X is a cone in λP = P for any λ ≥ 0. If moreover P \ (−P ) = f0g, the cone P is pointed (or proper). Denote X0 is the algebraic and X∗ topological dual of X. A convex subset B of P is a base for P if a strictly positive linear functional f of X exists such that B = fx 2 P j f(x) = 1g: Then we say that B is defined by f and is denoted by Bf . Theorem 1. The base Bf of P defined by f is bounded if and only if f is uniformly monotonic (i.e f(x) ≥ akxk for each x 2 P , where a > 0 is a real constant). Theorem 2. If f 2 X∗ is strictly positive we have: The base Bf is bounded if and only if f is an interior point of P 0. 1 Unbounded, convex subsets of cones Suppose that hX; Y i is a dual system X; Y ordered normed spaces. For any cone P of X 0 f 2 h i ≥ 2 g PY = y Y : x; y 0 for each x P ; is the dual cone of P in Y . If dual cone of X+ in Y is Y+ and the dual cone of Y+ in X is X+, hX; Y i is an ordered dual system.
    [Show full text]
  • International Centre for Theoretical Physics
    zrrl^^^'C^z ic/89/30i INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON THE APPROXIMATIVE NORMAL VALUES OF MULTIVALUES OPERATORS IN TOPOLOGICAL VECTOR SPACE Nguyen Minh Chuong and INTERNATIONAL ATOMIC ENERGY Khuat van Ninh AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION IC/89/301 SUNTO International Atomic Energy Agency and In questo articolo si considera il problemadell'approssimaztone di valori normali di oper- United Nations Educational Scientific and Cultural Organization atori chiusi lineari multivoci dallo spazio vettoriale topologico de Mackey, a valori in un E-spazio. INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS Si dimostrano l'esistenza di un valore normale e la convergenza dei valori approssimanti il valore normale. ON THE APPROXIMATIVE NORMAL VALUES OF MULTIVALUED OPERATORS IN TOPOLOGICAL VECTOR SPACE * Nguyen Minn Chuong * International Centre for Theoretical Physics, Trieste, Italy. and Khuat van Ninh Department of Numerical Analysis, Institute of Mathematics, P.O. Box 631, Bo Ho, 10 000 Hanoi, Vietnam. ABSTRACT In this paper the problem of approximation of normal values of multivalued linear closed operators from topological vector Mackey space into E-space is considered. Existence of normal value and covergence of approximative values to normal value are proved. MIRAMARE - TRIESTE September 1989 To be submitted for publication. Permanent address: Department of Numerical Analysis, Institute of Mathematics, P.O. Box 631, Bo Ho 10 000 Hanoi, Vietnam. 1. Introduction Let X , Y be closed Eubspaces of X,Y respectively, where X is normed In recent years problems on normal value and on approximation of space and Y is Hackey space. Let T be a linear multivalued operator from normal value of multivalued linear operators have been investigated Y to X .
    [Show full text]
  • Reflexive Cones
    Reflexive cones∗ E. Casini† E. Miglierina‡ I.A. Polyrakis§ F. Xanthos¶ November 10, 2018 Abstract Reflexive cones in Banach spaces are cones with weakly compact in- tersection with the unit ball. In this paper we study the structure of this class of cones. We investigate the relations between the notion of reflexive cones and the properties of their bases. This allows us to prove a characterization of reflexive cones in term of the absence of a subcone isomorphic to the positive cone of ℓ1. Moreover, the properties of some specific classes of reflexive cones are investigated. Namely, we consider the reflexive cones such that the intersection with the unit ball is norm compact, those generated by a Schauder basis and the reflexive cones re- garded as ordering cones in Banach spaces. Finally, it is worth to point out that a characterization of reflexive spaces and also of the Schur spaces by the properties of reflexive cones is given. Keywords Cones, base for a cone, vector lattices, ordered Banach spaces, geometry of cones, weakly compact sets, reflexivity, positive Schauder bases. Mathematics Subject Classification (2010) 46B10, 46B20, 46B40, 46B42 1 Introduction The study of cones is central in many fields of pure and applied mathematics. In Functional Analysis, the theory of partially ordered spaces and Riesz spaces arXiv:1201.4927v2 [math.FA] 28 May 2012 ∗The last two authors of this research have been co-financed by the European Union (Euro- pean Social Fund - ESF)and Greek national funds through the Operational Program "Educa- tion and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II.
    [Show full text]
  • On Hereditary Reflexivity of Topological Vector Spaces
    GLASNIK MATEMATICKIˇ Vol. 43(63)(2008), 397 – 422 ON HEREDITARY REFLEXIVITY OF TOPOLOGICAL VECTOR SPACES. THE DE RHAM COCHAIN AND CHAIN SPACES Ju. T. Lisica Peoples’ Friendship University of Russia, Russia Dedicated to Professor Sibe Mardeˇsi´c Abstract. For proving reflexivity of the spaces of de Rham coho- mology and homology of C∞-manifolds the author considers the notion of hereditary reflexivity as well as the notion of dual hereditary reflexivity of locally convex topological vector spaces which is interesting in itself. Com- plete barrelled nuclear spaces with complete nuclear duals turn out to be hereditarily reflexive. The Pontryagin duality in locally convex topological spaces is also considered. 1. Introduction p p c Let Ω (M), Ωc (M), Ωp(M), Ωp(M), p ≥ 0, be the de Rham cochain com- plex of C∞-differential forms, the de Rham cochain complex of C∞-differential forms with compact supports and the de Rham chain complex of C∞-differen- tial forms with coefficients in Schwartz distributions with compact sup- ports (currents with compact supports), the de Rham chain complex of C∞-differential forms with coefficients in Schwartz distributions (currents) of a C∞-manifold M, respectively. The locally convex topology on Ωp(M) is the topology of compact con- p vergence for all derivatives, on Ωc (M) it is the topology of the strict inductive 2000 Mathematics Subject Classification. 46A03, 46A04, 55N07, 55P55. Key words and phrases. De Rham cohomology, currents, nuclear spaces, hereditary reflexivity, dual hereditary reflexivity, Pontryagin duality. This research was supported by a grant of Russia’s Fund of Fundamental Researches (Grant # 06-01-00341).
    [Show full text]
  • Metrizable Barrelled Spaces, by J . C. Ferrando, M. López Pellicer, And
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 34, Number 1, January 1997 S 0273-0979(97)00706-4 Metrizable barrelled spaces,byJ.C.Ferrando,M.L´opez Pellicer, and L. M. S´anchez Ruiz, Pitman Res. Notes in Math. Ser., vol. 332, Longman, 1995, 238 pp., $30.00, ISBN 0-582-28703-0 The book targeted by this review is the next monograph written by mathemati- cians from Valencia which deals with barrelledness in (metrizable) locally convex spaces (lcs) over the real or complex numbers and applications in measure theory. This carefully written and well-documented book complements excellent mono- graphs by Valdivia [21] and by P´erez Carreras, Bonet [12] in this area. Although for the reader some knowledge of locally convex spaces is requisite, the book under re- view is self-contained with all proofs included and may be of interest to researchers and graduate students interested in locally convex spaces, normed spaces and mea- sure theory. Most chapters contain some introductory facts (with proofs), which for the reader greatly reduces the need for original sources. Also a stimulating Notes and Remarks section ends each chapter of the book. The classical Baire category theorem says that if X is either a complete metric space or a locally compact Hausdorff space, then the intersection of countably many dense, open subsets of X is a dense subset of X. This theorem is a principal one in analysis, with applications to well-known theorems such as the Closed Graph Theorem, the Open Mapping Theorem and the Uniform Boundedness Theorem.
    [Show full text]
  • A General Form of Gelfand-Kazhdan Criterion
    A GENERAL FORM OF GELFAND-KAZHDAN CRITERION BINYONG SUN AND CHEN-BO ZHU Abstract. We formalize the notion of matrix coefficients for distributional vectors in a representation of a real reductive group, which consist of generalized functions on the group. As an application, we state and prove a Gelfand-Kazhdan criterion for a real reductive group in very general settings. 1. Tempered generalized functions and Casselman-Wallach representations In this section, we review some basic terminologies in representation theory, which are necessary for this article. The two main ones are tempered generalized functions and Casselman-Wallach representations. We refer the readers to [W1, W2] as general references. Let G be a real reductive Lie group, by which we mean that (a) the Lie algebra g of G is reductive; (b) G has finitely many connected components; and (c) the connected Lie subgroup of G with Lie algebra [g, g] has a finite center. We say that a (complex valued) function f on G is of moderate growth if there is a continuous group homomorphism ρ : G → GLn(C), for some n ≥ 1, such that t t |f(x)| ≤ tr(ρ(x) ρ(x)) + tr(ρ(x−1) ρ(x−1)), x ∈ G. Here “¯” stands for the complex conjugation, and “ t” the transpose, of a matrix. ∞ arXiv:0903.1409v6 [math.RT] 25 Jan 2011 A smooth function f ∈ C (G) is said to be tempered if Xf has moderate growth for all X in the universal enveloping algebra U(gC). Here and as usual, gC is the complexification of g, and U(gC) is identified with the space of all left invariant differential operators on G.
    [Show full text]
  • Nonlinear Spectral Theory Henning Wunderlich
    Nonlinear Spectral Theory Henning Wunderlich Dr. Henning Wunderlich, Frankfurt, Germany E-mail address: [email protected] 1991 Mathematics Subject Classification. 46-XX,47-XX I would like to sincerely thank Prof. Dr. Delio Mugnolo for his valuable advice and support during the preparation of this thesis. Contents Introduction 5 Chapter 1. Spaces 7 1. Topological Spaces 7 2. Uniform Spaces 11 3. Metric Spaces 14 4. Vector Spaces 15 5. Topological Vector Spaces 18 6. Locally-Convex Spaces 21 7. Bornological Spaces 23 8. Barreled Spaces 23 9. Metric Vector Spaces 29 10. Normed Vector Spaces 30 11. Inner-Product Vector Spaces 31 12. Examples 31 Chapter 2. Fixed Points 39 1. Schauder-Tychonoff 39 2. Monotonic Operators 43 3. Dugundji and Quasi-Extensions 51 4. Measures of Noncompactness 53 5. Michael Selection 58 Chapter 3. Existing Spectra 59 1. Linear Spectrum and Properties 59 2. Spectra Under Consideration 63 3. Restriction to Linear Operators 76 4. Nonemptyness 77 5. Closedness 78 6. Boundedness 82 7. Upper Semicontinuity 84 Chapter 4. Applications 87 1. Nemyckii Operator 87 2. p-Laplace Operator 88 3. Navier-Stokes Equations 92 Bibliography 97 Index 101 3 Introduction The term Spectral Theory was coined by David Hilbert in his studies of qua- dratic forms in infinitely-many variables. This theory evolved into a beautiful blend of Linear Algebra and Analysis, with striking applications in different fields of sci- ence. For example, the formulation of the calculus of Quantum Mechanics (e.g., POVM) would not have been possible without such a (Linear) Spectral Theory at hand.
    [Show full text]
  • NONARCHIMEDEAN COALGEBRAS and COADMISSIBLE MODULES 2 of Y
    NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES ANTON LYUBININ Abstract. We show that basic notions of locally analytic representation the- ory can be reformulated in the language of topological coalgebras (Hopf alge- bras) and comodules. We introduce the notion of admissible comodule and show that it corresponds to the notion of admissible representation in the case of compact p-adic group. Contents Introduction 1 1. Banach coalgebras 4 1.1. Banach -Coalgebras 5 ̂ 1.2. Constructions⊗ in the category of Banach -coalgebras 6 ̂ 1.3. Banach -bialgebras and Hopf -algebras⊗ 8 ̂ ̂ 1.4. Constructions⊗ in the category of⊗ Banach -bialgebras and Hopf ̂ -algebras. ⊗ 9 ̂ 2. Banach comodules⊗ 9 2.1. Basic definitions 9 2.2. Constructions in the category of Banach -comodules 10 ̂ 2.3. Induction ⊗ 11 2.4. Rational -modules 14 ̂ 2.5. Tensor identities⊗ 15 3. Locally convex -coalgebras 16 ̂ Preliminaries ⊗ 16 3.1. Topological Coalgebras 18 3.2. Topological Bialgebras and Hopf algebras. 20 4. modules and comodules 21 arXiv:1410.3731v2 [math.RA] 26 Jul 2017 4.1. Definitions 21 4.2. Rationality 22 4.3. Quotients, subobjects and simplicity 22 4.4. Cotensor product 23 5. Admissibility 24 Appendix 28 References 29 Introduction The study of p-adic locally analytic representation theory of p-adic groups seems to start in 1980s, with the first examples of such representations studied in the works 1 NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES 2 of Y. Morita [M1, M2, M3] (and A. Robert, around the same time), who considered locally analytic principal series representations for p-adic SL2.
    [Show full text]
  • Arxiv:Math/0306201V1 [Math.QA] 12 Jun 2003 Ftealgebra the of .Introduction 1
    Big q-Laguerre and q-Meixner polynomials and representations of the algebra Uq(su1,1) M. N. Atakishiyev, N. M. Atakishiyev, and A. U. Klimyk Instituto de Matem´aticas, UNAM, CP 62210 Cuernavaca, Morelos, M´exico E-mail: [email protected] and [email protected] Abstract Diagonalization of a certain operator in irreducible representations of the positive discrete series of the quantum algebra Uq(su1,1) is studied. Spectrum and eigenfunctions of this operator are found in an explicit form. These eigenfunctions, when normalized, constitute an orthonormal basis in the representation space. The initial Uq(su1,1)-basis and the basis of eigenfunctions are interrelated by a matrix with entries, expressed in terms of big q-Laguerre polynomials. The unitarity of this connection matrix leads to an orthogonal system of functions, which are dual with respect to big q-Laguerre polynomials. This system of functions consists of two separate sets of functions, which can be expressed in terms of q-Meixner polynomials Mn(x; b,c; q) either with positive or negative values of the parameter b. The orthogonality property of these two sets of functions follows directly from the unitarity of the connection matrix. As a consequence, one obtains an orthogonality relation for the q-Meixner polynomials Mn(x; b,c; q) with b < 0. A biorthogonal system of functions (with respect to the scalar product in the representation space) is also derived. PACS numbers: 02.20.Uw, 02.30.Gp, 03.65.Fd 1. Introduction The significance of representations of Lie groups and Lie algebras for studying orthogonal polynomials and special functions is well known.
    [Show full text]
  • Dual-System Theories of Decision Making: Analytic Approaches and Empirical Tests
    Dual-System Theories of Decision Making: Analytic Approaches and Empirical Tests DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Aleksandr Sinayev Graduate Program in Psychology The Ohio State University 2016 Dissertation Committee: Ellen Peters, Adviser Michael DeKay Trisha Van Zandt Copyrighted by Aleksandr Sinayev 2016 Abstract Dual-system models are popular in the study of decision making. They have faced criticisms, especially for being vague and lacking specific predictions. In order to address these criticisms, three categories of dual-system models are reviewed: parallel- competitive (in which intuitive, system 1, and deliberative, system 2, processing happen at the same time and both influence the response), default-interventionist (in which system 1 executes first and then system 2 may or may not override system 1), and interactive (in which both systems process information at the same time, but they are allowed to influence each other in complex back-and-forth interactions). Tests are conducted of the former two categories. Default-interventionist dual-system models predict that individual differences in reflectiveness should be associated with less biased decision making. The Cognitive Reflection Test (CRT) is thought to measure monitoring of system 1 intuitions such that, if cognitive reflection is high enough, intuitive errors will be detected and the problem will be solved. However, CRT items also require numeric ability to be answered correctly and it is unclear how much numeric ability vs. cognitive reflection contribute to better decision making. In two studies, CRT responses were used to calculate Cognitive Reflection and numeric ability; a numeracy scale was also administered.
    [Show full text]
  • Induced C* -Algebras and Landstad Duality for Twisted Coactions
    transactions of the American mathematical society Volume 347, Number 8, August 1995 INDUCED C*-ALGEBRAS AND LANDSTAD DUALITY FOR TWISTED COACTIONS JOHN C. QUIGG AND IAIN RAEBURN Abstract. Suppose N is a closed normal subgroup of a locally compact group G. A coaction e: A —»M(A ® C*(N)) of N on a C*-algebra A can be inflated to a coaction S of G on A , and the crossed product A x¿ G is then isomorphic to the induced C*-algebra Ind^A xe N . We prove this and a natural generalization in which A xf N is replaced by a twisted crossed product A x G/N G ; in case G is abelian, we recover a theorem of Olesen and Pedersen. We then use this to extend the Landstad duality of the first author to twisted crossed products, and give several applications. In particular, we prove that if l-*'N-*d— G/N -> 1 is topologically trivial, but not necessarily split as a group extension, then every twisted crossed product A x G/N G is isomorphic to a crossed product of the form A x N . Introduction Let ô be a coaction of a locally compact group G on a C*-algebra B . The cocrossed product BxsG is a C*-algebra whose representations are given by the covariant representations of the cosystem (B, G, a) ; it is generated by a copy MB) of B and a copy jG(C0(G)) of C0(G) (e.g., [LPRS], [Rae3], [Rae4]). The embedding jG is C7-equivariant, and the first author has recently shown that the existence of such an equivariant embedding characterizes cocrossed products by coactions [Qui2].
    [Show full text]