Topologizing the Denjoy Space by Measuring Equiintegrability 1 Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bornologically Isomorphic Representations of Tensor Distributions
Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products. -
CHAPTER I I the Borndlogfy Off the SPACES ACX.I.S) and A
CHAPTER II THE BORNDLOGfY Off THE SPACES ACX.I.S) AND A(X.(t.s) • In this chapter we introduce a homology on A(X, (JJ, S) in a natural way and present some of its basic and useful properties. It is observed that this homology is not only different from the Yon-Neumann homology of the space A(X, (f, s) but it is not topologisable even. We also study the properties of a homology introduced on the dual space A(X, (f , s) in a manner analogoios to the one on A(X, C^, s). Finally, as an application, we make some interesting remarks on the topological as well as the bornol'ogical versions of the closed graph Theorem, 2.1 THE BORNOLOGg OF THE SPACE A(X. t. s) , We begin by defining a homology on A(X, (f, s) with the help of jj Jj introduced iji (1.3.2), For each r = l, 2, 3,,.. we denote by B^ the set 37 {a e A(X, (j:, s) / Ij alii r } . Then the family IB* »{BJral, 2, 3»..»} forms a base (see Definition 1,5«5) for a bornology B on A(X, C{ , s). IB thus consists of those subsets of A(X, (jl , s) vrtiioh are contained in some B , It is straightforward that (A(X, (JI, S), IB) is a separated convex bornological vector space (b.c.s, in short) with a countable base. In the sequel we shall mean by a bouinded set a set boxinded in this homology, unless stated to the contrary. -
On Bornivorous Set
On Bornivorous Set By Fatima Kamil Majeed Al-Basri University of Al-Qadisiyah College Of Education Department of Mathematics E-mail:[email protected] Abstract :In this paper, we introduce the concept of the bornivorous set and its properties to construct bornological topological space .Also, we introduce and study the properties related to this concepts like bornological base, bornological subbase , bornological closure set, bornological interior set, bornological frontier set and bornological subspace . Key words : bornivorous set , bornological topological space,b-open set 1.Introduction- The space of entire functions over the complex field C was introduced by Patwardhan who defined a metric on this space by introducing a real-valued map on it[6]. In(1971), H.Hogbe- Nlend introduced the concepts of bornology on a set [3].Many workers such as Dierolf and Domanski, Jan Haluska and others had studied various bornological properties[2]. In this paper at the second section ,bornivorous set has been introduced with some related concepts. While in the third section a new space “Bornological topological space“ has been defined and created in the base of bornivorous set . The bornological topological space also has been explored and its properties .The study also extended to the concepts of the bornological base and bornological subbase of bornological topological space .In the last section a new concepts like bornological closure set, bornological drived set, bornological dense set, bornological interior set, bornological exterior set, bornological frontier set and bornological topological subspace, have been studied with supplementary properties and results which related to them. 1 Definition1.1[3] Let A and B be two subsets of a vector space E. -
The Closed Graph Theorem and the Space of Henstock-Kurzweil Integrable Functions with the Alexiewicz Norm
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 476287, 4 pages http://dx.doi.org/10.1155/2013/476287 Research Article The Closed Graph Theorem and the Space of Henstock-Kurzweil Integrable Functions with the Alexiewicz Norm Luis Ángel Gutiérrez Méndez, Juan Alberto Escamilla Reyna, Maria Guadalupe Raggi Cárdenas, and Juan Francisco Estrada García Facultad de Ciencias F´ısico Matematicas,´ Benemerita´ Universidad Autonoma´ de Puebla, Avenida San Claudio y 18 Sur, ColoniaSanManuel,72570Puebla,PUE,Mexico Correspondence should be addressed to Luis Angel´ Gutierrez´ Mendez;´ [email protected] Received 5 June 2012; Accepted 25 December 2012 Academic Editor: Martin Schechter Copyright © 2013 Luis Angel´ Gutierrez´ Mendez´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. WeprovethatthecardinalityofthespaceHK([a, b]) is equal to the cardinality of real numbers. Based on this fact we show that there exists a norm on HK([a, b]) under which it is a Banach space. Therefore if we equip HK([a, b]) with the Alexiewicz topology then HK([a, b]) is not K-Suslin, neither infra-(u) nor a webbed space. 1. Introduction Afterwards, using the same technique used byHoning,¨ Merino improves Honing’s¨ results in the sense that those [, ] R Let be a compact interval in .Inthevectorspaceof results arise as corollaries of the following theorem. Henstock-Kurzweil integrable functions on [, ] with values in R the Alexiewicz seminorm is defined as Theorem 1 (see [2]). There exists no ultrabornological, infra- (), natural, and complete topology on HK([, ]). -
Bornological Topology Space Separation Axioms a Research Submitted by Deyar
Republic of Iraq Ministry of Higher Education & Scientific Research AL-Qadisiyah University College of Computer Science and Mathematics Department of Mathematics Bornological Topology Space Separation Axioms A Research Submitted by Deyar To the Council of the department of Mathematics ∕ College of Education, University of AL-Qadisiyah as a Partial Fulfilment of the Requirements for the Bachelor Degree in Mathematics Supervised by Fatma Kamel Majeed A. D. 2019 A.H. 1440 Abstract we study Bornological Topology Separation Axioms like bornological topology , bornological topology , bornological topology , bornological topology , bornological topology and the main propositions and theorems about this concept. introduction For the first time in (1977), H. Hogbe–NIend [1] introduced the Concept of Bornology on a set and study Bornological Construction. In chapter one study Bornology on a set , Bornological subspace, convex Bornological space, Bornological vector space and Bornivorous set. Bornological topology space were first introduced and investigated in [4], we introduce in chapter two Bornological topology space and we study Bornological topology continuous and bornological topology homeomorphism. Bornological topology open map, bornological topology separation axioms studied in chapter three like bornological topology , bornological topology , bornological topology And bornological topology Bornological topology and main properties have been studied. The Contents Subject Page Chapter One 1.1 Bornological Space 1 1. 2 Bornivorous Set 4 Chapter Two 2.1 Bornological Topological Space 6 2.2 Bornological Topology Continuous 8 Chapter three 3.1 Bornological topology And Bornological 9 topology 3.2 Bornological topology , Bornological topology 10 And Bornological topology Chapter One 1.1 Bornological space In this section, we introduce some definitions, bornological space, bornological vector space, convex bornological vector space, separated bornological vector space, bounded map and some examples . -
The Triangle of Operators, Topologies, Bornologies
Abstract Outline Preliminaries General setting Applications to operator algebras Applications to LCS’s The triangle of operators, topologies, bornologies ? % Ngai-Ching Wong Department of Applied Mathematics National Sun Yat-sen University Taiwan ¬È . Tàó. http:\\www.math.nsysu.edu.tw\ ∼wong In memory of my teacher Yau-Chuen Wong (1935.10.2–1994.11.7) ??? %%% Ngai-Ching Wong The triangle of operators, topologies, bornologies 1 Grothendieck (via Banach space operators), 2 Randtke (via continuous seminorms) and 3 Hogbe-Nlend (via convex bounded sets) are compared. the topological method, the bornological method. In terms of Pietsch’s operator ideals, we establish the equivalence of the notions of operators, topologies and bornologies. The approaches in the study of locally convex spaces of Abstract Outline Preliminaries General setting Applications to operator algebras Applications to LCS’s Abstract In this talk, we shall discuss two common techniques in functional analysis: ??? %%% Ngai-Ching Wong The triangle of operators, topologies, bornologies 1 Grothendieck (via Banach space operators), 2 Randtke (via continuous seminorms) and 3 Hogbe-Nlend (via convex bounded sets) are compared. the bornological method. In terms of Pietsch’s operator ideals, we establish the equivalence of the notions of operators, topologies and bornologies. The approaches in the study of locally convex spaces of Abstract Outline Preliminaries General setting Applications to operator algebras Applications to LCS’s Abstract In this talk, we shall discuss two common techniques in functional analysis: the topological method, ??? %%% Ngai-Ching Wong The triangle of operators, topologies, bornologies 1 Grothendieck (via Banach space operators), 2 Randtke (via continuous seminorms) and 3 Hogbe-Nlend (via convex bounded sets) are compared. -
[Math.KT] 29 Jun 1999 Nltccci Cohomology Cyclic Analytic Afmeyer Ralf 1999 Contents
Ralf Meyer Analytic cyclic cohomology 1999 arXiv:math/9906205v1 [math.KT] 29 Jun 1999 Contents 1 Introduction 4 2 Bornologies 8 2.1 BasicDefinitions ................................. .... 9 2.1.1 Bornologies ................................... 9 2.1.2 Boundedmaps .................................. 10 2.1.3 Bornologicalconvergence . ..... 11 2.2 Constructions with bornological vector spaces . .............. 12 2.2.1 Subspaces,quotients,extensions . ........ 12 2.2.2 Completions ................................... 13 2.2.3 Completed bornologicaltensor products . ......... 14 2.2.4 Spacesofboundedlinearmaps . .... 16 2.2.5 Smooth and absolutely continuous homotopies . ......... 16 3 Analytic cyclic cohomology 18 3.1 Analytic tensor algebras and a-nilpotent algebras . ............... 18 3.1.1 Definition of the analytic tensor algebra . ......... 21 3.1.2 Properties of analytically nilpotent algebras . ............. 23 3.1.3 The interrelations between analytic nilpotence, lanilcurs, and analytic tensor algebras...................................... 25 3.1.4 Reformulations of the Extension and the Homotopy Axiom ......... 28 3.1.5 Universal analytically nilpotent extensions . ............. 30 3.1.6 The bimodule Ω1(T A).............................. 32 3.1.7 The lanilcur category and Goodwillie’s theorem . ........... 34 3.2 The X-complex of T A andanalyticcycliccohomology . 36 3.2.1 TheX-complexofaquasi-freealgebra . ....... 36 3.2.2 Definition and functoriality of analytic cyclic cohomology .......... 37 3.2.3 Homotopy invariance and stability . ....... 38 3.2.4 Adjoiningunits................................ .. 40 3.2.5 The Chern-Connes character in K-theory ................... 42 3.2.6 The X-complex of T A andentirecycliccohomology . 44 3.3 Excisioninanalyticcycliccohomology . ........... 46 3.3.1 Outlineoftheproof ............................. .. 47 3.3.2 Linear functoriality of Ωan ............................ 48 3.3.3 Someisomorphisms .............................. 49 3.3.4 A free resolution of L+ ............................. -
The Use of an Isometric Isomorphism on the Completion of the Space of Henstock-Kurzweil Integrable Functions
Hindawi Publishing Corporation Journal of Function Spaces and Applications Volume 2013, Article ID 715789, 5 pages http://dx.doi.org/10.1155/2013/715789 Research Article The Use of an Isometric Isomorphism on the Completion of the Space of Henstock-Kurzweil Integrable Functions Luis Ángel Gutiérrez Méndez, Juan Alberto Escamilla Reyna, Francisco Javier Mendoza Torres, and María Guadalupe Morales Macías Facultad de Ciencias F´ısico Matematicas,´ Benemerita´ Universidad, Autonoma´ de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, 72570, Puebla, Mexico Correspondence should be addressed to Luis Angel´ Gutierrez´ Mendez;´ [email protected] Received 19 April 2013; Accepted 5 June 2013 Academic Editor: Nelson Merentes Copyright © 2013 Luis Angel´ Gutierrez´ Mendez´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Employing an isometrically isomorphic space, we determine new properties for the completion of the space of the Henstock- Kurzweil integrable functions with the Alexiewicz norm. 1. Introduction space of the distributions that are derivatives of the continu- ous functions on [, ], which is an isometrically isomorphic Let [, ] be a compact interval in R.Inthevectorspaceof (HK̂[, ], ‖ ⋅‖ ) Henstock-Kurzweil integrable functions on [, ] with values space to . Making use of this same isometri- in R, the Alexiewicz seminorm is defined as -
F a S C I C U L I M a T H E M a T I
FASCICULIMATHEMATICI Nr 35 2005 Mushtaq Shaker Abdul-Hussein and G.S. Srivastava A STUDY OF BORNOLOGICAL PROPERTIES OF THE SPACE OF ENTIRE FUNCTIONS REPRESENTED BY MULTIPLE DIRICHLET SERIES Abstract: The space of entire functions represented by Dirichlet series of several complex variables has been studied by S. Dauod [1]. M.D. Patwardhan [6] studied the bornological properties of the space of entire functions represented by power series. In this work we study the bornological aspect of the space ¡ of entire functions represented by Dirichlet series of several complex vari- ables. By ¡ we denote the space of all analytic functions P1 ®(s1; s2) = am;n exp(¸ms1 + ¹ns2), having ¯nite abscissa of m;n=1 convergence. We introduce bornologies on¡ and ¡, and prove that ¡is a convex bornological vector space which is the completion of the convex bornological vector space ¡. Key words: convex bornological vector space, Dirichlet series. 1. Introduction Let C be the ordinary complex plane equipped with its usual topology and ¡ be the space of entire functions represented by Dirichlet series of two complex variables (s1; s2). (We consider the case of two variables for the sake of simplicity, though our results can be easily extended to any ¯nite number of variables). Let X1 (1.1) ®(s1; s2) = am;n exp(¸ms1 + ¹ns2) m;n=1 2 where am;n 2 C, s1; s2 2 C , s! = σ! +it!, ! = 1; 2, 0 < ¸1 < ::: < ¸m ! 1 with m, 0 < ¹1 < ::: < ¹n ! 1 with n and further (see [1]) m + n (1.2) lim sup = D < +1: m+n!1 ¸m + ¹n 136 M.S. -
Factorization in the Space of Henstock-Kurzweil Integrable Functions
Azerbaijan Journal of Mathematics V. 7, No 2, 2017, July ISSN 2218-6816 Factorization in the Space of Henstock-Kurzweil Inte- grable Functions M.G. Morales, J.H. Arredondo∗ Abstract. In this work, we extend the factorization theorem of Rudin and Cohen to HK(R), the space of Henstock-Kurzweil integrable functions. This implies a factorization for the isometric spaces AC and BC . We also study in this context the Banach algebra of functions HK(R)∩BV (R), which is also a dense subspace of L2(R). In some sense this subspace is analogous to L1(R)∩L2(R). However, while L1(R)∩L2(R) factorizes as L1(R)∩L2(R)∗L1(R), via the convolution operation *, it is shown in the paper that HK(R) ∩ BV (R) ∗ L1(R) is a Banach subalgebra of HK(R) ∩ BV (R). Key Words and Phrases: factorization, Banach algebra, Henstock-Kurzweil integral, bounded variation function. 2010 Mathematics Subject Classifications: 42A85, 26A39,46J30 1. Introduction For appropriate functions f, g : R → R, the convolution is defined as f ∗ g(t)= g ∗ f(t) := f(t − y)g(y)dy. (1) ZR Thus, f ∗ g is a superposition of translates of f taken with the weights g(y)dy, and we can expect that f ∗ g inherits properties of f as well as of g, [9]. For example, the space of Lebesgue integrable functions L1(R), is a Banach algebra with the convolution (1). In fact, W. Rudin [18] proved that L1(G) ∗ L1(G)= L1(G), for G = Rn and any locally compact abelian group [19]. -
Banach Spaces for the Schwartz Distributions 3
BANACH SPACES FOR THE SCHWARTZ DISTRIBUTIONS TEPPER L. GILL Abstract. This paper is a survey of a new family of Banach spaces B that provide the same structure for the Henstock-Kurzweil (HK) integrable func- tions as the Lp spaces provide for the Lebesgue integrable functions. These spaces also contain the wide sense Denjoy integrable functions. They were first use to provide the foundations for the Feynman formulation of quantum mechanics. It has recently been observed that these spaces contain the test functions D as a continuous dense embedding. Thus, by the Hahn-Banach theorem, D′ ⊂ B′. A new family that extend the space of functions of bounded mean oscillation BMO[Rn], to include the HK-integrable functions are also introduced. 1. Introduction Since the work of Henstock [HS1] and Kurzweil [KW], the most important finitely additive measure is the one generated by the Henstock-Kurzweil integral (HK- integral). It generalizes the Lebesgue, Bochner and Pettis integrals. The HK- arXiv:1704.02949v1 [math.FA] 29 Mar 2017 integral is equivalent to the Denjoy and Perron integrals. However, it is much easier to understand (and learn) compared to the these and the Lebesgue integral. It provides useful variants of the same theorems that have made the Lebesgue integral so important. We assume that the reader is acquainted with this integral, 1991 Mathematics Subject Classification. Primary (46) Secondary(47) . Key words and phrases. Henstock-Kurzweil integral, Schwartz distributions, path integral, Navier-Stokes, Markov Processes. 1 2 GILL but more detail can be found in Gill and Zachary [GZ]. (For different perspectives, see Gordon [GO], Henstock [HS], Kurzweil [KW], or Pfeffer [PF].) The most important factor preventing the widespread use of the HK-integral in mathematics, engineering and physics is the lack of a Banach space structure comparable to the Lp spaces for the Lebesgue integral. -
The Dixmier-Malliavin Theorem and Bornological Vector Spaces
The Dixmier-Malliavin Theorem and Bornological Vector Spaces Gal Dor Tel-Aviv University January 2020 Abstract This note is intended to reformulate the Dixmier-Malliavin theorem about smooth group representations in the language of bornological vector spaces, instead of topological vector spaces. This language turns out to allow a more general theorem to be proven, and we are able to use it to strengthen a result of Meyer from [Mey03b]. This paper is based on a part of the author's thesis [Dor20]. Contents 1 Introduction 1 2 Bornological Vector Spaces 4 2.1 Background . .4 2.2 Tensor Products and Modules . .7 3 Quasi-Unital Rings 8 3.1 Definition of Quasi-Unital Rings in Vect . .8 3.2 Definition of Quasi-Unital Rings in Born . 10 3.3 Properties of Quasi-Unital Rings . 12 4 The G˚ardingFunctor 13 arXiv:2001.05694v1 [math.RT] 16 Jan 2020 5 Proof of Dixmier-Malliavin 15 A Proof of Claim 3.20 17 1 Introduction In this text, we will discuss bornological vector spaces and prove a variant of a theorem by Dixmier-Malliavin (see [Cas11] for a clean overview of the origi- 1 nal). Along the way, we will discuss the notion of quasi-unital algebra, which frequently comes up in the representation theory of locally compact groups. The first of these topics, bornological vector spaces, will be used in much of this text as a substitute for topological vector spaces. The two notions are very closely related (to the point that in many applications, they are indistin- guishable), but sometimes that leads to theorems that should be stated in one language being stated in the other.