F a S C I C U L I M a T H E M a T I

Total Page:16

File Type:pdf, Size:1020Kb

F a S C I C U L I M a T H E M a T I FASCICULIMATHEMATICI Nr 35 2005 Mushtaq Shaker Abdul-Hussein and G.S. Srivastava A STUDY OF BORNOLOGICAL PROPERTIES OF THE SPACE OF ENTIRE FUNCTIONS REPRESENTED BY MULTIPLE DIRICHLET SERIES Abstract: The space of entire functions represented by Dirichlet series of several complex variables has been studied by S. Dauod [1]. M.D. Patwardhan [6] studied the bornological properties of the space of entire functions represented by power series. In this work we study the bornological aspect of the space ¡ of entire functions represented by Dirichlet series of several complex vari- ables. By ¡ we denote the space of all analytic functions P1 ®(s1; s2) = am;n exp(¸ms1 + ¹ns2), having ¯nite abscissa of m;n=1 convergence. We introduce bornologies on¡ and ¡, and prove that ¡is a convex bornological vector space which is the completion of the convex bornological vector space ¡. Key words: convex bornological vector space, Dirichlet series. 1. Introduction Let C be the ordinary complex plane equipped with its usual topology and ¡ be the space of entire functions represented by Dirichlet series of two complex variables (s1; s2). (We consider the case of two variables for the sake of simplicity, though our results can be easily extended to any ¯nite number of variables). Let X1 (1.1) ®(s1; s2) = am;n exp(¸ms1 + ¹ns2) m;n=1 2 where am;n 2 C, s1; s2 2 C , s! = σ! +it!, ! = 1; 2, 0 < ¸1 < ::: < ¸m ! 1 with m, 0 < ¹1 < ::: < ¹n ! 1 with n and further (see [1]) m + n (1.2) lim sup = D < +1: m+n!1 ¸m + ¹n 136 M.S. Abdul-Hussein, G.S. Srivastava Such a series is called a Dirichlet series of two complex variables. If ¸m = log m; ¹n = log n, then ®(s1; s2)is a power series in (s1; s2). F.I. Geche [2] considered the general case when (¸m)m¸1; (¹n)n¸1 are two increasing sequences of real numbers whose limits are in¯nity, he determined the nature of the region of convergence of the series (1.1) and the formula for the system of associated abscissas of convergenceP which depends substantially on whether A < 1 or A = 1, whereA = j ai;j j. For example, V.P. Gromov i;j m+n [3] proved that if lim sup ¸ +¹ = 0 , then the formulae for the system of m+n!1 m n associated abscissa of convergence depend on j am;n j. It is well known that the function ®(s1; s2) is an analytic function in the hyperplane σ! < ¿(¡1 < ¿ < 1) where log j a j¡1 (1.3) ¿ = lim sup mn : m;n!1 ¸m + ¹n For each entire function ® " ¡ we associate a real number k ® k de¯ned by 1 k ® k= supfj am;n j (¸m+¹n) ; m; n ¸ 1g; satisfying for all ®; ¯ " ¡ (a) k 0 k = 0; (b) k ® k ¸ 0; (c) k ® k = 0 () ® ´ 0; (d) k ¡® k = k ® k; (e) k ® + ¯ k · k ® k + k ¯ k: Thusk ® k is a total paranorm on ¡. 2. De¯nitions In this section we give some de¯nitions. We have 2.1 A bornology on a set X is a family B of subsets of X satisfying the following axioms: S (i) B is a covering of X , i.e. X = B" BB; (ii) B is hereditary under inclusion, i.e. if A 2 B and B is a subset of X contained in A, then B 2 B; (iii) B is stable under ¯nite union. A pair (X; B) consisting of a set X and a bornology B on X is called a bornological space, and the elements of B are called the bounded subsets of X. A study of bornological properties of the space . 137 2.2 A base of a bornology B on X is any subfamily B0 of B such that every element of B is contained in an element of B0. A family B0 of subsets of X is a base for a bornology on X if and only if B0 covers X and every ¯nite union of elements of B0 is contained in a member of B0. The collection of those subsets of X which are contained in an element of B0 de¯nes a bornology B on X having B0 as a base. A bornology is said to be a bornology with a countable base if it possesses a base consisting of a sequence of bounded sets. Such a sequence can always be assumed to be increasing. For further de¯nitions and notations, we shall refer to [4] and [5]. 2.3 Let E be a vector space over the complex ¯eld C. A bornology B on E is said to be a vector bornology on E, if B is stable under vector addition, homothetic transformations andS the formation of circled hulls or, in other words, if the sets A+B, ¸A, j´j·1 ´A belong to B, whenever A and B belong to B and ¸ 2 C. Any pair (E; B) consisting of vector space E and a vector bornology B on E is called a bornological vector space. 2.4 A vector bornology on a vector space E is called a convex vector bornology if it is stable under the formation of convex hulls. Such a bornology is also stable under the formation of disked hulls, since the convex hull of a circled set is circled.A bornological vector space (E; B) whose bornology B is convex is called a convex bornological vector space. 2.5 A separated bornological vector space (E; B) (or a separated bornology B) is the one in which f0g is the only bounded vector subspace of E. 2.6 A set P is said to be bornivorous if for every bounded set B there exists a t 2 C, t 6= 0 such that ¹B ½ P for all ¹ 2 C for which j ¹ j · j t j. 2.7 Let E be a bornological vector space. A sequence fxng in E is said to be Mackey-convergent to a point x 2 E if there exists a decreasing sequence ft g of positive real number tending to zero such that the sequence f xn¡x g n tn is bounded. 2.8 Let E be a vector space and let B be a disk in E not necessarily absorbent Sin E. We denoteS by EB the vector space spanned by B, i.e. the space ¸>0 ¸B = ¸2K ¸B, where K be the real ¯eld R or the complex ¯eld C. 138 M.S. Abdul-Hussein, G.S. Srivastava 2.9 Let E be a separated convex bornological space . A sequencefxng in E is said to be a bornologcal Cauchy sequence (or a Mackey-Cauchy sequence) in E if there exists a bounded disk B ½ E such that fxng is a Cauchy sequence in EB. 3. The Space ¡ Let C denote the complex plane, and I be the set of positive integers. We write for n 2 I, n C = f(z1; z2; :::; zn); zi 2 C; 1 · i · ng: We are concerned here with the space of entire functions from Cn to C under the usual pointwise addition and scalar multiplication. We shall denote by ¡ the space of all entire functions ® : C2 ! C, where P1 ®(s1; s2) = am;n exp(¸ms1 + ¹ns2). m;n=1 We de¯ne a bornology on ¡ with the help of jj : jj de¯ned in sec- tion 1. We denote by Bk the set f® " ¡:k ® k· kg. Then the family B0 = fBk : k = 1; 2; :::g forms a base for a bornology B on ¡. We now prove Theorem 3.1. (¡; B) is a separated convex bornological vector space with a countable base. Proof. Since the vector bornology B on the vector space ¡ is stable under the formation of the convex hulls, it is a convex vector bornology. Since the convex hull of a circled set is circled, B is stable under the formation of disked hulls, and hence the bornological vector space (¡; B) is a convex bornological vector space. Now to show thatf0g is the only bounded vector subspaces of ¡, we must show that contains no bounded open set. Let U(") denote the set of all ® " ¡ such that k ® k < " . To prove the result stated, it is enough to show that no U(") is bounded. That is, given U("), we have to show that there exists U(´) for which there is no c > 0 such " that U(") ½ cU(´). For this purpose, take ´ = 4 . Given c, we can ¯nd 1 su±ciently large positive numbers ¸m and ¹n such that j c j (¸m+¹n) < 2. " (¸m+¹n) " Let ® = ( 2 ) exp(¸ms1 + ¹ns2). Then k ® k = 2 ; so ® " U(") and ¡1 ® " (¸m+¹n) " ¡1 k c k= supm;n¸1( 2 j c j ) > 4 = ´, so that c ® does not belong to U(´) i.e. ® does not belong to cU(´). This shows that U(") is not bounded. Thus f0g is the only bounded vector subspace of ¡, and hence (¡; B) is separated. Since B possesses a base consisting of increasing sequence of bounded sets, B is a bornology with a countable base. Thus (¡; B) is a A study of bornological properties of the space . 139 separated convex bornological vector space with countable base. This proves Theorem 3.1. ¥ Theorem 3.2. B contains no bornivorous set. Proof. Suppose B contains a bornivorous set A. Then there exists a set Bi 2 B such that A ½ Bi and consequently Bi is also bornivorous. We now assert that if i1 > i, then tBi1 * Bi for any t 2 C which leads to a contradic- tion.
Recommended publications
  • Bornologically Isomorphic Representations of Tensor Distributions
    Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products.
    [Show full text]
  • Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic
    Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic Richard Blute University of Ottawa ongoing discussions with Geoff Crutwell, Thomas Ehrhard, Alex Hoffnung, Christine Tasson June 20, 2011 Richard Blute Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic Goals Develop a theory of (smooth) manifolds based on differential linear logic. Or perhaps develop a differential linear logic based on manifolds. Convenient vector spaces were recently shown to be a model. There is a well-developed theory of convenient manifolds, including infinite-dimensional manifolds. Convenient manifolds reveal additional structure not seen in finite dimensions. In particular, the notion of tangent space is much more complex. Synthetic differential geometry should also provide information. Convenient vector spaces embed into an extremely good model. Richard Blute Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic Convenient vector spaces (Fr¨olicher,Kriegl) Definition A vector space is locally convex if it is equipped with a topology such that each point has a neighborhood basis of convex sets, and addition and scalar multiplication are continuous. Locally convex spaces are the most well-behaved topological vector spaces, and most studied in functional analysis. Note that in any topological vector space, one can take limits and hence talk about derivatives of curves. A curve is smooth if it has derivatives of all orders. The analogue of Cauchy sequences in locally convex spaces are called Mackey-Cauchy sequences. The convergence of Mackey-Cauchy sequences implies the convergence of all Mackey-Cauchy nets. The following is taken from a long list of equivalences. Richard Blute Convenient Vector Spaces, Convenient Manifolds and Differential Linear Logic Convenient vector spaces II: Definition Theorem Let E be a locally convex vector space.
    [Show full text]
  • Uniqueness of Von Neumann Bornology in Locally C∗-Algebras
    Scientiae Mathematicae Japonicae Online, e-2009 91 UNIQUENESS OF VON NEUMANN BORNOLOGY IN LOCALLY C∗-ALGEBRAS. A BORNOLOGICAL ANALOGUE OF JOHNSON’S THEOREM M. Oudadess Received May 31, 2008; revised March 20, 2009 Abstract. All locally C∗- structures on a commutative complex algebra have the same bound structure. It is also shown that a Mackey complete C∗-convex algebra is semisimple. By the well-known Johnson’s theorem [4], there is on a given complex semi-simple algebra a unique (up to an isomorphism) Banach algebra norm. R. C. Carpenter extended this result to commutative Fr´echet locally m-convex algebras [3]. Without metrizability, it is not any more valid even in the rich context of locally C∗-convex algebras. Below there are given telling examples where even a C∗-algebra structure is involved. We follow the terminology of [5], pp. 101-102. Let E be an involutive algebra and p a vector space seminorm on E. We say that p is a C∗-seminorm if p(x∗x)=[p(x)]2, for every x. An involutive topological algebra whose topology is defined by a (saturated) family of C∗-seminorms is called a C∗-convex algebra. A complete C∗-convex algebra is called a locally C∗-algebra (by Inoue). A Fr´echet C∗-convex algebra is a metrizable C∗- convex algebra, that is equivalently a metrizable locally C∗-algebra, or also a Fr´echet locally C∗-algebra. All the bornological notions can be found in [6]. The references for m-convexity are [5], [8] and [9]. Let us recall for convenience that the bounded structure (bornology) of a locally convex algebra (l.c.a.)(E,τ) is the collection Bτ of all the subsets B of E which are bounded in the sense of Kolmogorov and von Neumann, that is B is absorbed by every neighborhood of the origin (see e.g.
    [Show full text]
  • CHAPTER I I the Borndlogfy Off the SPACES ACX.I.S) and A
    CHAPTER II THE BORNDLOGfY Off THE SPACES ACX.I.S) AND A(X.(t.s) • In this chapter we introduce a homology on A(X, (JJ, S) in a natural way and present some of its basic and useful properties. It is observed that this homology is not only different from the Yon-Neumann homology of the space A(X, (f, s) but it is not topologisable even. We also study the properties of a homology introduced on the dual space A(X, (f , s) in a manner analogoios to the one on A(X, C^, s). Finally, as an application, we make some interesting remarks on the topological as well as the bornol'ogical versions of the closed graph Theorem, 2.1 THE BORNOLOGg OF THE SPACE A(X. t. s) , We begin by defining a homology on A(X, (f, s) with the help of jj Jj introduced iji (1.3.2), For each r = l, 2, 3,,.. we denote by B^ the set 37 {a e A(X, (j:, s) / Ij alii r } . Then the family IB* »{BJral, 2, 3»..»} forms a base (see Definition 1,5«5) for a bornology B on A(X, C{ , s). IB thus consists of those subsets of A(X, (jl , s) vrtiioh are contained in some B , It is straightforward that (A(X, (JI, S), IB) is a separated convex bornological vector space (b.c.s, in short) with a countable base. In the sequel we shall mean by a bouinded set a set boxinded in this homology, unless stated to the contrary.
    [Show full text]
  • On Bornivorous Set
    On Bornivorous Set By Fatima Kamil Majeed Al-Basri University of Al-Qadisiyah College Of Education Department of Mathematics E-mail:[email protected] Abstract :In this paper, we introduce the concept of the bornivorous set and its properties to construct bornological topological space .Also, we introduce and study the properties related to this concepts like bornological base, bornological subbase , bornological closure set, bornological interior set, bornological frontier set and bornological subspace . Key words : bornivorous set , bornological topological space,b-open set 1.Introduction- The space of entire functions over the complex field C was introduced by Patwardhan who defined a metric on this space by introducing a real-valued map on it[6]. In(1971), H.Hogbe- Nlend introduced the concepts of bornology on a set [3].Many workers such as Dierolf and Domanski, Jan Haluska and others had studied various bornological properties[2]. In this paper at the second section ,bornivorous set has been introduced with some related concepts. While in the third section a new space “Bornological topological space“ has been defined and created in the base of bornivorous set . The bornological topological space also has been explored and its properties .The study also extended to the concepts of the bornological base and bornological subbase of bornological topological space .In the last section a new concepts like bornological closure set, bornological drived set, bornological dense set, bornological interior set, bornological exterior set, bornological frontier set and bornological topological subspace, have been studied with supplementary properties and results which related to them. 1 Definition1.1[3] Let A and B be two subsets of a vector space E.
    [Show full text]
  • Closed Graph Theorems for Bornological Spaces
    Khayyam J. Math. 2 (2016), no. 1, 81{111 CLOSED GRAPH THEOREMS FOR BORNOLOGICAL SPACES FEDERICO BAMBOZZI1 Communicated by A. Peralta Abstract. The aim of this paper is that of discussing closed graph theorems for bornological vector spaces in a self-contained way, hoping to make the subject more accessible to non-experts. We will see how to easily adapt classical arguments of functional analysis over R and C to deduce closed graph theorems for bornological vector spaces over any complete, non-trivially valued field, hence encompassing the non-Archimedean case too. We will end this survey by discussing some applications. In particular, we will prove De Wilde's Theorem for non-Archimedean locally convex spaces and then deduce some results about the automatic boundedness of algebra morphisms for a class of bornological algebras of interest in analytic geometry, both Archimedean (complex analytic geometry) and non-Archimedean. Introduction This paper aims to discuss the closed graph theorems for bornological vector spaces in a self-contained exposition and to fill a gap in the literature about the non-Archimedean side of the theory at the same time. In functional analysis over R or C bornological vector spaces have been used since a long time ago, without becoming a mainstream tool. It is probably for this reason that bornological vector spaces over non-Archimedean valued fields were rarely considered. Over the last years, for several reasons, bornological vector spaces have drawn new attentions: see for example [1], [2], [3], [5], [15] and [22]. These new developments involve the non-Archimedean side of the theory too and that is why it needs adequate foundations.
    [Show full text]
  • Bornological Topology Space Separation Axioms a Research Submitted by Deyar
    Republic of Iraq Ministry of Higher Education & Scientific Research AL-Qadisiyah University College of Computer Science and Mathematics Department of Mathematics Bornological Topology Space Separation Axioms A Research Submitted by Deyar To the Council of the department of Mathematics ∕ College of Education, University of AL-Qadisiyah as a Partial Fulfilment of the Requirements for the Bachelor Degree in Mathematics Supervised by Fatma Kamel Majeed A. D. 2019 A.H. 1440 Abstract we study Bornological Topology Separation Axioms like bornological topology , bornological topology , bornological topology , bornological topology , bornological topology and the main propositions and theorems about this concept. introduction For the first time in (1977), H. Hogbe–NIend [1] introduced the Concept of Bornology on a set and study Bornological Construction. In chapter one study Bornology on a set , Bornological subspace, convex Bornological space, Bornological vector space and Bornivorous set. Bornological topology space were first introduced and investigated in [4], we introduce in chapter two Bornological topology space and we study Bornological topology continuous and bornological topology homeomorphism. Bornological topology open map, bornological topology separation axioms studied in chapter three like bornological topology , bornological topology , bornological topology And bornological topology Bornological topology and main properties have been studied. The Contents Subject Page Chapter One 1.1 Bornological Space 1 1. 2 Bornivorous Set 4 Chapter Two 2.1 Bornological Topological Space 6 2.2 Bornological Topology Continuous 8 Chapter three 3.1 Bornological topology And Bornological 9 topology 3.2 Bornological topology , Bornological topology 10 And Bornological topology Chapter One 1.1 Bornological space In this section, we introduce some definitions, bornological space, bornological vector space, convex bornological vector space, separated bornological vector space, bounded map and some examples .
    [Show full text]
  • A Homological Study of Bornological Spaces
    Pr´epublications Math´ematiques de l'Universit´e Paris 13 A Homological Study of Bornological Spaces by Fabienne Prosmans Jean-Pierre Schneiders 00-21 December 2000 Laboratoire Analyse, G´eom´etrie et Applications, UMR 7539 Institut Galil´ee, Universit´e Paris 13 93430 Villetaneuse (France) A Homological Study of Bornological Spaces Fabienne Prosmans Jean-Pierre Schneiders December 15, 2000 Abstract In this paper, we show that the category Bc of bornological vector spaces _ of convex type and the full subcategories B c and Bc formed by separated and complete objects form quasi-abelian categories. This allows us to study them from a homological point of view. In particular,bwe characterize acyclic _ inductive systems and prove that although the categories Bc (resp. B c, Ban) and the categories Ind(Sns) (resp. Ind(N vs), Ind(Ban)) formed by the ind- objects of the category of semi-normed vector spaces (resp. normed vector spaces, Banach spaces) are not equivalent, there is an equivalence between their derived categories given by a canonical triangulated functor which pre- serves the left t-structures. In particular these categories have the same left heart; a fact which means roughly that they have the same homological alge- bra. As a consequence, we get a link between the theory of sheaves of complete bornological spaces and that of sheaves with values in Ind(Ban) used in [4]. 0 Introduction In this paper, we study from the point of view of homological algebra the category _ Bc of bornological vector spaces of convex type and its full subcategories B c and Bc formed by separated and complete objects.
    [Show full text]
  • Time-Varying Vector Fields and Their Flows 3
    Springer Briefs in Mathematics Springer-Verlag, 2014, ISBN 978-3-319-10138-5 http://dx.doi.org/10.1007/978-3-319-10138-5 Time-varying vector fields and their flows Saber Jafarpour∗ Andrew D. Lewisy 26/01/2014 Last updated: 12/06/2014 Abstract Time-varying vector fields on manifolds are considered with measurable time de- pendence and with varying degrees of regularity in state; e.g., Lipschitz, finitely dif- ferentiable, smooth, holomorphic, and real analytic. Classes of such vector fields are described for which the regularity of the flow's dependence on initial condition matches the regularity of the vector field. It is shown that the way in which one characterises these classes of vector fields corresponds exactly to the vector fields, thought of as being vector field valued functions of time, having measurability and integrability properties associated with appropriate topologies. For this reason, a substantial part of the de- velopment is concerned with descriptions of these appropriate topologies. To this end, geometric descriptions are provided of locally convex topologies for Lipschitz, finitely differentiable, smooth, holomorphic, and real analytic sections of vector bundles. In all but the real analytic case, these topologies are classically known. The description given for the real analytic topology is new. This description allows, for the first time, a characterisation of those time-varying real analytic vector fields whose flows depend real analytically on initial condition. Keywords. Time-varying vector fields, topologies for spaces of vector fields, real ana- lyticity AMS Subject Classifications (2010). 32C05, 34A12, 46E10 Contents 1. Introduction2 1.1 Motivation. .2 1.2 An outline of the monograph.
    [Show full text]
  • The Triangle of Operators, Topologies, Bornologies
    Abstract Outline Preliminaries General setting Applications to operator algebras Applications to LCS’s The triangle of operators, topologies, bornologies ? % Ngai-Ching Wong Department of Applied Mathematics National Sun Yat-sen University Taiwan ¬È . Tàó. http:\\www.math.nsysu.edu.tw\ ∼wong In memory of my teacher Yau-Chuen Wong (1935.10.2–1994.11.7) ??? %%% Ngai-Ching Wong The triangle of operators, topologies, bornologies 1 Grothendieck (via Banach space operators), 2 Randtke (via continuous seminorms) and 3 Hogbe-Nlend (via convex bounded sets) are compared. the topological method, the bornological method. In terms of Pietsch’s operator ideals, we establish the equivalence of the notions of operators, topologies and bornologies. The approaches in the study of locally convex spaces of Abstract Outline Preliminaries General setting Applications to operator algebras Applications to LCS’s Abstract In this talk, we shall discuss two common techniques in functional analysis: ??? %%% Ngai-Ching Wong The triangle of operators, topologies, bornologies 1 Grothendieck (via Banach space operators), 2 Randtke (via continuous seminorms) and 3 Hogbe-Nlend (via convex bounded sets) are compared. the bornological method. In terms of Pietsch’s operator ideals, we establish the equivalence of the notions of operators, topologies and bornologies. The approaches in the study of locally convex spaces of Abstract Outline Preliminaries General setting Applications to operator algebras Applications to LCS’s Abstract In this talk, we shall discuss two common techniques in functional analysis: the topological method, ??? %%% Ngai-Ching Wong The triangle of operators, topologies, bornologies 1 Grothendieck (via Banach space operators), 2 Randtke (via continuous seminorms) and 3 Hogbe-Nlend (via convex bounded sets) are compared.
    [Show full text]
  • Bornologies and Locally Lipschitz Functions
    Bull. Aust. Math. Soc. 90 (2014), 257–263 doi:10.1017/S0004972714000215 BORNOLOGIES AND LOCALLY LIPSCHITZ FUNCTIONS GERALD BEER and M. I. GARRIDO (Received 6 February 2014; accepted 13 February 2014; first published online 15 May 2014) Abstract Let hX; di be a metric space. We characterise the family of subsets of X on which each locally Lipschitz function defined on X is bounded, as well as the family of subsets on which each member of two different subfamilies consisting of uniformly locally Lipschitz functions is bounded. It suffices in each case to consider real-valued functions. 2010 Mathematics subject classification: primary 26A16, 46A17; secondary 54E35. Keywords and phrases: Lipschitz function, locally Lipschitz function, uniformly locally Lipschitz function, Lipschitz in the small function, function preserving Cauchy sequences, bornology, totally bounded set, Bourbaki bounded set. 1. Introduction Let hX; di and hY; ρi be metric spaces with at least two points. A function f : X ! Y is called α-Lipschitz for α 2 (0; 1) if for all fx; wg ⊆ X, we have ρ( f (x); f (w)) ≤ αd(x; w). Less specifically, f is called Lipschitz if it is α-Lipschitz for some positive α. Whenever B is a d-bounded subset of X and f is α-Lipschitz, its image f (B) is a ρ-bounded subset of Y, as diam( f (B)) ≤ α diam(B). Conversely, if B fails to be d-bounded, we can find a real-valued 1-Lipschitz function f on X such that f (B) fails to be a bounded subset of R. In fact, the same function works for all unbounded subsets of X: x 7! d(x; x0) where x0 is a fixed but arbitrary point of X.
    [Show full text]
  • Lecture Course on Coarse Geometry
    Lecture course on coarse geometry Ulrich Bunke∗ February 8, 2021 Contents 1 Bornological spaces2 2 Coarse spaces9 3 Bornological coarse spaces 26 4 Coarse homology theories 34 5 Coarse ordinary homology 46 6 Coarse homotopy 54 7 Continuous controlled cones and homology of compact spaces 57 8 Controlled objects in additive categories 67 9 Coarse algebraic K-homology 75 10 The equivariant case 77 11 Uniform bornological coarse spaces 87 12 Topological K-theory 109 References 123 ∗Fakult¨atf¨urMathematik, Universit¨atRegensburg, 93040 Regensburg, [email protected] regensburg.de 1 1 Bornological spaces In this section we introduce the notion of a bornological space. We show that the category of bornological spaces and proper maps is cocomplete and almost cocomplete. We explain how bornologies can be constructed and how they are applied. Let X be a set. By PX we denote the power set of X. Let B be a subset of PX . Definition 1.1. B is called a bornology if it has the following properties: 1. B is closed under taking subsets. 2. B is closed under forming finite unions. S 3. B2B B = X. The elements of the bornology are called the bounded subsets of X. 2 in Definition 1.1 Definition 1.2. B is a generalized bornology if it satisfies the Conditions 1 and 2 in Definition 1.1. Thus we we get the notion of a generalized bornology by dropping Condition 3 in Definition 1.1. Remark 1.3. Let x be in X. Then the singleton fxg belongs to any bornology. Indeed, by Condition 3 there exists an element B in B such that x 2 B.
    [Show full text]