Appendix 1 Operators on Hilbert Space

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 1 Operators on Hilbert Space Appendix 1 Operators on Hilbert Space We collect in this appendix necessary information on linear operators on Hilbert space. We give here almost no proofs and we give references for more detailed information. 1. Singular Values and Operator Ideals Let T be a bounded linear operator from a Hilbert space 11. to a Hilbert space K. The singular values Sn (T), n E Z+, of T are defined by sn(T) ~f inf{IIT - KII: K: 11. --t K, rankK::; n}, where rankK stands for the rank of K. Clearly, the sequence {sn(T)}n?:o is nonincreasing and its limit soo(T) ~f lim sn(T) n-+oo is equal to the essential norm of T, which is by definition IITlle = inf{IIT - KII: K E C(li, K)}, where C(1i, K) is the space of compact operators from 11. to K. It is easy to see that if Tl and T2 are operators from 11. to K, then sm+n(T1 + T 2 ) ::; sn(Td + sm(T2 ), m, nE Z+. If A, T, and B are bounded linear Hilbert space operators such that the product ATB makes sense, then it can easily be seen that 706 Appendix 1. Operators on Hilbert Space If T is a self-adjoint operator and D is a nonnegative rank one operator, and T # = T + D, then sn(T#) ~ sn(T) ~ sn+l(T#) ~ sn+l(T) for any nE 1:+. The operator T is compact if and only if lim sn(T) = O. If T is a n-HXl compact operator from 1l to K, it admits a Schmidt expansion Tx = L sn(T)(x, fn)gn, x E 1l, n::::O where {fn}n::::o is an orthonormal sequence in 1l and {gn}n::::O is an or­ thonormal sequence in K. Note that the sum is finite if and only if T has finite rank. If 0 < p < 00, we denote by Bp(1l, K) the Schatten-von Neumann class of operators T from H to K such that If this does not lead to a confusion, we write T E Bp instead of T E Bp(1l, K). If 1 ::; p < 00, the space Bp = Bp(H, K) is a Banach space with norm 11 . lisp' We refer the reader to Gohberg and Krein [2] or Simon [2] for the proof of the triangle inequality in Bp. Together with C(H,K) we use the notation Boo(H,K) for the space of compact operators from 1l to K. If p < 1, the space Bp is not a Banach space. However, the following triangle inequality is very useful for p < 1. Theorem ALL Let 0 < p < 1 and A, B E Bp. Then (ALl) IIA + BII~ p ::; IIAII~ p + IIBII~ p . ([)J. Moreover, IIA + BII~ p = IIAII~ p + IIBII~ p if and only if A* B = AB* = Since it is not easy to find the proof of this theorem in monographs, we give a proof here that is due to A.B. Aleksandrov (private communication); apparently, it is published here for the first time. We refer the reader to Rotfel'd [1] and C.A. McCarthy [1] for other proofs. Suppose that A = ( ~~ ) and S = ( :~ ) are distinct vectors. Suppose also that IAol > IA11 and Isol ~ IS11. Consider the function f on (0,00) defined by f(q) = IIAII£q -llslleq. (A1.2) We need the following fact whose proof is an easy exercise. Lemma Al.2. The function f can have at most one zero on (0, (0). If it has a zero, it changes sign at the zero. Appendix 1. Operators on HiIbert Space 707 Lemma AI.3. Let 0 < p < 1 and let A and B be rank one opera­ tors. Suppose that IIAII ~ IIBII and IIA + Blit ~ IIAII~p + IIBII~p. Then so{A + B) = IIAII and sl{A + B) = IIBII and, in particular, IIA + BII~p = IIAII~ p +IIBII~·p Proof. Assume that IIAII ~ IIBII. Let A = Ao{·,XO)Yo, B = Al{·,Xl)Yl, where xo, Xl E 1l, Yo, Yl E /C, IIxoll = IIxIII = IIyoII = IIYllI = 1, AO = IIAII, Al = IIBII· Let So = so{A + B) and SI = sl{A + B). Put By the assumptions, IIslllP ~ IIAIIlP. By the triangle inequality in 81. IIslll1 ::; IIAIIl1. Assume now that A f. s. It follows now from Lemma A1.2 that the function f defined by (A1.2) has one zero on [p, 1]. Clearly, f{q) < 0 for any q > 1. It follows that AO > so. Since rankA = 1, it follows that SI ::; Al. We have obtained a contradiction.• Corollary AI.4. If A and B are rank one operators, then IIA + BII~p ::; IIAII~p + IIBllt· Lemma AI.5. Suppose that A and B are rank one operators such that IIAII ~ IIBII. The following are equivalent: (i) so(A + B) = IIAII and sl(A + B) = IIBlli (ii) A*B = (()) and AB* = (()). Proof. It is sufficient to prove that (i) implies (ii). Again, let Ax = AO(X, xo)Yo, Bx = Al (x, XdYb X E 1l, where xo, Xl E 1l, Yo, Yl E /C, IIxoll = IIXlII = IIYoII = IIYllI = 1, AO = IIAII, Al = IIBjj. Clearly, we may assume that Al > o. We have . sl(A + B) ::; Al sup j(~I~I)1 = Al(l-j(xO,Xl)12)1/2. x..Lxo X It follows that {xo, xd = O. To prove that (yo, Yl) = 0, we can apply the above reasoning to the operators A * and B* .• Corollary AI.6. Let A and B be rank one operators. Then IIA + BII~ p = IIAII~ p + IIBII~ p if and only if A* B = (()) and AB* = (()). Lemma AI. 7. Let A : 1-l -t /C be an operator of rank at most Nand 0< p < 1. Then jjAllt = inf {f)AJII~p: A = tAj; rankAj ::; I}. J=l J=l (A1.3) Proof. Clearly, it is sufficient to consider on the right-hand side of (A1.3) only those Aj that satisfy Ker A C Ker Aj and Range Aj C Range A. The 708 Appendix 1. Operators on Hilbert Space set of such operators is finite-dimensional, and so the infimum on the right­ hand side is attained. N Let A = L: Aj be a representation that minimizes the infimum in (A1.3). j=l Clearly, it is sufficient to show that AjAk = (]) and AjAi; = (]). Suppose that AjAk =1= (]) or AjAi; =1= (]) for some j and k. By Lemma A1.5, one can represent Aj + Ak as the sum of rank one operators B1 and B2 such that N which contradicts the fact that the representation A = L: Aj realizes the j=l infimum in (A1.3) .• Proof of Theorem ALL Let us prove (ALl). Clearly, we can assume that A and B are finite rank operators. Let where the Aj and Bk are of rank one. Then N M A+B = LAj + LBk j=l k=l and by Corollary AI.4, N M IIA + BII~p ::; L IIAj lI~p + L IIBk II~p = IIAII~p + IIBII~p' j=l k=l It is obvious that the conditions A * B = (]) and AB* = (]) imply that IIA + BliPBp = IilAII PBp + liB liPBp . Suppose now that IIA + BII~ p = IIAII~ p + IIBII~ p. Consider the Schmidt expansions of A and B: A = LAj(-,Xj)Yj, B = Lftk(-,Uk)Vk. j k Then IIA+BII~p = LIAjIP+ LlftklP . j k It is sufficient to show Xj .1 Uk and Yj .1 Vk for all j and k. If this is not true for some jo and ko, then by Lemma Al.5, we can represent the operator Aj(',Xjo)Yjo + ftk("Uko)Vko as the sum of Al and B1 such that IIAj(-'Xjo)Yjo, + ftk("Uko)Vkoll~ p = IIA1 + B111~ p < IAjolP + IftkolP. Appendix 1. Operators on Hilbert Space 709 Hence, IIA + BII~p < IIAl + Blll~p + L IAjlP + L lJ-ljlP jho k=f.ko < IAjolP + lJ-lkol P + L IAjlP + L lJ-ljlP j=f.jo k=f.ko IIAII~ p + IIBII~ p , which contradicts the assumption .• Operators of class SI are also called nuclear operators or operators of trace class. The last term reflects the fact that on the space SI of operators ona Hilbert space H we can introduce the important functional trace. Suppose that {ej h::::o is an orthonormal basis in H. Put traceT = L(Tej, ej), T E SI· j::::O Then trace is a linear functional on SI and ItraceTI :::; IITlls,. Moreover, trace T does not depend on the choice of the orthonormal basis {ej} j::::O· If 1 < p < 00, the dual space S; = Sp(H, lC)* can be identified with the space Sp' = Sp' (H, lC) with respect to the pairing (T,R)=traceTR*, TESp, RESp'. (A1.4) With respect to the same pairing we can identify Si with the space B of bounded linear operators and we can identify the dual space C* to the space of compact operators with the space SI. The space S2 is also called the Hilbert~Schmidt class. It is a Hilbert space with respect to the inner product (A1.4). If H = L2(X, J-l) and lC = L2(y, v), an operator T E B(H, lC) belongs to S2 if and only if there exists a function k E L2(X X y, J-l x v) such that (Tf)(y) = Ix k(x,y)f(x)dJ-l(x). Consider now the ideals Sq,W' 1:::; q < 00, of operators T such that It is easy to see that Sp c Sq,w for any p < 00 and any q E [1,00).
Recommended publications
  • Operator Theory in the C -Algebra Framework
    Operator theory in the C∗-algebra framework S.L.Woronowicz and K.Napi´orkowski Department of Mathematical Methods in Physics Faculty of Physics Warsaw University Ho˙za74, 00-682 Warszawa Abstract Properties of operators affiliated with a C∗-algebra are studied. A functional calculus of normal elements is constructed. Representations of locally compact groups in a C∗-algebra are considered. Generaliza- tions of Stone and Nelson theorems are investigated. It is shown that the tensor product of affiliated elements is affiliated with the tensor product of corresponding algebras. 1 0 Introduction Let H be a Hilbert space and CB(H) be the algebra of all compact operators acting on H. It was pointed out in [17] that the classical theory of unbounded closed operators acting in H [8, 9, 3] is in a sense related to CB(H). It seems to be interesting to replace in this context CB(H) by any non-unital C∗- algebra. A step in this direction is done in the present paper. We shall deal with the following topics: the functional calculus of normal elements (Section 1), the representation theory of Lie groups including the Stone theorem (Sections 2,3 and 4) and the extensions of symmetric elements (Section 5). Section 6 contains elementary results related to tensor products. The perturbation theory (in the spirit of T.Kato) is not covered in this pa- per. The elementary results in this direction are contained the first author’s previous paper (cf. [17, Examples 1, 2 and 3 pp. 412–413]). To fix the notation we remind the basic definitions and results [17].
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. https://hdl.handle.net/2066/231381 Please be advised that this information was generated on 2021-09-27 and may be subject to change. Finite approximation and continuous change in spectral geometry Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 30 maart 2021 om 12.30 uur precies door Abel Boudewijn Stern geboren op 1 november 1989 te Amsterdam Promotor: dr. W.D. van Suijlekom Manuscriptcommissie: prof. dr. N.P. Landsman dr. F. Arici Universiteit Leiden prof. dr. J.W. Barrett University of Nottingham, Verenigd Koninkrijk dr. H.B. Posthuma Universiteit van Amsterdam prof. dr. R. Wulkenhaar WWU Münster, Duitsland Gedrukt door: de Toekomst, Hilversum – detoekomst.nl voor Tera Fopma Contents Summary v I Finite spectral geometry 1 1 Introduction 3 1.1 Mathematical preliminaries . 6 2 Finite-rank approximation of spectral zeta residues 25 2.1 Introduction . 25 2.2 Zeta residues as normal functionals . 28 2.3 Localization . 35 2.4 Final remarks and suggestions . 37 3 Reconstructing manifolds from truncated spectral triples 39 3.1 Introduction . 39 3.2 Truncated spectral geometries and point reconstruction . 41 3.3 The metric space of localized states . 44 3.4 The PointForge algorithm: associating a finite metric space .
    [Show full text]
  • Linear Operators and Adjoints
    Chapter 6 Linear operators and adjoints Contents Introduction .......................................... ............. 6.1 Fundamentals ......................................... ............. 6.2 Spaces of bounded linear operators . ................... 6.3 Inverseoperators.................................... ................. 6.5 Linearityofinverses.................................... ............... 6.5 Banachinversetheorem ................................. ................ 6.5 Equivalenceofspaces ................................. ................. 6.5 Isomorphicspaces.................................... ................ 6.6 Isometricspaces...................................... ............... 6.6 Unitaryequivalence .................................... ............... 6.7 Adjoints in Hilbert spaces . .............. 6.11 Unitaryoperators ...................................... .............. 6.13 Relations between the four spaces . ................. 6.14 Duality relations for convex cones . ................. 6.15 Geometric interpretation of adjoints . ............... 6.15 Optimization in Hilbert spaces . .............. 6.16 Thenormalequations ................................... ............... 6.16 Thedualproblem ...................................... .............. 6.17 Pseudo-inverseoperators . .................. 6.18 AnalysisoftheDTFT ..................................... ............. 6.21 6.1 Introduction The field of optimization uses linear operators and their adjoints extensively. Example. differentiation, convolution, Fourier transform,
    [Show full text]
  • A Note on Riesz Spaces with Property-$ B$
    Czechoslovak Mathematical Journal Ş. Alpay; B. Altin; C. Tonyali A note on Riesz spaces with property-b Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 2, 765–772 Persistent URL: http://dml.cz/dmlcz/128103 Terms of use: © Institute of Mathematics AS CR, 2006 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 56 (131) (2006), 765–772 A NOTE ON RIESZ SPACES WITH PROPERTY-b S¸. Alpay, B. Altin and C. Tonyali, Ankara (Received February 6, 2004) Abstract. We study an order boundedness property in Riesz spaces and investigate Riesz spaces and Banach lattices enjoying this property. Keywords: Riesz spaces, Banach lattices, b-property MSC 2000 : 46B42, 46B28 1. Introduction and preliminaries All Riesz spaces considered in this note have separating order duals. Therefore we will not distinguish between a Riesz space E and its image in the order bidual E∼∼. In all undefined terminology concerning Riesz spaces we will adhere to [3]. The notions of a Riesz space with property-b and b-order boundedness of operators between Riesz spaces were introduced in [1]. Definition. Let E be a Riesz space. A set A E is called b-order bounded in ⊂ E if it is order bounded in E∼∼. A Riesz space E is said to have property-b if each subset A E which is order bounded in E∼∼ remains order bounded in E.
    [Show full text]
  • Variational Methods for Moments of Solutions to Stochastic Differential
    Thesis for the Degree of Licentiate of Philosophy Variational Methods for Moments of Solutions to Stochastic Differential Equations Kristin Kirchner Division of Applied Mathematics and Statistics Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Gothenburg, Sweden, 2016 Variational Methods for Moments of Solutions to Stochastic Differential Equations Kristin Kirchner c Kristin Kirchner, 2016. Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg SE-412 96 Gothenburg, Sweden Phone: +46 (0)31 772 53 57 Author e-mail: [email protected] Printed in Gothenburg, Sweden 2016 Variational Methods for Moments of Solutions to Stochastic Differential Equations Kristin Kirchner Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Abstract Numerical methods for stochastic differential equations typically estimate moments of the solution from sampled paths. Instead, we pursue the approach proposed by A. Lang, S. Larsson, and Ch. Schwab1, who derived well-posed deterministic, tensorized evolution equations for the second moment and the covariance of the solution to a parabolic stochastic partial differential equation driven by additive Wiener noise. In Paper I we consider parabolic stochastic partial differential equations with multiplicative L´evy noise of affine type. For the second moment of the mild solution, a deterministic space-time variational problem is derived. It is posed on projective and injective tensor product spaces as trial and test spaces. Well- posedness is proven under appropriate assumptions on the noise term. From these results, a deterministic equation for the covariance function is deduced. These deterministic equations in variational form are used in Paper II to derive numerical methods for approximating the first and second moment of the solution to a stochastic ordinary differential equation driven by additive or multiplicative Wiener noise.
    [Show full text]
  • Function Spaces Mikko Salo
    Function spaces Lecture notes, Fall 2008 Mikko Salo Department of Mathematics and Statistics University of Helsinki Contents Chapter 1. Introduction 1 Chapter 2. Interpolation theory 5 2.1. Classical results 5 2.2. Abstract interpolation 13 2.3. Real interpolation 16 2.4. Interpolation of Lp spaces 20 Chapter 3. Fractional Sobolev spaces, Besov and Triebel spaces 27 3.1. Fourier analysis 28 3.2. Fractional Sobolev spaces 33 3.3. Littlewood-Paley theory 39 3.4. Besov and Triebel spaces 44 3.5. H¨olderand Zygmund spaces 54 3.6. Embedding theorems 60 Bibliography 63 v CHAPTER 1 Introduction In mathematical analysis one deals with functions which are dif- ferentiable (such as continuously differentiable) or integrable (such as square integrable or Lp). It is often natural to combine the smoothness and integrability requirements, which leads one to introduce various spaces of functions. This course will give a brief introduction to certain function spaces which are commonly encountered in analysis. This will include H¨older, Lipschitz, Zygmund, Sobolev, Besov, and Triebel-Lizorkin type spaces. We will try to highlight typical uses of these spaces, and will also give an account of interpolation theory which is an important tool in their study. The first part of the course covered integer order Sobolev spaces in domains in Rn, following Evans [4, Chapter 5]. These lecture notes contain the second part of the course. Here the emphasis is on Sobolev type spaces where the smoothness index may be any real number. This second part of the course is more or less self-contained, in that we will use the first part mainly as motivation.
    [Show full text]
  • Computing the Singular Value Decomposition to High Relative Accuracy
    Computing the Singular Value Decomposition to High Relative Accuracy James Demmel Department of Mathematics Department of Electrical Engineering and Computer Science University of California - Berkeley [email protected] Plamen Koev Department of Mathematics University of California - Berkeley [email protected] Structured Matrices In Operator Theory, Numerical Analysis, Control, Signal and Image Processing Boulder, Colorado June 27-July 1, 1999 Supported by NSF and DOE INTRODUCTION • High Relative Accuracy means computing the correct SIGN and LEADING DIGITS • Singular Value Decomposition (SVD): A = UΣV T where U, V are orthogonal, σ1 σ2 Σ = and σ1 ≥ σ2 ≥ . σn ≥ 0 .. . σn • GOAL: Compute all σi with high relative accuracy, even when σi σ1 • It all comes down to being able to compute determi- nants to high relative accuracy. Example: 100 by 100 Hilbert Matrix H(i, j) = 1/(i + j − 1) • Singular values range from 1 down to 10−150 • Old algorithm, New Algorithm, both in 16 digits Singular values of Hilb(100), blue = accurate, red = usual 0 10 −20 10 −40 10 −60 10 −80 10 −100 10 −120 10 −140 10 0 10 20 30 40 50 60 70 80 90 100 • D = log(cond(A)) = log(σ1/σn) (here D = 150) • Cost of Old algorithm = O(n3D2) • Cost of New algorithm = O(n3), independent of D – Run in double, not bignums as in Mathematica – New hundreds of times faster than Old • When does it work? Not for all matrices ... • Why bother? Why do we want tiny singular values accurately? 1. When they are determined accurately by the data • Hilbert: H(i, j) = 1/(i + j − 1) • Cauchy: C(i, j) = 1/(xi + yj) 2.
    [Show full text]
  • On the Discrete Spectrum of Linear Operators on Banach Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publikationsserver der Technischen Universität Clausthal On the discrete spectrum of linear operators on Banach spaces Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt von Dipl.-Math. Franz Hanauska aus Clausthal-Zellerfeld genehmigt von der Fakult¨atf¨ur Mathematik/Informatik und Maschinenbau der Technischen Universit¨atClausthal Tag der m¨undlichen Pr¨ufung 30.06.2016 Vorsitzender der Promotionskommission: Prof. Dr. Lutz Angermann, TU Clausthal Hauptberichterstatter: Prof. Dr. Michael Demuth, TU Clausthal Mitberichterstatter: Prof. Dr. Werner Kirsch, FU Hagen PD Dr. habil. Johannes Brasche, TU Clausthal Acknowledgements: I would like to thank my supervisor Prof. Dr. Michael Demuth for his valu- able guidance throughout my graduate studies. Moreover, I want to thank him for his help and support during my years in Clausthal. His patience, motivation and his immense knowledge helped me all the time of research and writing of this thesis. Furthermore, my thanks go to Dr. Guy Katriel and Dr. Marcel Hansmann for a fruitfull collaboration and co-authorship. I am grateful to Dr. habil. Johannes Brasche for the nice mathematical and non-mathematical discussions. Finally, I want to thank my family - Natalia, Heidi and Anton - for their support and love. Contents Introduction 1 1 Preliminaries 5 1.1 Bounded operators, spectrum and resolvents . .5 1.2 Compact Operators . 11 2 Certain quasi-Banach and Banach ideals 13 2.1 The Banach ideal of nuclear operators . 14 2.2 The quasi-Banach ideal of operators of type lp ......... 17 2.3 The Banach ideal of p-summing operators .
    [Show full text]
  • Variational Calculus of Supervariables and Related Algebraic Structures1
    Variational Calculus of Supervariables and Related Algebraic Structures1 Xiaoping Xu Department of Mathematics, The Hong Kong University of Science & Technology Clear Water Bay, Kowloon, Hong Kong2 Abstract We establish a formal variational calculus of supervariables, which is a combination of the bosonic theory of Gel’fand-Dikii and the fermionic theory in our earlier work. Certain interesting new algebraic structures are found in connection with Hamiltonian superoperators in terms of our theory. In particular, we find connections between Hamiltonian superoperators and Novikov- Poisson algebras that we introduced in our earlier work in order to establish a tensor theory of Novikov algebras. Furthermore, we prove that an odd linear Hamiltonian superoperator in our variational calculus induces a Lie superalgebra, which is a natural generalization of the Super-Virasoro algebra under certain conditions. 1 Introduction Formal variational calculus was introduced by Gel’fand and Dikii [GDi1-2] in studying Hamiltonian systems related to certain nonlinear partial differential equation, such as the arXiv:math/9911191v1 [math.QA] 24 Nov 1999 KdV equations. Invoking the variational derivatives, they found certain interesting Pois- son structures. Moreover, Gel’fand and Dorfman [GDo] found more connections between Hamiltonian operators and algebraic structures. Balinskii and Novikov [BN] studied sim- ilar Poisson structures from another point of view. The nature of Gel’fand and Dikii’s formal variational calculus is bosonic. In [X3], we presented a general frame of Hamiltonian superoperators and a purely fermionic formal variational calculus. Our work [X3] was based on pure algebraic analogy. In this paper, we shall present a formal variational calculus of supervariables, which is a combination 11991 Mathematical Subject Classification.
    [Show full text]
  • Banach Space Operators with a Bounded H∞ Functional Calculus
    J. Austral. Math. Soc. (Series A) 60 (1996), 51-89 BANACH SPACE OPERATORS WITH A BOUNDED H°° FUNCTIONAL CALCULUS - MICHAEL COWLING, IAN DOUST, ALAN MCINTOSH and ATSUSHIYAGI (Received 19 August 1993) Communicated by A. H. Dooley Abstract In this paper, we give a general definition for f(T) when T is a linear operator acting in a Banach space, whose spectrum lies within some sector, and which satisfies certain resolvent bounds, and when / is holomorphic on a larger sector. We also examine how certain properties of this functional calculus, such as the existence of a bounded H°° functional calculus, bounds on the imaginary powers, and square function estimates are related. In particular we show that, if T is acting in a reflexive Lp space, then T has a bounded H°° functional calculus if and only if both T and its dual satisfy square function estimates. Examples are given to show that some of the theorems that hold for operators in a Hilbert space do not extend to the general Banach space setting. 1991 Mathematics subject classification (Amer. Math. Soc): 47A60. 1. Introduction and notation Operators whose spectrum lies in some sector of the complex plane, and whose resolvents satisfy certain bounds, have been extensively studied, both in abstract settings and for their applications to differential equations. For example the m- accretive and m-sectorial operators studied in [12] fall into this class. An extensive list of examples of such operators may be found in [17], which also includes a good description of some of the applications: diffusion semigroups, Stokes' operators, etc.
    [Show full text]
  • Trace and Extension Theorems for Sobolev-Type Functions in Metric
    TRACE AND EXTENSION THEOREMS FOR SOBOLEV-TYPE FUNCTIONS IN METRIC SPACES LUKÁŠ MALÝ Abstract. Trace classes of Sobolev-type functions in metric spaces are subject of this paper. In particular, functions on domains whose boundary has an upper codimension-θ bound are consid- ered. Based on a Poincaré inequality, existence of a Borel measurable trace is proven whenever the power of integrability of the “gradient” exceeds θ. The trace T is shown to be a compact operator mapping a Sobolev-type space on a domain into a Besov space on the boundary. Sucient condi- tions for T to be surjective are found and counterexamples showing that surjectivity may fail are also provided. The case when the exponent of integrability of the “gradient” is equal to θ, i.e., the codimension of the boundary, is also discussed. Under some additional assumptions, the trace lies in Lθ on the boundary then. Essential sharpness of these extra assumptions is illustrated by an example. 1. Introduction and Overview Over the past two decades, analysis in metric measure spaces (and non-linear potential theory, in particular) has attracteda lot of attention, e.g., [3, 4, 14, 15, 21, 28]. See also [19, Chapter 22] and referencestherein. The metricspace setting provides a wide framework to study partial dierential equations and, specically, boundary value problems. These seek to nd solutions to an equation in a domain, subject to a prescribed boundary condition. Most thoroughly studied problems deal with the Dirichlet boundary condition, where a trace of the solution is prescribed, and with the Neumann condition, where the normal derivative of the solution at the boundary is given.
    [Show full text]
  • Index Theory in Geometry and Physics Magnus Goffeng
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Index theory in geometry and physics Magnus Goffeng Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG G¨oteborg, Sweden 2011 Index theory in geometry and physics Magnus Goffeng c Magnus Goffeng, 2011 ! ISBN 978-91-628-8281-5 Department of Mathematical Sciences Division of Mathematics Chalmers University of Technology and University of Gothenburg SE-412 96 G¨oteborg Sweden Telephone +46 (0)31-772 1000 Printed in G¨oteborg, Sweden 2011 Abstract This thesis contains three papers in the area of index theory and its ap- plications in geometry and mathematical physics. These papers deal with the problems of calculating the charge deficiency on the Landau levels and that of finding explicit analytic formulas for mapping degrees of H¨older continuous mappings. Paper A deals with charge deficiencies on the Landau levels for non-interacting particles in 2 under a constant magnetic field, or equivalently, one particle moving in a constant magnetic field in even-dimensional Euclidian space. The K-homology class that the charge of a Landau level defines is calculated in two steps. The first step is to show that the charge deficiencies are the same on ev- ery particular Landau level. The second step is to show that the lowest Landau level, which is equivalent to the Fock space, defines the same class as the K- homology class on the sphere defined by the Toeplitz operators in the Bergman space of the unit ball. Paper B and Paper C uses regularization of index formulas in cyclic cohomol- ogy to produce analytic formulas for the degree of H¨older continuous mappings.
    [Show full text]