Index Theory in Geometry and Physics Magnus Goffeng

Total Page:16

File Type:pdf, Size:1020Kb

Index Theory in Geometry and Physics Magnus Goffeng THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Index theory in geometry and physics Magnus Goffeng Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG G¨oteborg, Sweden 2011 Index theory in geometry and physics Magnus Goffeng c Magnus Goffeng, 2011 ! ISBN 978-91-628-8281-5 Department of Mathematical Sciences Division of Mathematics Chalmers University of Technology and University of Gothenburg SE-412 96 G¨oteborg Sweden Telephone +46 (0)31-772 1000 Printed in G¨oteborg, Sweden 2011 Abstract This thesis contains three papers in the area of index theory and its ap- plications in geometry and mathematical physics. These papers deal with the problems of calculating the charge deficiency on the Landau levels and that of finding explicit analytic formulas for mapping degrees of H¨older continuous mappings. Paper A deals with charge deficiencies on the Landau levels for non-interacting particles in 2 under a constant magnetic field, or equivalently, one particle moving in a constant magnetic field in even-dimensional Euclidian space. The K-homology class that the charge of a Landau level defines is calculated in two steps. The first step is to show that the charge deficiencies are the same on ev- ery particular Landau level. The second step is to show that the lowest Landau level, which is equivalent to the Fock space, defines the same class as the K- homology class on the sphere defined by the Toeplitz operators in the Bergman space of the unit ball. Paper B and Paper C uses regularization of index formulas in cyclic cohomol- ogy to produce analytic formulas for the degree of H¨older continuous mappings. In Paper B Toeplitz operators and Henkin-Ramirez kernels are used to find an- alytic formulas for the degree of a function f : ∂ Ω Y , where Ω is a relatively compact strictly pseudo-convex domain in a Stein manifold→ and Y is a compact connected oriented manifold. In Paper C analytic formulas for H¨older continu- ous mappings between general even-dimensional manifolds are produced using a pseudo-differential operator associated with the signature operator. Keywords: Index theory, cyclic cohomology, regularized index formulas, Toeplitz operators, pseudo-differential operators, quantum Hall effect. 2000 Mathematics Subject Classification: 19KXX, 46L80, 19L64, 47N50, 58J40. i Preface The purpose of this thesis is to obtain the degree of Doctor for its author. The work in this thesis is based on three papers written from material gathered by the author under time spent as a PhD-student in Gothenburg and during visits to the University of Copenhagen under the time period June 2007 to May 2011. The thesis is divided up into two parts. The first part is an introduction with a summary of the results. The second part of the thesis consists of the following papers: A. ”Index formulas and charge deficiencies on the Landau levels”, Journal of Mathematical Physics 51 (2010). B. ”Analytic formulas for topological degree of non-smooth mappings: the odd-dimensional case”, submitted. C. ”Analytic formulas for topological degree of non-smooth mappings: the even-dimensional case”, submitted. Only minor modifications on these papers have been made for this thesis. These minor modifications include correcting typos and changing of notations for a homogeneous notation throughout the thesis. In addition to the above, there are four other papers by the author. These, however, will not be included in the thesis: * ”Projective pseudo-differential operators on infinite-dimensional Azumaya bundles”, submitted. * ”The Pimsner-Voiculescu sequence for coactions of compact Lie groups”, to appear in Mathematica Scandinavica. * ”A remark on twists and the notion of torsion-free discrete quantum groups”, to appear in Algebras and Representation Theory. * ”Equivariant extensions of -algebras”, New York Journal of Mathematics 16 (2010), p. 369–385. ∗ ii Acknowledgements First of all the author would like to thank his thesis advisor Grigori Rozen- blioum for his constant patience, for his impeccable grammar, for sharing his mathematical style and philosophy with the author and for suggesting the prob- lems discussed in this thesis. The author also owe a big thanks to his co-advisor Ryszard Nest who was a great source of inspiration and ideas. Thanks to the department of Mathematical Sciences at Chalmers/GU and all its employees for giving the author the opportunity to write his thesis and a good time doing it. A great thanks to the HAPDE-group at the department. The author thanks Alexander Stolin for his support. Thanks to the platform MP2 who helped the author through many problems. A big thanks also goes to Lyudmila Tur- owska who introduced the author to K-theory, the K-theory classification of AF-algebras by Elliott, that to an undergrad seems magical. Thanks to Jana Madjarova for her encouragement. Thanks to Vilhelm Adolfsson for many inter- esting discussions about everything between heaven and earth except mapping degrees. The author owes much to his beloved Marie for her constant support and for always believing in all the author’s endeavors, for that the author thanks her. The author thanks his brother Bj¨orn, his parents and the rest of his family for encouraging him to pursue with mathematics and more. And of course the author wouldn’t be here without Jacob M¨ollstam with whom he discussed the big things just before starting as a PhD-student. The author also thanks Ulrica Dahlberg for giving him the final push into mathematics. Thanks also to Middagsg¨anget Jacob Sznajdman, Peter Hegarty, Dennis Eriksson, Johan Tykesson and Oskar Sandberg where much of the author’s mathematical moral and need for mathematical gossip was created. Let us not forget AGMP-g¨anget Johan Oinert,¨ Kalle R¨okaeus, Qimh Xantcha and Chris- tian Svensson with whom the author have spent many great times with. Thanks also to Bram Mesland with whom the author discussed the depths of KK, to Micke Persson for being a good fadder, Jonas Hartwig for all his wisdom on the Serre relations and to Oskar Hamlet for being a good and understanding room mate. Thanks to all other PhD-students at the department for making my stay comfortable. Finally, a big thanks to the entire complex analysis group at Chalmers/GU for helping the author to keep it real. Bo Berndtsson for teaching the author Cauchy’s formula and about Fredholm operators. Mats Andersson for helping the author with all the integral representations. Robert Berman for reminding the author about the elementary. Rickard L¨ark¨ang for all strong discussions on weak stuff. Contents Preface i Acknowledgements ii I Introduction 1 Introductory remarks 3 1 K-theory and K-homology 7 1.1 Even K-theory . 7 1.2 Odd K-theory . 12 2 Magnetism and K-theory 19 2.1 Quantum Hall effect . 20 2.2 Hall conductance . 23 3 Index formulas 27 3.1 Atiyah-Singer’s index theorem . 28 3.2 Cyclic homology . 31 3.3 H¨older continuous symbols . 37 II Research papers 45 A Index formulas and charge deficiencies on the Landau levels 47 A.1 Particular Landau levels . 50 A.2 Toeplitz operators on the Landau levels . 51 2n 1 A.3 Pulling symbols back from S − ..................... 55 A.4 The special cases and 2 ........................ 59 A.5 Index formula on the particular Landau levels . 63 iii iv CONTENTS B Analytic formulas for degree of non-smooth mappings: the odd- dimensional case 67 B.1 The volume form as a Chern character . 71 B.2 Toeplitz operators and their index theory . 78 B.3 The Toeplitz pair on the Hardy space . 85 B.4 The index- and degree formula . 87 C Analytic formulas for degree of non-smooth mappings: the even-dimensional case 91 C.1 K-theory and Connes’ index formula . 93 C.2 The projection with Chern character being the volume form . 99 C.3 Index theory for pseudo-differential operators . 102 C.4 Index of a H¨older continuous twist . 105 C.5 Degrees of H¨older continuous mappings . 110 C.6 Example on S2n ................................ 111 Bibliography 115 Part I Introduction 1 Introductory remarks ”Where there is matter, there is geometry.” Kepler The starting point for index theory and K-theory was the Riemann-Roch theorem which originates from Riemann and Roch in the 1850:s, see [73] and [74]. The Riemann-Roch theorem relates an analytic quantity, the holomorphic Euler characteristic, with a topological quantity associated with a surface. The holomorphic Euler characteristic is the index of a twisted Dolbeault operator on the Riemann surface. The generalizations were many and came in differ- ent shapes. Hirzebruch made a generalization to complex manifolds allowing a calculation of the holomorphic Euler characteristic in terms of topological quan- tities in [52] and Grothendieck found the place for Riemann-Roch’s theorem in the realm of algebraic geometry. Grothendieck’s formulation was made in terms of his K-theory, a group of formal differences of locally free sheafs. The ideas of Grothendieck were transformed by Atiyah, see [2], into topo- logical K-theory and used in the proof of the Atiyah-Singer index theorem. The Atiyah-Singer index theorem was a large step from the Riemann-Roch theorem in that it gave an explicit method to calculate the index of any elliptic differ- ential operator in terms of topological data from the manifold and the highest order symbol of the differential operator. On a vague level the index theorem related an analytic, or for that matter a global, invariant such as the Fredholm index with a geometric or local invariant such as the topological index. More generally, finding index formulas deals often with going from global to local or from analytic to geometric.
Recommended publications
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. https://hdl.handle.net/2066/231381 Please be advised that this information was generated on 2021-09-27 and may be subject to change. Finite approximation and continuous change in spectral geometry Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 30 maart 2021 om 12.30 uur precies door Abel Boudewijn Stern geboren op 1 november 1989 te Amsterdam Promotor: dr. W.D. van Suijlekom Manuscriptcommissie: prof. dr. N.P. Landsman dr. F. Arici Universiteit Leiden prof. dr. J.W. Barrett University of Nottingham, Verenigd Koninkrijk dr. H.B. Posthuma Universiteit van Amsterdam prof. dr. R. Wulkenhaar WWU Münster, Duitsland Gedrukt door: de Toekomst, Hilversum – detoekomst.nl voor Tera Fopma Contents Summary v I Finite spectral geometry 1 1 Introduction 3 1.1 Mathematical preliminaries . 6 2 Finite-rank approximation of spectral zeta residues 25 2.1 Introduction . 25 2.2 Zeta residues as normal functionals . 28 2.3 Localization . 35 2.4 Final remarks and suggestions . 37 3 Reconstructing manifolds from truncated spectral triples 39 3.1 Introduction . 39 3.2 Truncated spectral geometries and point reconstruction . 41 3.3 The metric space of localized states . 44 3.4 The PointForge algorithm: associating a finite metric space .
    [Show full text]
  • Variational Methods for Moments of Solutions to Stochastic Differential
    Thesis for the Degree of Licentiate of Philosophy Variational Methods for Moments of Solutions to Stochastic Differential Equations Kristin Kirchner Division of Applied Mathematics and Statistics Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Gothenburg, Sweden, 2016 Variational Methods for Moments of Solutions to Stochastic Differential Equations Kristin Kirchner c Kristin Kirchner, 2016. Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg SE-412 96 Gothenburg, Sweden Phone: +46 (0)31 772 53 57 Author e-mail: [email protected] Printed in Gothenburg, Sweden 2016 Variational Methods for Moments of Solutions to Stochastic Differential Equations Kristin Kirchner Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Abstract Numerical methods for stochastic differential equations typically estimate moments of the solution from sampled paths. Instead, we pursue the approach proposed by A. Lang, S. Larsson, and Ch. Schwab1, who derived well-posed deterministic, tensorized evolution equations for the second moment and the covariance of the solution to a parabolic stochastic partial differential equation driven by additive Wiener noise. In Paper I we consider parabolic stochastic partial differential equations with multiplicative L´evy noise of affine type. For the second moment of the mild solution, a deterministic space-time variational problem is derived. It is posed on projective and injective tensor product spaces as trial and test spaces. Well- posedness is proven under appropriate assumptions on the noise term. From these results, a deterministic equation for the covariance function is deduced. These deterministic equations in variational form are used in Paper II to derive numerical methods for approximating the first and second moment of the solution to a stochastic ordinary differential equation driven by additive or multiplicative Wiener noise.
    [Show full text]
  • On the Discrete Spectrum of Linear Operators on Banach Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publikationsserver der Technischen Universität Clausthal On the discrete spectrum of linear operators on Banach spaces Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt von Dipl.-Math. Franz Hanauska aus Clausthal-Zellerfeld genehmigt von der Fakult¨atf¨ur Mathematik/Informatik und Maschinenbau der Technischen Universit¨atClausthal Tag der m¨undlichen Pr¨ufung 30.06.2016 Vorsitzender der Promotionskommission: Prof. Dr. Lutz Angermann, TU Clausthal Hauptberichterstatter: Prof. Dr. Michael Demuth, TU Clausthal Mitberichterstatter: Prof. Dr. Werner Kirsch, FU Hagen PD Dr. habil. Johannes Brasche, TU Clausthal Acknowledgements: I would like to thank my supervisor Prof. Dr. Michael Demuth for his valu- able guidance throughout my graduate studies. Moreover, I want to thank him for his help and support during my years in Clausthal. His patience, motivation and his immense knowledge helped me all the time of research and writing of this thesis. Furthermore, my thanks go to Dr. Guy Katriel and Dr. Marcel Hansmann for a fruitfull collaboration and co-authorship. I am grateful to Dr. habil. Johannes Brasche for the nice mathematical and non-mathematical discussions. Finally, I want to thank my family - Natalia, Heidi and Anton - for their support and love. Contents Introduction 1 1 Preliminaries 5 1.1 Bounded operators, spectrum and resolvents . .5 1.2 Compact Operators . 11 2 Certain quasi-Banach and Banach ideals 13 2.1 The Banach ideal of nuclear operators . 14 2.2 The quasi-Banach ideal of operators of type lp ......... 17 2.3 The Banach ideal of p-summing operators .
    [Show full text]
  • (Non-)Density Properties of Discrete Gabor Multipliers
    Proceedings of the 10th International Conference on Sampling Theory and Applications (Non-)Density Properties of Discrete Gabor Multipliers Dominik Bayer Peter Balazs Acoustics Research Institute Acoustics Research Institute Austrian Academy of Sciences Austrian Academy of Sciences Wien, Austria Wien, Austria Email: [email protected] Email: [email protected] Abstract—This paper is concerned with the possibility of ap- Lemma I.2. Let (fn) be a Bessel sequence with Bessel bound proximating arbitrary operators by multipliers for Gabor frames B. Then, for all n 2 N, or more general Bessel sequences. It addresses the question of p whether sets of multipliers (whose symbols come from prescribed kfnk ≤ B: function classes such as `2) constitute dense subsets of various spaces of operators (such as Hilbert-Schmidt class). We prove a B. Time-frequency analysis number of negative results that show that in the discrete setting 2 subspaces of multipliers are usually not dense and thus too small In the Hilbert space L (R), define the translation operator to guarantee arbitrary good approximation. This is in contrast Txf(t) = f(t − x) and the modulation operator M!f(t) = to the continuous case. e−2πi!tf(t) (for f 2 L2 and x; ! 2 R). These are unitary operators on L2. They combine to form the time-frequency I. PRELIMINARIES shift π(x; !) = M!Tx. The short-time Fourier transform All Hilbert spaces are assumed to be separable and infinite- (STFT) of f with window g is defined as the bilinear time- dimensional. frequency distribution Z −2πi!t A.
    [Show full text]
  • 1-Cocycles of Unitary Representations of Infinite–Dimensional Unitary Groups
    1-Cocycles of unitary representations of infinite–dimensional unitary groups Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Manuel Herbst aus Bogotá Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 18.12.2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Karl-Hermann Neeb, Prof. Dr. Alain Valette I Acknowledgements I wish to express my sincere gratitude to the following people that supported me throughout my PhD time: First and foremost, I thank Prof. Dr. Karl–Hermann Neeb for his very friendly and always available help as supervisor and initiator of my project. His knowledge and all the fruitful discussions with him provided an invaluable source of inspiration for my work. I am grateful for his numerous corrections and proof-readings that helped me to improve my thesis. I am very much obliged to him and to the Friedrich–Alexander university (FAU) for providing me an office room for my project. I owe special thanks to the German National Academic Foundation (Studienstiftung des deutschen Volkes) who granted me a PhD scholarship for three years. In particu- lar, I gratefully acknowledge the helpful advices of Prof. Dr. André Kaup concerning the timing of my PhD project. I would also like to thank my family and my colleagues for encouragement in times of frustation. In particular, I would like to thank Prof. Dr. Catherine Meusburger and Stefan Wiedenmann. II Abstract The main objective of this thesis is to establish a classification theorem on the non- vanishing of the first order cohomology space H1 associated to a unitary highest weight representations (HWR), depending on the respective highest weight λ.
    [Show full text]
  • Paraproducts and Hankel Operators of Schatten Class Via P-John–Nirenberg Theorem
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE IN PRESS Journal of Functional Analysis 217 (2004) 38–78 Paraproducts and Hankel operators of Schatten class via p-John–Nirenberg Theorem Sandra Pottà and Martin P. Smith Department of Mathematics, Analysis Research Group, University of York, Heslington, York, England YO10 5DD, UK Received 24 October 2003; revised 5 March 2004; accepted 12 March 2004 Communicated by G. Pisier Abstract We give an interpolation-free proof of the known fact that a dyadic paraproduct is of d Schatten–von Neumann class Sp; if and only if its symbol is in the dyadic Besov space Bp : Our main tools are a product formula for paraproducts and a ‘‘p-John–Nirenberg-Theorem’’ due to Rochberg and Semmes. We use the same technique to prove a corresponding result for dyadic paraproducts with operator symbols. Using an averaging technique by Petermichl, we retrieve Peller’s characterizations of scalar and vector Hankel operators of Schatten–von Neumann class Sp for 1opoN: We then employ vector techniques to characterise little Hankel operators of Schatten–von Neumann class, answering a question by Bonami and Peloso. Furthermore, using a bilinear version of our product formula, we obtain characterizations for boundedness, compactness and Schatten class membership of products of dyadic paraproducts. r 2004 Elsevier Inc. All rights reserved. MSC: 47B35; 47B10 Keywords: Hankel operators; Paraproducts; Schatten–von Neumann classes ÃCorresponding author. Fax: +44-1904-43-3071. E-mail addresses: [email protected] (S. Pott), [email protected] (M.P.
    [Show full text]
  • Appendix 1 Operators on Hilbert Space
    Appendix 1 Operators on Hilbert Space We collect in this appendix necessary information on linear operators on Hilbert space. We give here almost no proofs and we give references for more detailed information. 1. Singular Values and Operator Ideals Let T be a bounded linear operator from a Hilbert space 11. to a Hilbert space K. The singular values Sn (T), n E Z+, of T are defined by sn(T) ~f inf{IIT - KII: K: 11. --t K, rankK::; n}, where rankK stands for the rank of K. Clearly, the sequence {sn(T)}n?:o is nonincreasing and its limit soo(T) ~f lim sn(T) n-+oo is equal to the essential norm of T, which is by definition IITlle = inf{IIT - KII: K E C(li, K)}, where C(1i, K) is the space of compact operators from 11. to K. It is easy to see that if Tl and T2 are operators from 11. to K, then sm+n(T1 + T 2 ) ::; sn(Td + sm(T2 ), m, nE Z+. If A, T, and B are bounded linear Hilbert space operators such that the product ATB makes sense, then it can easily be seen that 706 Appendix 1. Operators on Hilbert Space If T is a self-adjoint operator and D is a nonnegative rank one operator, and T # = T + D, then sn(T#) ~ sn(T) ~ sn+l(T#) ~ sn+l(T) for any nE 1:+. The operator T is compact if and only if lim sn(T) = O. If T is a n-HXl compact operator from 1l to K, it admits a Schmidt expansion Tx = L sn(T)(x, fn)gn, x E 1l, n::::O where {fn}n::::o is an orthonormal sequence in 1l and {gn}n::::O is an or­ thonormal sequence in K.
    [Show full text]
  • Finite Approximation and Continuous Change in Spectral Geometry
    Finite approximation and continuous change in spectral geometry Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 30 maart 2021 om 12.30 uur precies door Abel Boudewijn Stern geboren op 1 november 1989 te Amsterdam Promotor: dr. W.D. van Suijlekom Manuscriptcommissie: prof. dr. N.P. Landsman dr. F. Arici Universiteit Leiden prof. dr. J.W. Barrett University of Nottingham, Verenigd Koninkrijk dr. H.B. Posthuma Universiteit van Amsterdam prof. dr. R. Wulkenhaar WWU Münster, Duitsland Gedrukt door: de Toekomst, Hilversum – detoekomst.nl voor Tera Fopma Contents Summary v I Finite spectral geometry 1 1 Introduction 3 1.1 Mathematical preliminaries . 6 2 Finite-rank approximation of spectral zeta residues 25 2.1 Introduction . 25 2.2 Zeta residues as normal functionals . 28 2.3 Localization . 35 2.4 Final remarks and suggestions . 37 3 Reconstructing manifolds from truncated spectral triples 39 3.1 Introduction . 39 3.2 Truncated spectral geometries and point reconstruction . 41 3.3 The metric space of localized states . 44 3.4 The PointForge algorithm: associating a finite metric space . 55 3.5 Example: 푆2 ............................. 58 3.6 Embedding a distance graph in ℝ푛 . 64 3.7 Final remarks . 68 4 Computer simulations of truncated noncommutative geometries 69 4.1 Introduction . 69 4.2 The Heisenberg relation in simulations . 74 4.3 An alternative analytic solution to the Heisenberg relation . 83 iii Contents 4.4 Conclusions .
    [Show full text]
  • Minimax in the Theory of Operators on Hilbert Spaces and Clarkson
    Minimax in the theory of operators on Hilbert spaces and Clarkson-McCarthy estimates for p lq (S ) spaces of operators in Schatten ideals Teresa Formisano A thesis submitted in fulfillment of the Degree of Doctor of Philosophy of London Metropolitan University London Metropolitan University June 2014 Abstract The main results in this thesis are the minimax theorems for operators in Schatten ideals of compact operators acting on separable Hilbert spaces, generalized Clarkson- p McCarthy inequalities for vector lq-spaces lq (S ) of operators from Schatten ideals Sp, inequalities for partitioned operators and for Cartesian decomposition of oper- ators. All Clarkson-McCarthy type inequalities are in fact some estimates on the p norms of operators acting on the spaces lq (S ) or from one such space into another. Contents 1 Introduction 3 I Minimax 8 2 Preliminaries and background 9 3 Minimax and seminorms 35 3.1 Introduction................................ 35 3.2 Minimax equality for seminorms . 39 3.3 The minimax in reverse . 42 3.4 A minimax theorem for operators . 45 3.5 Application ................................ 48 3.6 Conclusion................................. 49 4 Minimax and Schatten ideals of compact operators 51 4.1 Introduction................................ 51 4.2 Some minimax conditions for norms in Sp ............... 57 4.3 Minimax condition and geometry of subspaces of Hilbert spaces . 64 4.4 Conclusion................................. 75 1 II Estimates 77 p p 5 Inclusions of spaces lq (S ) and S (H, K) 78 5.1 Background ................................ 78 p p 5.2 The spaces B (H, H1) ,S (H, H1) and l2(S ) ............. 86 p 5.3 Action of operators on l2 (S ) .....................
    [Show full text]
  • Some Banach Spaces Are Almost Hilbert 3
    . SOME BANACH SPACES ARE ALMOST HILBERT TEPPER L. GILL1∗ AND MARZETT GOLDEN1 Abstract. The purpose of this note is to show that, if is a uniformly convex Banach, then the dual space ′ has a “ Hilbert space representation”B (defined in the paper), that makes Bmuch closer to a Hilbert space then previously suspected. As an application,B we prove that, if also has a Schauder basis (S- basis), then for each A C[ ] (the closed and denselyB defined linear operators), there exists a closed densely∈ B defined linear operator A∗ C[ ] that has all the expected properties of an adjoint. Thus for example,∈ theB bounded linear operators, L[ ], is a ∗algebra. This result allows us to give a natural definition to the SchattenB class of operators on a uniformly convex Banach space with a S-basis. In particular, every theorem that is true for the Schatten class on a Hilbert space, is also true on such a space. The main tool we use is a special version of a result due to Kuelbs [K], which shows that every uniformly convex Banach space with a S-basis can be densely and continuously embedded into a Hilbert space which is unique up to a change of basis. 1. Introduction In 1965, Gross [G] proved that every real separable Banach space contains a separable Hilbert space as a dense embedding, and this space is the support of a Gaussian measure. This was a generalization of Wiener’s theory, that was based on the use of the (densely embedded Hilbert) Sobolev space H1[0, 1] C[0, 1].
    [Show full text]
  • Characterizations of Certain Classes of Hankel Operators on the Bergman Spaces of the Unit Disk
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF FUNCTIONAL ANALYSIS 110, 247-271 (1992) Characterizations of Certain Classes of Hankel Operators on the Bergman Spaces of the Unit Disk DANIEL H. LUECKING* Department of Mathematics, University OfArkansas, Fayetteville, Arkansas 72701 Communicated by R. B. Melrose Received September 6, 1991 Let f be an integrable function on the unit disk. The Hankel operator Hf is den- sely defined on the Bergman space AP by H,g=fg- P(fg), where g is a bounded analytic function and P is the Bergman projection (orthogonal projection from L2 to A’) extended to L’ via its integral formula. In this paper, the functions f for which H, extends to a bounded operator from AP to Lp are characterized, 1 < pi co. Also characterized are the functionsffor which H,extends to a compact or Schatten class operator on A’. The proofs can be extended to handle any smoothly bounded domain in C in place of the unit disk. 0 1992 Academic Press, Inc. 1. hT~0~ucTbN Let D be the unit disk in the complex plane C, endowed with two- dimensional area measure dA. Let L* denote L*(D, &I) and let A2 denote the closed subspace of L* consisting of analytic functions. The orthogonal projection from L* to A2 will be denoted P. Given a function f~ L2 it is possible to define the Hankel operator y, on the bounded analytic functions H” by H,g=fg-P(fg).
    [Show full text]
  • Schatten Class and Nuclear Pseudo-Differential Operators On
    SCHATTEN CLASS AND NUCLEAR PSEUDO-DIFFERENTIAL OPERATORS ON HOMOGENEOUS SPACES OF COMPACT GROUPS VISHVESH KUMAR AND SHYAM SWARUP MONDAL Abstract. Given a compact (Hausdorff) group G and a closed subgroup H of G, in this paper we present symbolic criteria for pseudo-differential operators on compact homogeneous space G/H 2 characterizing the Schatten-von Neumann classes Sr(L (G/H)) for all 0 < r ≤ ∞. We go on to provide a symbolic characterization for r-nuclear, 0 < r ≤ 1, pseudo-differential operators on Lp(G/H)-space with applications to adjoint, product and trace formulae. The criteria here are given in terms of the concept of matrix-valued symbols defined on noncommutative analogue of [ phase space G/H ×G/H. Finally, we present applications of aforementioned results in the context of heat kernels. Contents 1. Introduction 1 2. Fourier analysis and the global quantization on homogeneous spaces of compact groups 3 3. r-Schatten-von Neumann class of pseudo-differential operators on L2(G/H) 5 4. Characterizations and traces of r-nuclear, 0 < r 1, pseudo-differential operators on Lp(G/H) ≤ 7 5. Adjoint and product of nuclear pseudo-differential operators 14 6. Applications to heat kernels 20 7. Acknowledgement 21 References 21 1. Introduction The theory of pseudo-differential operators is one of the most significant tools in modern math- ematics to study the problems of geometry and of partial differential operators [22]. The study arXiv:1911.10554v1 [math.FA] 24 Nov 2019 of pseudo-differential operators is first introduced by Kohn and Nirenberg [28]. Ruzhansky and Turunen [37, 38] studied pseudo-differential operators with matrix-valued symbols on compact (Hausdorff) groups.
    [Show full text]