Legendrian Knots in Surgery Diagrams and the Knot Complement Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(1,1)-Decompositions of Rational Pretzel Knots
East Asian Math. J. Vol. 32 (2016), No. 1, pp. 077{084 http://dx.doi.org/10.7858/eamj.2016.008 (1,1)-DECOMPOSITIONS OF RATIONAL PRETZEL KNOTS Hyun-Jong Song* Abstract. We explicitly derive diagrams representing (1,1)-decompositions of rational pretzel knots Kβ = M((−2; 1); (3; 1); (j6β + 1j; β)) from four unknotting tunnels for β = 1; −2 and 2. 1. Preliminaries Let V be an unknotted solid torus and let α be a properly embedded arc in V . We say that α is trivial in V if and only if there exists an arc β in @V joining the two end points of α , and a 2-disk D in V such that the boundary @D of D is a union of α and β. Such a disk D is called a cancelling disk of α. Equivalently α is trivial in V if and only if H = V − N(α)◦, the complement of the open tubular neighbourhood N(α) of α in V is a handlebody of genus 2. Note that a cancelling disk of the trivial arc α and a meridian disk of V disjoint from α contribute a meridian disk system of the handlebody H A knot K in S3 is referred to as admitting genus 1, 1-bridge decomposition 3 or (1,1)-decomposition for short if and only if (S ;K) is split into pairs (Vi; αi) (i = 1; 2) of trivial arcs in solid tori determined by a Heegaard torus T = @Vi of S3. Namely we have: 3 (S ;K) = (V1; α1) [T (V2; α2) . -
Gluing Maps and Cobordism Maps for Sutured Monopole Floer Homology
Gluing maps and cobordism maps for sutured monopole Floer homology Zhenkun Li Abstract The naturality of sutured monopole Floer homology, which was introduced by Kronheimer and Mrowka [17], is an important ques- tion and is partially answered by Baldwin and Sivek [1]. In this paper we construct the cobordism maps for sutured monopole Floer homology, thus improve its naturality. The construction can be carried out for sutured instantons as well. In the paper we also con- struct gluing maps in sutured monopoles and sutured instantons. Contents 1 Introduction 3 1.1 Maintheoremsandbackgrounds. 3 1.2 Outlineoftheproof....................... 6 1.3 Futurequestions ........................ 9 2 Prelimilaries 11 2.1 Monopole Floer homology for 3´manifold . 11 2.2 SuturedmonopoleFloerhomology . 12 2.3 The naturality of sutured monopole Floer homology . 14 3 Handle gluing maps and cancelations 21 3.1 Prelimilary discussions . 21 arXiv:1810.13071v3 [math.GT] 15 Jul 2019 3.2 Constructions of handle gluing maps . 26 3.3 Basicpropertiesofhandleattachingmaps . 31 4 The general gluing maps 45 1 Zhenkun Li CONTENTS 5 The cobordism maps 50 5.1 Constructions and functoriality . 50 5.2 Duality and turning cobordism around . 52 6 A brief discussion on Instanton 58 2 Zhenkun Li 1 INTRODUCTION 1 Introduction 1.1 Main theorems and backgrounds Sutured manifold is a powerful tool introduced by Gabai [6] in 1983, to study the topology of 3-manifolds. In 2010, the construction of monopole Floer homology was carried out on balanced sutured manifold by Kron- heimer and Mrowka [17]. The combination of Floer theories and sutured manifolds has many important applications. -
Arxiv:1208.5857V2 [Math.GT] 27 Nov 2012 Hscs Ecncnie Utetspace Quotient a Consider Can We Case This Hoe 1.1
A GOOD PRESENTATION OF (−2, 3, 2s + 1)-TYPE PRETZEL KNOT GROUP AND R-COVERED FOLIATION YASUHARU NAKAE Abstract. Let Ks bea(−2, 3, 2s+1)-type Pretzel knot (s ≧ 3) and EKs (p/q) be a closed manifold obtained by Dehn surgery along Ks with a slope p/q. We prove that if q > 0, p/q ≧ 4s + 7 and p is odd, then EKs (p/q) cannot contain an R-covered foliation. This result is an extended theorem of a part of works of Jinha Jun for (−2, 3, 7)-Pretzel knot. 1. Introduction In this paper, we will discuss non-existence of R-covered foliations on a closed 3-manifold obtained by Dehn surgery along some class of a Pretzel knot. A codimension one, transversely oriented foliation F on a closed 3-manifold M is called a Reebless foliation if F does not contain a Reeb component. By the theorems of Novikov [13], Rosenberg [17], and Palmeira [14], if M is not homeo- morphic to S2 × S1 and contains a Reebless foliation, then M has properties that the fundamental group of M is infinite, the universal cover M is homeomorphic to R3 and all leaves of its lifted foliation F on M are homeomorphic to a plane. In this case we can consider a quotient space T = M/F, and Tfis called a leaf space of F. The leaf space T becomes a simplye connectedf 1-manifold, but it might be a non-Hausdorff space. If the leaf space is homeomorphicf e to R, F is called an R- covered foliation. -
Deep Learning the Hyperbolic Volume of a Knot Arxiv:1902.05547V3 [Hep-Th] 16 Sep 2019
Deep Learning the Hyperbolic Volume of a Knot Vishnu Jejjalaa;b , Arjun Karb , Onkar Parrikarb aMandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa bDavid Rittenhouse Laboratory, University of Pennsylvania, 209 S 33rd Street, Philadelphia, PA 19104, USA E-mail: [email protected], [email protected], [email protected] Abstract: An important conjecture in knot theory relates the large-N, double scaling limit of the colored Jones polynomial JK;N (q) of a knot K to the hyperbolic volume of the knot complement, Vol(K). A less studied question is whether Vol(K) can be recovered directly from the original Jones polynomial (N = 2). In this report we use a deep neural network to approximate Vol(K) from the Jones polynomial. Our network is robust and correctly predicts the volume with 97:6% accuracy when training on 10% of the data. This points to the existence of a more direct connection between the hyperbolic volume and the Jones polynomial. arXiv:1902.05547v3 [hep-th] 16 Sep 2019 Contents 1 Introduction1 2 Setup and Result3 3 Discussion7 A Overview of knot invariants9 B Neural networks 10 B.1 Details of the network 12 C Other experiments 14 1 Introduction Identifying patterns in data enables us to formulate questions that can lead to exact results. Since many of these patterns are subtle, machine learning has emerged as a useful tool in discovering these relationships. In this work, we apply this idea to invariants in knot theory. -
Ribbon Concordances and Doubly Slice Knots
Ribbon concordances and doubly slice knots Ruppik, Benjamin Matthias Advisors: Arunima Ray & Peter Teichner The knot concordance group Glossary Definition 1. A knot K ⊂ S3 is called (topologically/smoothly) slice if it arises as the equatorial slice of a (locally flat/smooth) embedding of a 2-sphere in S4. – Abelian invariants: Algebraic invari- Proposition. Under the equivalence relation “K ∼ J iff K#(−J) is slice”, the commutative monoid ants extracted from the Alexander module Z 3 −1 A (K) = H1( \ K; [t, t ]) (i.e. from the n isotopy classes of o connected sum S Z K := 1 3 , # := oriented knots S ,→S of knots homology of the universal abelian cover of the becomes a group C := K/ ∼, the knot concordance group. knot complement). The neutral element is given by the (equivalence class) of the unknot, and the inverse of [K] is [rK], i.e. the – Blanchfield linking form: Sesquilin- mirror image of K with opposite orientation. ear form on the Alexander module ( ) sm top Bl: AZ(K) × AZ(K) → Q Z , the definition Remark. We should be careful and distinguish the smooth C and topologically locally flat C version, Z[Z] because there is a huge difference between those: Ker(Csm → Ctop) is infinitely generated! uses that AZ(K) is a Z[Z]-torsion module. – Levine-Tristram-signature: For ω ∈ S1, Some classical structure results: take the signature of the Hermitian matrix sm top ∼ ∞ ∞ ∞ T – There are surjective homomorphisms C → C → AC, where AC = Z ⊕ Z2 ⊕ Z4 is Levine’s algebraic (1 − ω)V + (1 − ω)V , where V is a Seifert concordance group. -
THE JONES SLOPES of a KNOT Contents 1. Introduction 1 1.1. The
THE JONES SLOPES OF A KNOT STAVROS GAROUFALIDIS Abstract. The paper introduces the Slope Conjecture which relates the degree of the Jones polynomial of a knot and its parallels with the slopes of incompressible surfaces in the knot complement. More precisely, we introduce two knot invariants, the Jones slopes (a finite set of rational numbers) and the Jones period (a natural number) of a knot in 3-space. We formulate a number of conjectures for these invariants and verify them by explicit computations for the class of alternating knots, the knots with at most 9 crossings, the torus knots and the (−2, 3,n) pretzel knots. Contents 1. Introduction 1 1.1. The degree of the Jones polynomial and incompressible surfaces 1 1.2. The degree of the colored Jones function is a quadratic quasi-polynomial 3 1.3. q-holonomic functions and quadratic quasi-polynomials 3 1.4. The Jones slopes and the Jones period of a knot 4 1.5. The symmetrized Jones slopes and the signature of a knot 5 1.6. Plan of the proof 7 2. Future directions 7 3. The Jones slopes and the Jones period of an alternating knot 8 4. Computing the Jones slopes and the Jones period of a knot 10 4.1. Some lemmas on quasi-polynomials 10 4.2. Computing the colored Jones function of a knot 11 4.3. Guessing the colored Jones function of a knot 11 4.4. A summary of non-alternating knots 12 4.5. The 8-crossing non-alternating knots 13 4.6. -
A Knot-Vice's Guide to Untangling Knot Theory, Undergraduate
A Knot-vice’s Guide to Untangling Knot Theory Rebecca Hardenbrook Department of Mathematics University of Utah Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 1 / 26 What is Not a Knot? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 2 / 26 What is a Knot? 2 A knot is an embedding of the circle in the Euclidean plane (R ). 3 Also defined as a closed, non-self-intersecting curve in R . 2 Represented by knot projections in R . Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 3 / 26 Why Knots? Late nineteenth century chemists and physicists believed that a substance known as aether existed throughout all of space. Could knots represent the elements? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 4 / 26 Why Knots? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 5 / 26 Why Knots? Unfortunately, no. Nevertheless, mathematicians continued to study knots! Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 6 / 26 Current Applications Natural knotting in DNA molecules (1980s). Credit: K. Kimura et al. (1999) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 7 / 26 Current Applications Chemical synthesis of knotted molecules – Dietrich-Buchecker and Sauvage (1988). Credit: J. Guo et al. (2010) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 8 / 26 Current Applications Use of lattice models, e.g. the Ising model (1925), and planar projection of knots to find a knot invariant via statistical mechanics. Credit: D. Chicherin, V.P. -
On the Number of Unknot Diagrams Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar
On the number of unknot diagrams Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar To cite this version: Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar. On the number of unknot diagrams. SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2019, 33 (1), pp.306-326. 10.1137/17M115462X. hal-02049077 HAL Id: hal-02049077 https://hal.archives-ouvertes.fr/hal-02049077 Submitted on 26 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the number of unknot diagrams Carolina Medina1, Jorge L. Ramírez-Alfonsín2,3, and Gelasio Salazar1,3 1Instituto de Física, UASLP. San Luis Potosí, Mexico, 78000. 2Institut Montpelliérain Alexander Grothendieck, Université de Montpellier. Place Eugèene Bataillon, 34095 Montpellier, France. 3Unité Mixte Internationale CNRS-CONACYT-UNAM “Laboratoire Solomon Lefschetz”. Cuernavaca, Mexico. October 17, 2017 Abstract Let D be a knot diagram, and let D denote the set of diagrams that can be obtained from D by crossing exchanges. If D has n crossings, then D consists of 2n diagrams. A folklore argument shows that at least one of these 2n diagrams is unknot, from which it follows that every diagram has finite unknotting number. -
Knots: a Handout for Mathcircles
Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot. -
An Introduction to Knot Theory and the Knot Group
AN INTRODUCTION TO KNOT THEORY AND THE KNOT GROUP LARSEN LINOV Abstract. This paper for the University of Chicago Math REU is an expos- itory introduction to knot theory. In the first section, definitions are given for knots and for fundamental concepts and examples in knot theory, and motivation is given for the second section. The second section applies the fun- damental group from algebraic topology to knots as a means to approach the basic problem of knot theory, and several important examples are given as well as a general method of computation for knot diagrams. This paper assumes knowledge in basic algebraic and general topology as well as group theory. Contents 1. Knots and Links 1 1.1. Examples of Knots 2 1.2. Links 3 1.3. Knot Invariants 4 2. Knot Groups and the Wirtinger Presentation 5 2.1. Preliminary Examples 5 2.2. The Wirtinger Presentation 6 2.3. Knot Groups for Torus Knots 9 Acknowledgements 10 References 10 1. Knots and Links We open with a definition: Definition 1.1. A knot is an embedding of the circle S1 in R3. The intuitive meaning behind a knot can be directly discerned from its name, as can the motivation for the concept. A mathematical knot is just like a knot of string in the real world, except that it has no thickness, is fixed in space, and most importantly forms a closed loop, without any loose ends. For mathematical con- venience, R3 in the definition is often replaced with its one-point compactification S3. Of course, knots in the real world are not fixed in space, and there is no interesting difference between, say, two knots that differ only by a translation. -
Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures
Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures with Bob Gompf and Abby Thompson June 2011 Berkeley FreedmanFest Theorem (Gabai 1987) If surgery on a knot K ⊂ S3 gives S1 × S2, then K is the unknot. Question: If surgery on a link L of n components gives 1 2 #n(S × S ), what is L? Homology argument shows that each pair of components in L is algebraically unlinked and the surgery framing on each component of L is the 0-framing. Conjecture (Naive) 1 2 If surgery on a link L of n components gives #n(S × S ), then L is the unlink. Why naive? The result of surgery is unchanged when one component of L is replaced by a band-sum to another. So here's a counterexample: The 4-dimensional view of the band-sum operation: Integral surgery on L ⊂ S3 $ 2-handle addition to @B4. Band-sum operation corresponds to a 2-handle slide U' V' U V Effect on dual handles: U slid over V $ V 0 slid over U0. The fallback: Conjecture (Generalized Property R) 3 1 2 If surgery on an n component link L ⊂ S gives #n(S × S ), then, perhaps after some handle-slides, L becomes the unlink. Conjecture is unknown even for n = 2. Questions: If it's not true, what's the simplest counterexample? What's the simplest knot that could be part of a counterexample? A potential counterexample must be slice in some homotopy 4-ball: 3 S L 3-handles L 2-handles Slice complement is built from link complement by: attaching copies of (D2 − f0g) × D2 to (D2 − f0g) × S1, i. -
Introduction to the Berge Conjecture
Introduction to the Berge Conjecture Gemma Halliwell School of Mathematics and Statistics, University of Sheffield 8th June 2015 Outline Introduction Dehn Surgery Definition Example Lens Spaces and the Berge conjecture Lens Spaces Berge Knots Martelli and Petronio Baker Families of Berge Knots Outline Introduction Dehn Surgery Definition Example Lens Spaces and the Berge conjecture Lens Spaces Berge Knots Martelli and Petronio Baker Families of Berge Knots It is not yet known whether [the partial filling on the 3-chain link]... gives rise to Berge knots. In this talk I will aim to answer this question and discuss how this relates to the Berge conjecture and future work. Introduction In their 2008 paper, “Dehn Surgery and the magic 3-manifold”, Martelli and Pertronio ended with the following statement: In this talk I will aim to answer this question and discuss how this relates to the Berge conjecture and future work. Introduction It is not yet known whether [the partial filling on the 3-chain link]... gives rise to Berge knots. Introduction It is not yet known whether [the partial filling on the 3-chain link]... gives rise to Berge knots. In this talk I will aim to answer this question and discuss how this relates to the Berge conjecture and future work. Outline Introduction Dehn Surgery Definition Example Lens Spaces and the Berge conjecture Lens Spaces Berge Knots Martelli and Petronio Baker Families of Berge Knots I A closed tubular neighbourhood N of L. I a specifed simple closed curve J in @N. Then we can construct the 3-manifold: ◦ [ M = (S3 − N) N h ◦ where N denotes the interior of N, and h is a homeomorphism which takes the meridian, µ, of N to the specifed J.