Dehn Surgery Along a Torus T2-Knot II by IWASE, Zjunici
Japan. J. Math. Vol. 16, No. 2, 1990 Dehn surgery along a torus T2-knot II By IWASE, Zjunici (Received November 2, 1988) (Revised April 17, 1989) This paper is a continuation of "Dehn-surgery along a torus T2-knot" , in which the author defined and classified torus T2-knots in S4 and studied some properties of the 4-manifolds obtained by Dehn surgeries along them . In this paper we investigate the diffeomorphism types of such manifolds , which has been determined in some cases. •˜ 1. Introduction An embedded 2-torus in S4 is called a torus T2-knot if K is incompres sibly embedded in aN(U), where U is an embedded 2-torus which bounds a solid torus S1 X D2 in S4. This is an analogy of classical torus knots in S3 , Put (S4, K(p, q, 0))=((S3, k(p, q))\Int B3)XS1Uid 52XD2, (S4, K(p, q, q))=((S3, k(p, q))\Int B3)X53Ut52XD2, where k(p, q) means the classical torus knot of type (p , q) and r is an automorphism of 52 X S1(i.e. a diffeomorphism from 52 X 51 to itself) which is not isotopic to identity. In [3], we proved the following. PROPOSITION 1.1. Any torus T2-knot is equivalent to one and only one of the following: (i) K(p, q, 0), 1<p<q, gcd (p, q)=1; (ii) K(p, q, q), 1<p<q, gcd (p, q)=1; (iii) unknotted T2-knot(=K(1, 0, 0)). 0 A Dehn surgery is an operation of cutting off and gluing back the tubular neighborhood of a submanifold.
[Show full text]