An Introduction to Knot Theory and the Knot Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deep Learning the Hyperbolic Volume of a Knot Arxiv:1902.05547V3 [Hep-Th] 16 Sep 2019
Deep Learning the Hyperbolic Volume of a Knot Vishnu Jejjalaa;b , Arjun Karb , Onkar Parrikarb aMandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa bDavid Rittenhouse Laboratory, University of Pennsylvania, 209 S 33rd Street, Philadelphia, PA 19104, USA E-mail: [email protected], [email protected], [email protected] Abstract: An important conjecture in knot theory relates the large-N, double scaling limit of the colored Jones polynomial JK;N (q) of a knot K to the hyperbolic volume of the knot complement, Vol(K). A less studied question is whether Vol(K) can be recovered directly from the original Jones polynomial (N = 2). In this report we use a deep neural network to approximate Vol(K) from the Jones polynomial. Our network is robust and correctly predicts the volume with 97:6% accuracy when training on 10% of the data. This points to the existence of a more direct connection between the hyperbolic volume and the Jones polynomial. arXiv:1902.05547v3 [hep-th] 16 Sep 2019 Contents 1 Introduction1 2 Setup and Result3 3 Discussion7 A Overview of knot invariants9 B Neural networks 10 B.1 Details of the network 12 C Other experiments 14 1 Introduction Identifying patterns in data enables us to formulate questions that can lead to exact results. Since many of these patterns are subtle, machine learning has emerged as a useful tool in discovering these relationships. In this work, we apply this idea to invariants in knot theory. -
THE JONES SLOPES of a KNOT Contents 1. Introduction 1 1.1. The
THE JONES SLOPES OF A KNOT STAVROS GAROUFALIDIS Abstract. The paper introduces the Slope Conjecture which relates the degree of the Jones polynomial of a knot and its parallels with the slopes of incompressible surfaces in the knot complement. More precisely, we introduce two knot invariants, the Jones slopes (a finite set of rational numbers) and the Jones period (a natural number) of a knot in 3-space. We formulate a number of conjectures for these invariants and verify them by explicit computations for the class of alternating knots, the knots with at most 9 crossings, the torus knots and the (−2, 3,n) pretzel knots. Contents 1. Introduction 1 1.1. The degree of the Jones polynomial and incompressible surfaces 1 1.2. The degree of the colored Jones function is a quadratic quasi-polynomial 3 1.3. q-holonomic functions and quadratic quasi-polynomials 3 1.4. The Jones slopes and the Jones period of a knot 4 1.5. The symmetrized Jones slopes and the signature of a knot 5 1.6. Plan of the proof 7 2. Future directions 7 3. The Jones slopes and the Jones period of an alternating knot 8 4. Computing the Jones slopes and the Jones period of a knot 10 4.1. Some lemmas on quasi-polynomials 10 4.2. Computing the colored Jones function of a knot 11 4.3. Guessing the colored Jones function of a knot 11 4.4. A summary of non-alternating knots 12 4.5. The 8-crossing non-alternating knots 13 4.6. -
The Homotopy Types of Free Racks and Quandles
The homotopy types of free racks and quandles Tyler Lawson and Markus Szymik June 2021 Abstract. We initiate the homotopical study of racks and quandles, two algebraic structures that govern knot theory and related braided structures in algebra and geometry. We prove analogs of Milnor’s theorem on free groups for these theories and their pointed variants, identifying the homotopy types of the free racks and free quandles on spaces of generators. These results allow us to complete the stable classification of racks and quandles by identifying the ring spectra that model their stable homotopy theories. As an application, we show that the stable homotopy of a knot quandle is, in general, more complicated than what any Wirtinger presentation coming from a diagram predicts. 1 Introduction Racks and quandles form two algebraic theories that are closely related to groups and symmetry. A rack R has a binary operation B such that the left-multiplications s 7! r Bs are automorphism of R for all elements r in R. This means that racks bring their own symmetries. All natural sym- metries, however, are generated by the canonical automorphism r 7! r B r (see [45, Thm. 5.4]). A quandle is a rack for which the canonical automorphism is the identity. Every group defines −1 a quandle via conjugation g B h = ghg , and so does every subset closed under conjugation. The most prominent applications of these algebraic concepts so far are to the classification of knots, first phrased in terms of quandles by Joyce [28, Cor. 16.3] and Matveev [35, Thm. -
A Symmetry Motivated Link Table
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2018 doi:10.20944/preprints201808.0265.v1 Peer-reviewed version available at Symmetry 2018, 10, 604; doi:10.3390/sym10110604 Article A Symmetry Motivated Link Table Shawn Witte1, Michelle Flanner2 and Mariel Vazquez1,2 1 UC Davis Mathematics 2 UC Davis Microbiology and Molecular Genetics * Correspondence: [email protected] Abstract: Proper identification of oriented knots and 2-component links requires a precise link 1 nomenclature. Motivated by questions arising in DNA topology, this study aims to produce a 2 nomenclature unambiguous with respect to link symmetries. For knots, this involves distinguishing 3 a knot type from its mirror image. In the case of 2-component links, there are up to sixteen possible 4 symmetry types for each topology. The study revisits the methods previously used to disambiguate 5 chiral knots and extends them to oriented 2-component links with up to nine crossings. Monte Carlo 6 simulations are used to report on writhe, a geometric indicator of chirality. There are ninety-two 7 prime 2-component links with up to nine crossings. Guided by geometrical data, linking number and 8 the symmetry groups of 2-component links, a canonical link diagram for each link type is proposed. 9 2 2 2 2 2 2 All diagrams but six were unambiguously chosen (815, 95, 934, 935, 939, and 941). We include complete 10 tables for prime knots with up to ten crossings and prime links with up to nine crossings. We also 11 prove a result on the behavior of the writhe under local lattice moves. -
Knots: a Handout for Mathcircles
Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot. -
Categorified Invariants and the Braid Group
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 7, July 2015, Pages 2801–2814 S 0002-9939(2015)12482-3 Article electronically published on February 26, 2015 CATEGORIFIED INVARIANTS AND THE BRAID GROUP JOHN A. BALDWIN AND J. ELISENDA GRIGSBY (Communicated by Daniel Ruberman) Abstract. We investigate two “categorified” braid conjugacy class invariants, one coming from Khovanov homology and the other from Heegaard Floer ho- mology. We prove that each yields a solution to the word problem but not the conjugacy problem in the braid group. In particular, our proof in the Khovanov case is completely combinatorial. 1. Introduction Recall that the n-strand braid group Bn admits the presentation σiσj = σj σi if |i − j|≥2, Bn = σ1,...,σn−1 , σiσj σi = σjσiσj if |i − j| =1 where σi corresponds to a positive half twist between the ith and (i + 1)st strands. Given a word w in the generators σ1,...,σn−1 and their inverses, we will denote by σ(w) the corresponding braid in Bn. Also, we will write σ ∼ σ if σ and σ are conjugate elements of Bn. As with any group described in terms of generators and relations, it is natural to look for combinatorial solutions to the word and conjugacy problems for the braid group: (1) Word problem: Given words w, w as above, is σ(w)=σ(w)? (2) Conjugacy problem: Given words w, w as above, is σ(w) ∼ σ(w)? The fastest known algorithms for solving Problems (1) and (2) exploit the Gar- side structure(s) of the braid group (cf. -
Coefficients of Homfly Polynomial and Kauffman Polynomial Are Not Finite Type Invariants
COEFFICIENTS OF HOMFLY POLYNOMIAL AND KAUFFMAN POLYNOMIAL ARE NOT FINITE TYPE INVARIANTS GYO TAEK JIN AND JUNG HOON LEE Abstract. We show that the integer-valued knot invariants appearing as the nontrivial coe±cients of the HOMFLY polynomial, the Kau®man polynomial and the Q-polynomial are not of ¯nite type. 1. Introduction A numerical knot invariant V can be extended to have values on singular knots via the recurrence relation V (K£) = V (K+) ¡ V (K¡) where K£, K+ and K¡ are singular knots which are identical outside a small ball in which they di®er as shown in Figure 1. V is said to be of ¯nite type or a ¯nite type invariant if there is an integer m such that V vanishes for all singular knots with more than m singular double points. If m is the smallest such integer, V is said to be an invariant of order m. q - - - ¡@- @- ¡- K£ K+ K¡ Figure 1 As the following proposition states, every nontrivial coe±cient of the Alexander- Conway polynomial is a ¯nite type invariant [1, 6]. Theorem 1 (Bar-Natan). Let K be a knot and let 2 4 2m rK (z) = 1 + a2(K)z + a4(K)z + ¢ ¢ ¢ + a2m(K)z + ¢ ¢ ¢ be the Alexander-Conway polynomial of K. Then a2m is a ¯nite type invariant of order 2m for any positive integer m. The coe±cients of the Taylor expansion of any quantum polynomial invariant of knots after a suitable change of variable are all ¯nite type invariants [2]. For the Jones polynomial we have Date: October 17, 2000 (561). -
Hyperbolic Structures from Link Diagrams
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geometry and Topology Commons Recommended Citation Tsvietkova, Anastasiia, "Hyperbolic Structures from Link Diagrams. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Anastasiia Tsvietkova entitled "Hyperbolic Structures from Link Diagrams." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mathematics. Morwen B. Thistlethwaite, Major Professor We have read this dissertation and recommend its acceptance: Conrad P. Plaut, James Conant, Michael Berry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Hyperbolic Structures from Link Diagrams A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Anastasiia Tsvietkova May 2012 Copyright ©2012 by Anastasiia Tsvietkova. All rights reserved. ii Acknowledgements I am deeply thankful to Morwen Thistlethwaite, whose thoughtful guidance and generous advice made this research possible. -
Dynamics, and Invariants
k k On Groups Gn and Γn: A Study of Manifolds, Dynamics, and Invariants Vassily O. Manturov, Denis A. Fedoseev, Seongjeong Kim, Igor M. Nikonov A long time ago, when I first encountered knot tables and started un- knotting knots “by hand”, I was quite excited with the fact that some knots may have more than one minimal representative. In other words, in order to make an object simpler, one should first make it more complicated, for example, see Fig. 1 [72]: this diagram represents the trivial knot, but in order to simplify it, one needs to perform an increasing Reidemeister move first. Figure 1: Culprit knot Being a first year undergraduate student (in the Moscow State Univer- sity), I first met free groups and their presentation. The power and beauty, arXiv:1905.08049v4 [math.GT] 29 Mar 2021 and simplicity of these groups for me were their exponential growth and ex- tremely easy solution to the word problem and conjugacy problem by means of a gradient descent algorithm in a word (in a cyclic word, respectively). Also, I was excited with Diamond lemma (see Fig. 2): a simple condition which guarantees the uniqueness of the minimal objects, and hence, solution to many problems. Being a last year undergraduate and teaching a knot theory course for the first time, I thought: “Why do not we have it (at least partially) in knot theory?” 1 A A1 A2 A12 = A21 Figure 2: The Diamond lemma By that time I knew about the Diamond lemma and solvability of many problems like word problem in groups by gradient descent algorithm. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE P-Coloring Of
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE P-Coloring of Pretzel Knots A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mathematics By Robert Ostrander December 2013 The thesis of Robert Ostrander is approved: |||||||||||||||||| |||||||| Dr. Alberto Candel Date |||||||||||||||||| |||||||| Dr. Terry Fuller Date |||||||||||||||||| |||||||| Dr. Magnhild Lien, Chair Date California State University, Northridge ii Dedications I dedicate this thesis to my family and friends for all the help and support they have given me. iii Acknowledgments iv Table of Contents Signature Page ii Dedications iii Acknowledgements iv Abstract vi Introduction 1 1 Definitions and Background 2 1.1 Knots . .2 1.1.1 Composition of knots . .4 1.1.2 Links . .5 1.1.3 Torus Knots . .6 1.1.4 Reidemeister Moves . .7 2 Properties of Knots 9 2.0.5 Knot Invariants . .9 3 p-Coloring of Pretzel Knots 19 3.0.6 Pretzel Knots . 19 3.0.7 (p1, p2, p3) Pretzel Knots . 23 3.0.8 Applications of Theorem 6 . 30 3.0.9 (p1, p2, p3, p4) Pretzel Knots . 31 Appendix 49 v Abstract P coloring of Pretzel Knots by Robert Ostrander Master of Science in Mathematics In this thesis we give a brief introduction to knot theory. We define knot invariants and give examples of different types of knot invariants which can be used to distinguish knots. We look at colorability of knots and generalize this to p-colorability. We focus on 3-strand pretzel knots and apply techniques of linear algebra to prove theorems about p-colorability of these knots. -
How Many Knots Have the Same Group?
proceedings of the american mathematical society Volume 80, Number 1, September 1980 HOW MANY KNOTS HAVE THE SAME GROUP? JONATHAN SIMON1 Abstract. Let A"be a knot in S3, G = nx(S3 — K), n = number of prime factors of K, v(G) = number of topologically different knot-complements with group G and k(G) = number of distinct knot types with group G. Theorem. If K is prime, then v(G) < 2. If n > 2, then v(G) = k(G) < 2"-1. For each n > 2, the bound 2"~' is the best possible. For K prime, we still have the conjecture v(G) = k(G) = \. If K is a cable-knot, then k(G) < 2. Let K be a tame knot in the 3-sphere S3 and let G denote nx(S3 — K). If L is a knot whose group is isomorphic to G, must K and L be equivalent? Must the complements of K and L be homeomorphic? How many mutually inequivalent knots, or mutually nonhomeomorphic knot-complements, can have the same group? These problems are discussed in [8], [5, Problems 1.13 and 1.15] and, most recently, [3], which is the basis for this paper. W. Thurston has announced a proof [10], using hyperbolic structures, that for knots whose exteriors have no essential annuli or tori, there are at most finitely many knots (the number possibly varying with K) having a given group. For such knots (in fact, for all knots whose exteriors have no essential annuli) the groups determine the complements [2], so Thurston really is dealing with the question of how well the complements determine the knots. -
Alexander Polynomial, Finite Type Invariants and Volume of Hyperbolic
ISSN 1472-2739 (on-line) 1472-2747 (printed) 1111 Algebraic & Geometric Topology Volume 4 (2004) 1111–1123 ATG Published: 25 November 2004 Alexander polynomial, finite type invariants and volume of hyperbolic knots Efstratia Kalfagianni Abstract We show that given n > 0, there exists a hyperbolic knot K with trivial Alexander polynomial, trivial finite type invariants of order ≤ n, and such that the volume of the complement of K is larger than n. This contrasts with the known statement that the volume of the comple- ment of a hyperbolic alternating knot is bounded above by a linear function of the coefficients of the Alexander polynomial of the knot. As a corollary to our main result we obtain that, for every m> 0, there exists a sequence of hyperbolic knots with trivial finite type invariants of order ≤ m but ar- bitrarily large volume. We discuss how our results fit within the framework of relations between the finite type invariants and the volume of hyperbolic knots, predicted by Kashaev’s hyperbolic volume conjecture. AMS Classification 57M25; 57M27, 57N16 Keywords Alexander polynomial, finite type invariants, hyperbolic knot, hyperbolic Dehn filling, volume. 1 Introduction k i Let c(K) denote the crossing number and let ∆K(t) := Pi=0 cit denote the Alexander polynomial of a knot K . If K is hyperbolic, let vol(S3 \ K) denote the volume of its complement. The determinant of K is the quantity det(K) := |∆K(−1)|. Thus, in general, we have k det(K) ≤ ||∆K (t)|| := X |ci|. (1) i=0 It is well know that the degree of the Alexander polynomial of an alternating knot equals twice the genus of the knot.