Hyperbolic Structures from Link Diagrams
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Borromean Rings: a Video About the New IMU Logo
The Borromean Rings: A Video about the New IMU Logo Charles Gunn and John M. Sullivan∗ Technische Universitat¨ Berlin Institut fur¨ Mathematik, MA 3–2 Str. des 17. Juni 136 10623 Berlin, Germany Email: {gunn,sullivan}@math.tu-berlin.de Abstract This paper describes our video The Borromean Rings: A new logo for the IMU, which was premiered at the opening ceremony of the last International Congress. The video explains some of the mathematics behind the logo of the In- ternational Mathematical Union, which is based on the tight configuration of the Borromean rings. This configuration has pyritohedral symmetry, so the video includes an exploration of this interesting symmetry group. Figure 1: The IMU logo depicts the tight config- Figure 2: A typical diagram for the Borromean uration of the Borromean rings. Its symmetry is rings uses three round circles, with alternating pyritohedral, as defined in Section 3. crossings. In the upper corners are diagrams for two other three-component Brunnian links. 1 The IMU Logo and the Borromean Rings In 2004, the International Mathematical Union (IMU), which had never had a logo, announced a competition to design one. The winning entry, shown in Figure 1, was designed by one of us (Sullivan) with help from Nancy Wrinkle. It depicts the Borromean rings, not in the usual diagram (Figure 2) but instead in their tight configuration, the shape they have when tied tight in thick rope. This IMU logo was unveiled at the opening ceremony of the International Congress of Mathematicians (ICM 2006) in Madrid. We were invited to produce a short video [10] about some of the mathematics behind the logo; it was shown at the opening and closing ceremonies, and can be viewed at www.isama.org/jms/Videos/imu/. -
Hyperbolic 4-Manifolds and the 24-Cell
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Florence Research Universita` degli Studi di Firenze Dipartimento di Matematica \Ulisse Dini" Dottorato di Ricerca in Matematica Hyperbolic 4-manifolds and the 24-cell Leone Slavich Tutor Coordinatore del Dottorato Prof. Graziano Gentili Prof. Alberto Gandolfi Relatore Prof. Bruno Martelli Ciclo XXVI, Settore Scientifico Disciplinare MAT/03 Contents Index 1 1 Introduction 2 2 Basics of hyperbolic geometry 5 2.1 Hyperbolic manifolds . .7 2.1.1 Horospheres and cusps . .8 2.1.2 Manifolds with boundary . .9 2.2 Link complements and Kirby calculus . 10 2.2.1 Basics of Kirby calculus . 12 3 Hyperbolic 3-manifolds from triangulations 15 3.1 Hyperbolic relative handlebodies . 18 3.2 Presentations as a surgery along partially framed links . 19 4 The ambient 4-manifold 23 4.1 The 24-cell . 23 4.2 Mirroring the 24-cell . 24 4.3 Face pairings of the boundary 3-strata . 26 5 The boundary manifold as link complement 33 6 Simple hyperbolic 4-manifolds 39 6.1 A minimal volume hyperbolic 4-manifold with two cusps . 39 6.1.1 Gluing of the boundary components . 43 6.2 A one-cusped hyperbolic 4-manifold . 45 6.2.1 Glueing of the boundary components . 46 1 Chapter 1 Introduction In the early 1980's, a major breakthrough in the field of low-dimensional topology was William P. Thurston's geometrization theorem for Haken man- ifolds [16] and the subsequent formulation of the geometrization conjecture, proven by Grigori Perelman in 2005. -
Hyperbolic Structures from Link Diagrams
Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova, joint work with Morwen Thistlethwaite Louisiana State University/University of Tennessee Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 1/23 Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H. -
Some Generalizations of Satoh's Tube
SOME GENERALIZATIONS OF SATOH'S TUBE MAP BLAKE K. WINTER Abstract. Satoh has defined a map from virtual knots to ribbon surfaces embedded in S4. Herein, we generalize this map to virtual m-links, and use this to construct generalizations of welded and extended welded knots to higher dimensions. This also allows us to construct two new geometric pictures of virtual m-links, including 1-links. 1. Introduction In [13], Satoh defined a map from virtual link diagrams to ribbon surfaces knotted in S4 or R4. This map, which he called T ube, preserves the knot group and the knot quandle (although not the longitude). Furthermore, Satoh showed that if K =∼ K0 as virtual knots, T ube(K) is isotopic to T ube(K0). In fact, we can make a stronger statement: if K and K0 are equivalent under what Satoh called w- equivalence, then T ube(K) is isotopic to T ube(K0) via a stable equivalence of ribbon links without band slides. For virtual links, w-equivalence is the same as welded equivalence, explained below. In addition to virtual links, Satoh also defined virtual arc diagrams and defined the T ube map on such diagrams. On the other hand, in [15, 14], the notion of virtual knots was extended to arbitrary dimensions, building on the geometric description of virtual knots given by Kuperberg, [7]. It is therefore natural to ask whether Satoh's idea for the T ube map can be generalized into higher dimensions, as well as inquiring into a generalization of the virtual arc diagrams to higher dimensions. -
Deep Learning the Hyperbolic Volume of a Knot Arxiv:1902.05547V3 [Hep-Th] 16 Sep 2019
Deep Learning the Hyperbolic Volume of a Knot Vishnu Jejjalaa;b , Arjun Karb , Onkar Parrikarb aMandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa bDavid Rittenhouse Laboratory, University of Pennsylvania, 209 S 33rd Street, Philadelphia, PA 19104, USA E-mail: [email protected], [email protected], [email protected] Abstract: An important conjecture in knot theory relates the large-N, double scaling limit of the colored Jones polynomial JK;N (q) of a knot K to the hyperbolic volume of the knot complement, Vol(K). A less studied question is whether Vol(K) can be recovered directly from the original Jones polynomial (N = 2). In this report we use a deep neural network to approximate Vol(K) from the Jones polynomial. Our network is robust and correctly predicts the volume with 97:6% accuracy when training on 10% of the data. This points to the existence of a more direct connection between the hyperbolic volume and the Jones polynomial. arXiv:1902.05547v3 [hep-th] 16 Sep 2019 Contents 1 Introduction1 2 Setup and Result3 3 Discussion7 A Overview of knot invariants9 B Neural networks 10 B.1 Details of the network 12 C Other experiments 14 1 Introduction Identifying patterns in data enables us to formulate questions that can lead to exact results. Since many of these patterns are subtle, machine learning has emerged as a useful tool in discovering these relationships. In this work, we apply this idea to invariants in knot theory. -
THE JONES SLOPES of a KNOT Contents 1. Introduction 1 1.1. The
THE JONES SLOPES OF A KNOT STAVROS GAROUFALIDIS Abstract. The paper introduces the Slope Conjecture which relates the degree of the Jones polynomial of a knot and its parallels with the slopes of incompressible surfaces in the knot complement. More precisely, we introduce two knot invariants, the Jones slopes (a finite set of rational numbers) and the Jones period (a natural number) of a knot in 3-space. We formulate a number of conjectures for these invariants and verify them by explicit computations for the class of alternating knots, the knots with at most 9 crossings, the torus knots and the (−2, 3,n) pretzel knots. Contents 1. Introduction 1 1.1. The degree of the Jones polynomial and incompressible surfaces 1 1.2. The degree of the colored Jones function is a quadratic quasi-polynomial 3 1.3. q-holonomic functions and quadratic quasi-polynomials 3 1.4. The Jones slopes and the Jones period of a knot 4 1.5. The symmetrized Jones slopes and the signature of a knot 5 1.6. Plan of the proof 7 2. Future directions 7 3. The Jones slopes and the Jones period of an alternating knot 8 4. Computing the Jones slopes and the Jones period of a knot 10 4.1. Some lemmas on quasi-polynomials 10 4.2. Computing the colored Jones function of a knot 11 4.3. Guessing the colored Jones function of a knot 11 4.4. A summary of non-alternating knots 12 4.5. The 8-crossing non-alternating knots 13 4.6. -
A Knot-Vice's Guide to Untangling Knot Theory, Undergraduate
A Knot-vice’s Guide to Untangling Knot Theory Rebecca Hardenbrook Department of Mathematics University of Utah Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 1 / 26 What is Not a Knot? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 2 / 26 What is a Knot? 2 A knot is an embedding of the circle in the Euclidean plane (R ). 3 Also defined as a closed, non-self-intersecting curve in R . 2 Represented by knot projections in R . Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 3 / 26 Why Knots? Late nineteenth century chemists and physicists believed that a substance known as aether existed throughout all of space. Could knots represent the elements? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 4 / 26 Why Knots? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 5 / 26 Why Knots? Unfortunately, no. Nevertheless, mathematicians continued to study knots! Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 6 / 26 Current Applications Natural knotting in DNA molecules (1980s). Credit: K. Kimura et al. (1999) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 7 / 26 Current Applications Chemical synthesis of knotted molecules – Dietrich-Buchecker and Sauvage (1988). Credit: J. Guo et al. (2010) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 8 / 26 Current Applications Use of lattice models, e.g. the Ising model (1925), and planar projection of knots to find a knot invariant via statistical mechanics. Credit: D. Chicherin, V.P. -
Arxiv:2003.00512V2 [Math.GT] 19 Jun 2020 the Vertical Double of a Virtual Link, As Well As the More General Notion of a Stack for a Virtual Link
A GEOMETRIC INVARIANT OF VIRTUAL n-LINKS BLAKE K. WINTER Abstract. For a virtual n-link K, we define a new virtual link VD(K), which is invariant under virtual equivalence of K. The Dehn space of VD(K), which we denote by DD(K), therefore has a homotopy type which is an invariant of K. We show that the quandle and even the fundamental group of this space are able to detect the virtual trefoil. We also consider applications to higher-dimensional virtual links. 1. Introduction Virtual links were introduced by Kauffman in [8], as a generalization of classical knot theory. They were given a geometric interpretation by Kuper- berg in [10]. Building on Kuperberg's ideas, virtual n-links were defined in [16]. Here, we define some new invariants for virtual links, and demonstrate their power by using them to distinguish the virtual trefoil from the unknot, which cannot be done using the ordinary group or quandle. Although these knots can be distinguished by means of other invariants, such as biquandles, there are two advantages to the approach used herein: first, our approach to defining these invariants is purely geometric, whereas the biquandle is en- tirely combinatorial. Being geometric, these invariants are easy to generalize to higher dimensions. Second, biquandles are rather complicated algebraic objects. Our invariants are spaces up to homotopy type, with their ordinary quandles and fundamental groups. These are somewhat simpler to work with than biquandles. The paper is organized as follows. We will briefly review the notion of a virtual link, then the notion of the Dehn space of a virtual link. -
Knots: a Handout for Mathcircles
Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot. -
Jones Polynomials, Volume, and Essential Knot Surfaces
KNOTS IN POLAND III BANACH CENTER PUBLICATIONS, VOLUME 100 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2013 JONES POLYNOMIALS, VOLUME AND ESSENTIAL KNOT SURFACES: A SURVEY DAVID FUTER Department of Mathematics, Temple University Philadelphia, PA 19122, USA E-mail: [email protected] EFSTRATIA KALFAGIANNI Department of Mathematics, Michigan State University East Lansing, MI 48824, USA E-mail: [email protected] JESSICA S. PURCELL Department of Mathematics, Brigham Young University Provo, UT 84602, USA E-mail: [email protected] Abstract. This paper is a brief overview of recent results by the authors relating colored Jones polynomials to geometric topology. The proofs of these results appear in the papers [18, 19], while this survey focuses on the main ideas and examples. Introduction. To every knot in S3 there corresponds a 3-manifold, namely the knot complement. This 3-manifold decomposes along tori into geometric pieces, where the most typical scenario is that all of S3 r K supports a complete hyperbolic metric [43]. Incompressible surfaces embedded in S3 r K play a crucial role in understanding its classical geometric and topological invariants. The quantum knot invariants, including the Jones polynomial and its relatives, the colored Jones polynomials, have their roots in representation theory and physics [28, 46], 2010 Mathematics Subject Classification:57M25,57M50,57N10. D.F. is supported in part by NSF grant DMS–1007221. E.K. is supported in part by NSF grants DMS–0805942 and DMS–1105843. J.P. is supported in part by NSF grant DMS–1007437 and a Sloan Research Fellowship. The paper is in final form and no version of it will be published elsewhere. -
Arxiv:1501.00726V2 [Math.GT] 19 Sep 2016 3 2 for Each N, Ln Is Assembled from a Tangle S in B , N Copies of a Tangle T in S × I, and the Mirror Image S of S
HIDDEN SYMMETRIES VIA HIDDEN EXTENSIONS ERIC CHESEBRO AND JASON DEBLOIS Abstract. This paper introduces a new approach to finding knots and links with hidden symmetries using \hidden extensions", a class of hidden symme- tries defined here. We exhibit a family of tangle complements in the ball whose boundaries have symmetries with hidden extensions, then we further extend these to hidden symmetries of some hyperbolic link complements. A hidden symmetry of a manifold M is a homeomorphism of finite-degree covers of M that does not descend to an automorphism of M. By deep work of Mar- gulis, hidden symmetries characterize the arithmetic manifolds among all locally symmetric ones: a locally symmetric manifold is arithmetic if and only if it has infinitely many \non-equivalent" hidden symmetries (see [13, Ch. 6]; cf. [9]). Among hyperbolic knot complements in S3 only that of the figure-eight is arith- metic [10], and the only other knot complements known to possess hidden sym- metries are the two \dodecahedral knots" constructed by Aitchison{Rubinstein [1]. Whether there exist others has been an open question for over two decades [9, Question 1]. Its answer has important consequences for commensurability classes of knot complements, see [11] and [2]. The partial answers that we know are all negative. Aside from the figure-eight, there are no knots with hidden symmetries with at most fifteen crossings [6] and no two-bridge knots with hidden symmetries [11]. Macasieb{Mattman showed that no hyperbolic (−2; 3; n) pretzel knot, n 2 Z, has hidden symmetries [8]. Hoffman showed the dodecahedral knots are commensurable with no others [7]. -
An Introduction to Knot Theory and the Knot Group
AN INTRODUCTION TO KNOT THEORY AND THE KNOT GROUP LARSEN LINOV Abstract. This paper for the University of Chicago Math REU is an expos- itory introduction to knot theory. In the first section, definitions are given for knots and for fundamental concepts and examples in knot theory, and motivation is given for the second section. The second section applies the fun- damental group from algebraic topology to knots as a means to approach the basic problem of knot theory, and several important examples are given as well as a general method of computation for knot diagrams. This paper assumes knowledge in basic algebraic and general topology as well as group theory. Contents 1. Knots and Links 1 1.1. Examples of Knots 2 1.2. Links 3 1.3. Knot Invariants 4 2. Knot Groups and the Wirtinger Presentation 5 2.1. Preliminary Examples 5 2.2. The Wirtinger Presentation 6 2.3. Knot Groups for Torus Knots 9 Acknowledgements 10 References 10 1. Knots and Links We open with a definition: Definition 1.1. A knot is an embedding of the circle S1 in R3. The intuitive meaning behind a knot can be directly discerned from its name, as can the motivation for the concept. A mathematical knot is just like a knot of string in the real world, except that it has no thickness, is fixed in space, and most importantly forms a closed loop, without any loose ends. For mathematical con- venience, R3 in the definition is often replaced with its one-point compactification S3. Of course, knots in the real world are not fixed in space, and there is no interesting difference between, say, two knots that differ only by a translation.