Introduction to Vassiliev Knot Invariants First Draft. Comments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complete Invariant Graphs of Alternating Knots
Complete invariant graphs of alternating knots Christian Soulié First submission: April 2004 (revision 1) Abstract : Chord diagrams and related enlacement graphs of alternating knots are enhanced to obtain complete invariant graphs including chirality detection. Moreover, the equivalence by common enlacement graph is specified and the neighborhood graph is defined for general purpose and for special application to the knots. I - Introduction : Chord diagrams are enhanced to integrate the state sum of all flype moves and then produce an invariant graph for alternating knots. By adding local writhe attribute to these graphs, chiral types of knots are distinguished. The resulting chord-weighted graph is a complete invariant of alternating knots. Condensed chord diagrams and condensed enlacement graphs are introduced and a new type of graph of general purpose is defined : the neighborhood graph. The enlacement graph is enriched by local writhe and chord orientation. Hence this enhanced graph distinguishes mutant alternating knots. As invariant by flype it is also invariant for all alternating knots. The equivalence class of knots with the same enlacement graph is fully specified and extended mutation with flype of tangles is defined. On this way, two enhanced graphs are proposed as complete invariants of alternating knots. I - Introduction II - Definitions and condensed graphs II-1 Knots II-2 Sign of crossing points II-3 Chord diagrams II-4 Enlacement graphs II-5 Condensed graphs III - Realizability and construction III - 1 Realizability -
Finite Type Invariants for Knots 3-Manifolds
Pergamon Topology Vol. 37, No. 3. PP. 673-707, 1998 ~2 1997 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0040-9383/97519.00 + 0.00 PII: soo4o-9383(97)00034-7 FINITE TYPE INVARIANTS FOR KNOTS IN 3-MANIFOLDS EFSTRATIA KALFAGIANNI + (Received 5 November 1993; in revised form 4 October 1995; final version 16 February 1997) We use the Jaco-Shalen and Johannson theory of the characteristic submanifold and the Torus theorem (Gabai, Casson-Jungreis)_ to develop an intrinsic finite tvne__ theory for knots in irreducible 3-manifolds. We also establish a relation between finite type knot invariants in 3-manifolds and these in R3. As an application we obtain the existence of non-trivial finite type invariants for knots in irreducible 3-manifolds. 0 1997 Elsevier Science Ltd. All rights reserved 0. INTRODUCTION The theory of quantum groups gives a systematic way of producing families of polynomial invariants, for knots and links in [w3 or S3 (see for example [18,24]). In particular, the Jones polynomial [12] and its generalizations [6,13], can be obtained that way. All these Jones-type invariants are defined as state models on a knot diagram or as traces of a braid group representation. On the other hand Vassiliev [25,26], introduced vast families of numerical knot invariants (Jinite type invariants), by studying the topology of the space of knots in [w3. The compu- tation of these invariants, involves in an essential way the computation of related invariants for special knotted graphs (singular knots). It is known [l-3], that after a suitable change of variable the coefficients of the power series expansions of the Jones-type invariants, are of Jinite type. -
THE JONES SLOPES of a KNOT Contents 1. Introduction 1 1.1. The
THE JONES SLOPES OF A KNOT STAVROS GAROUFALIDIS Abstract. The paper introduces the Slope Conjecture which relates the degree of the Jones polynomial of a knot and its parallels with the slopes of incompressible surfaces in the knot complement. More precisely, we introduce two knot invariants, the Jones slopes (a finite set of rational numbers) and the Jones period (a natural number) of a knot in 3-space. We formulate a number of conjectures for these invariants and verify them by explicit computations for the class of alternating knots, the knots with at most 9 crossings, the torus knots and the (−2, 3,n) pretzel knots. Contents 1. Introduction 1 1.1. The degree of the Jones polynomial and incompressible surfaces 1 1.2. The degree of the colored Jones function is a quadratic quasi-polynomial 3 1.3. q-holonomic functions and quadratic quasi-polynomials 3 1.4. The Jones slopes and the Jones period of a knot 4 1.5. The symmetrized Jones slopes and the signature of a knot 5 1.6. Plan of the proof 7 2. Future directions 7 3. The Jones slopes and the Jones period of an alternating knot 8 4. Computing the Jones slopes and the Jones period of a knot 10 4.1. Some lemmas on quasi-polynomials 10 4.2. Computing the colored Jones function of a knot 11 4.3. Guessing the colored Jones function of a knot 11 4.4. A summary of non-alternating knots 12 4.5. The 8-crossing non-alternating knots 13 4.6. -
A Knot-Vice's Guide to Untangling Knot Theory, Undergraduate
A Knot-vice’s Guide to Untangling Knot Theory Rebecca Hardenbrook Department of Mathematics University of Utah Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 1 / 26 What is Not a Knot? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 2 / 26 What is a Knot? 2 A knot is an embedding of the circle in the Euclidean plane (R ). 3 Also defined as a closed, non-self-intersecting curve in R . 2 Represented by knot projections in R . Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 3 / 26 Why Knots? Late nineteenth century chemists and physicists believed that a substance known as aether existed throughout all of space. Could knots represent the elements? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 4 / 26 Why Knots? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 5 / 26 Why Knots? Unfortunately, no. Nevertheless, mathematicians continued to study knots! Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 6 / 26 Current Applications Natural knotting in DNA molecules (1980s). Credit: K. Kimura et al. (1999) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 7 / 26 Current Applications Chemical synthesis of knotted molecules – Dietrich-Buchecker and Sauvage (1988). Credit: J. Guo et al. (2010) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 8 / 26 Current Applications Use of lattice models, e.g. the Ising model (1925), and planar projection of knots to find a knot invariant via statistical mechanics. Credit: D. Chicherin, V.P. -
Knot Theory: an Introduction
Knot theory: an introduction Zhen Huan Center for Mathematical Sciences Huazhong University of Science and Technology USTC, December 25, 2019 Knots in daily life Shoelace Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 2 / 40 Knots in daily life Braids Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 3 / 40 Knots in daily life Knot bread Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 4 / 40 Knots in daily life German bread: the pretzel Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 5 / 40 Knots in daily life Rope Mat Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 6 / 40 Knots in daily life Chinese Knots Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 7 / 40 Knots in daily life Knot bracelet Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 8 / 40 Knots in daily life Knitting Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 9 / 40 Knots in daily life More Knitting Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 10 / 40 Knots in daily life DNA Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 11 / 40 Knots in daily life Wire Mess Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 12 / 40 History of Knots Chinese talking knots (knotted strings) Inca Quipu Zhen Huan (HUST) Knot theory: an introduction USTC, December 25, 2019 13 / 40 History of Knots Endless Knot in Buddhism Zhen Huan (HUST) Knot theory: an introduction -
Knots: a Handout for Mathcircles
Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot. -
Finite Type Invariants of W-Knotted Objects Iii: the Double Tree Construction
FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS III: THE DOUBLE TREE CONSTRUCTION DROR BAR-NATAN AND ZSUZSANNA DANCSO Abstract. This is the third in a series of papers studying the finite type invariants of various w-knotted objects and their relationship to the Kashiwara-Vergne problem and Drinfel’d associators. In this paper we present a topological solution to the Kashiwara- Vergne problem.AlekseevEnriquezTorossian:ExplicitSolutions In particular we recover via a topological argument the Alkeseev-Enriquez- Torossian [AET] formula for explicit solutions of the Kashiwara-Vergne equations in terms of associators. We study a class of w-knotted objects: knottings of 2-dimensional foams and various associated features in four-dimensioanl space. We use a topological construction which we name the double tree construction to show that every expansion (also known as universal fi- nite type invariant) of parenthesized braids extends first to an expansion of knotted trivalent graphs (a well known result), and then extends uniquely to an expansion of the w-knotted objects mentioned above. In algebraic language, an expansion for parenthesized braids is the same as a Drin- fel’d associator Φ, and an expansion for the aforementionedKashiwaraVergne:Conjecture w-knotted objects is the same as a solutionAlekseevTorossian:KashiwaraVergneV of the Kashiwara-Vergne problem [KV] as reformulated by AlekseevAlekseevEnriquezTorossian:E and Torossian [AT]. Hence our result provides a topological framework for the result of [AET] that “there is a formula for V in terms of Φ”, along with an independent topological proof that the said formula works — namely that the equations satisfied by V follow from the equations satisfied by Φ. -
Computing the Writhing Number of a Polygonal Knot
Computing the Writhing Number of a Polygonal Knot ¡ ¡£¢ ¡ Pankaj K. Agarwal Herbert Edelsbrunner Yusu Wang Abstract Here the linking number, , is half the signed number of crossings between the two boundary curves of the ribbon, The writhing number measures the global geometry of a and the twisting number, , is half the average signed num- closed space curve or knot. We show that this measure is ber of local crossing between the two curves. The non-local related to the average winding number of its Gauss map. Us- crossings between the two curves correspond to crossings ing this relationship, we give an algorithm for computing the of the ribbon axis, which are counted by the writhing num- ¤ writhing number for a polygonal knot with edges in time ber, . A small subset of the mathematical literature on ¥§¦ ¨ roughly proportional to ¤ . We also implement a different, the subject can be found in [3, 20]. Besides the mathemat- simple algorithm and provide experimental evidence for its ical interest, the White Formula and the writhing number practical efficiency. have received attention both in physics and in biochemistry [17, 23, 26, 30]. For example, they are relevant in under- standing various geometric conformations we find for circu- 1 Introduction lar DNA in solution, as illustrated in Figure 1 taken from [7]. By representing DNA as a ribbon, the writhing number of its The writhing number is an attempt to capture the physical phenomenon that a cord tends to form loops and coils when it is twisted. We model the cord by a knot, which we define to be an oriented closed curve in three-dimensional space. -
Dehn Filling of the “Magic” 3-Manifold
communications in analysis and geometry Volume 14, Number 5, 969–1026, 2006 Dehn filling of the “magic” 3-manifold Bruno Martelli and Carlo Petronio We classify all the non-hyperbolic Dehn fillings of the complement of the chain link with three components, conjectured to be the smallest hyperbolic 3-manifold with three cusps. We deduce the classification of all non-hyperbolic Dehn fillings of infinitely many one-cusped and two-cusped hyperbolic manifolds, including most of those with smallest known volume. Among other consequences of this classification, we mention the following: • for every integer n, we can prove that there are infinitely many hyperbolic knots in S3 having exceptional surgeries {n, n +1, n +2,n+3}, with n +1,n+ 2 giving small Seifert manifolds and n, n + 3 giving toroidal manifolds. • we exhibit a two-cusped hyperbolic manifold that contains a pair of inequivalent knots having homeomorphic complements. • we exhibit a chiral 3-manifold containing a pair of inequivalent hyperbolic knots with orientation-preservingly homeomorphic complements. • we give explicit lower bounds for the maximal distance between small Seifert fillings and any other kind of exceptional filling. 0. Introduction We study in this paper the Dehn fillings of the complement N of the chain link with three components in S3, shown in figure 1. The hyperbolic structure of N was first constructed by Thurston in his notes [28], and it was also noted there that the volume of N is particularly small. The relevance of N to three-dimensional topology comes from the fact that by filling N, one gets most of the hyperbolic manifolds known and most of the interesting non-hyperbolic fillings of cusped hyperbolic manifolds. -
A Remarkable 20-Crossing Tangle Shalom Eliahou, Jean Fromentin
A remarkable 20-crossing tangle Shalom Eliahou, Jean Fromentin To cite this version: Shalom Eliahou, Jean Fromentin. A remarkable 20-crossing tangle. 2016. hal-01382778v2 HAL Id: hal-01382778 https://hal.archives-ouvertes.fr/hal-01382778v2 Preprint submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A REMARKABLE 20-CROSSING TANGLE SHALOM ELIAHOU AND JEAN FROMENTIN Abstract. For any positive integer r, we exhibit a nontrivial knot Kr with r− r (20·2 1 +1) crossings whose Jones polynomial V (Kr) is equal to 1 modulo 2 . Our construction rests on a certain 20-crossing tangle T20 which is undetectable by the Kauffman bracket polynomial pair mod 2. 1. Introduction In [6], M. B. Thistlethwaite gave two 2–component links and one 3–component link which are nontrivial and yet have the same Jones polynomial as the corre- sponding unlink U 2 and U 3, respectively. These were the first known examples of nontrivial links undetectable by the Jones polynomial. Shortly thereafter, it was shown in [2] that, for any integer k ≥ 2, there exist infinitely many nontrivial k–component links whose Jones polynomial is equal to that of the k–component unlink U k. -
Coefficients of Homfly Polynomial and Kauffman Polynomial Are Not Finite Type Invariants
COEFFICIENTS OF HOMFLY POLYNOMIAL AND KAUFFMAN POLYNOMIAL ARE NOT FINITE TYPE INVARIANTS GYO TAEK JIN AND JUNG HOON LEE Abstract. We show that the integer-valued knot invariants appearing as the nontrivial coe±cients of the HOMFLY polynomial, the Kau®man polynomial and the Q-polynomial are not of ¯nite type. 1. Introduction A numerical knot invariant V can be extended to have values on singular knots via the recurrence relation V (K£) = V (K+) ¡ V (K¡) where K£, K+ and K¡ are singular knots which are identical outside a small ball in which they di®er as shown in Figure 1. V is said to be of ¯nite type or a ¯nite type invariant if there is an integer m such that V vanishes for all singular knots with more than m singular double points. If m is the smallest such integer, V is said to be an invariant of order m. q - - - ¡@- @- ¡- K£ K+ K¡ Figure 1 As the following proposition states, every nontrivial coe±cient of the Alexander- Conway polynomial is a ¯nite type invariant [1, 6]. Theorem 1 (Bar-Natan). Let K be a knot and let 2 4 2m rK (z) = 1 + a2(K)z + a4(K)z + ¢ ¢ ¢ + a2m(K)z + ¢ ¢ ¢ be the Alexander-Conway polynomial of K. Then a2m is a ¯nite type invariant of order 2m for any positive integer m. The coe±cients of the Taylor expansion of any quantum polynomial invariant of knots after a suitable change of variable are all ¯nite type invariants [2]. For the Jones polynomial we have Date: October 17, 2000 (561). -
Hyperbolic Structures from Link Diagrams
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geometry and Topology Commons Recommended Citation Tsvietkova, Anastasiia, "Hyperbolic Structures from Link Diagrams. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Anastasiia Tsvietkova entitled "Hyperbolic Structures from Link Diagrams." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mathematics. Morwen B. Thistlethwaite, Major Professor We have read this dissertation and recommend its acceptance: Conrad P. Plaut, James Conant, Michael Berry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Hyperbolic Structures from Link Diagrams A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Anastasiia Tsvietkova May 2012 Copyright ©2012 by Anastasiia Tsvietkova. All rights reserved. ii Acknowledgements I am deeply thankful to Morwen Thistlethwaite, whose thoughtful guidance and generous advice made this research possible.