A Synopsis of the Marine Prosobranch Gastropod and Bivalve Mollusks in Alaskan Waters

Total Page:16

File Type:pdf, Size:1020Kb

A Synopsis of the Marine Prosobranch Gastropod and Bivalve Mollusks in Alaskan Waters A synopsis of the marine prosobranch gastropod and bivalve mollusks in Alaskan waters Item Type Thesis Authors Foster, Nora Rakestraw Download date 10/10/2021 02:40:37 Link to Item http://hdl.handle.net/11122/5221 A SYNOPSIS OF THE MARINE PROSOBRANCH GASTROPOD AND BIVALVE MOLLUSKS IN ALAbRAN ’-.ArLRS RECOMMENDED: Chairman, Advisory Committee Program Head Director of Division of Marine Science APPROVED: Dean of the College of Environmental Sciences Date Vice Chancellor for Research and Advanced Stud A SYNOPSIS OF THE NARINE PROSOBRANCH GASTROPOD AND BIVALVE MOLLUSKS IN ALASKAN WATERS A THESIS Presented to the Faculty University of Alaska in Partial Fulfillment of the Requirements for the Decree of MASTER OF SCIENCE By Nora Rakestraw Foster, B.S. V- > • Fairbanks, Alaska December, 197 9 Abstract This studv presents information on the tnxonomv and distribution of the marine prosobranch gastropod and bivalve mollusks from the waters surrounding Alaska. Three hundred fifty-two species of prosobranch gastropods and 202 species of bivalves are reported from these waters. Over 3,000 lots of specimens, representing 330 species and literature sources form the basis of this study. References, synonymy, geographic and bathymetric ranges are provided for each species. Characteristics used to identify the species of 66 genera are presented in tabular form. The greatest number of species is reported from the southern Bering Sea, <-ite fewest from the Beaufort Sea. Most of the species have wide ranges in the eastern or western Pacific. New collecting records reported here extend the known ranges of 27 species. Eight species were previously unknown from Alaskan waters. i ii ACKNOWLEDGMENTS I appreciate all the help I have received in this study. My major professor, Dr. Howard M. Feder, and committee, Mr. George Mueller, Dr. Richard Allison, and Dr. Henry J. Niebauer, provided advice and helpful criticism. Special thanks are due Mr. George Mueller for encouraging my interest in the taxonomy and biogeography of marine mollusks, suggesting the need for this study, and furnishing office and laboratory space at the University of Alaska Aquatic Collections. Advic and suggestions by Mr. Rae Baxter, Alaska Department of Fish and Game, and Dr. Ronald Shimek, University of Alaska, Anchorage are also much appreciated. As part of this project, I was able to visit some of the major collections of mollusks. I thank Dr. Joseph Rosewater, of the Division of Mollusks, U. S. National Museum, Dr. Barry Roth, of the California Academy of Sciences, Dr. James McLean, of the Los Angeles County Museum of Natural History, and Dr. Louie Marincovich of the U. S. Geological Survey, for Lhej_r interest in my research and for permission to study collections at these institutions. I also thank Mr. Robert Talmadge and Mr. Rae Baxter for use of specimens in their private collections. Approximately 2,000 lots of specimens were supplied by Dr. Howard M. Feder from several sources: (1) Outer Continental Shelf Environ­ mental Assessment Program cruises in the southeast Bering Sea, lower Cook Inlet, and northeast Gulf of Alaska, (2) Alyeska - sponsored sampling in Port Valdez, and (3) Sea Grant - sponsored cruises in Prince William Sound. Dr. Sam Stoker, Universitv of Alaska donated a collection of about 1,000 lots of mollusks from the Bering and Chukchi Seas. An approx­ imately equal number were supplied by Ms. Kathy Frost and Mr. Lloyd Lowry, Alaska Department of Fish and Game. My thanks also r? the many others who have collected and donated specimens. I am also grateful to Dr. David Hopkins, U. S. Geological Survey, for supplying the maps used in this thesis. The help of the Institute of Marine Science por~ounel is also appreciated. Mr. Kenneth Coyle and Dr. Tsuneo Nishiyama translated Russian and Jauanese texts rebj-.c:. I L_ . M.? . J advice and provided assistance in preparing maps. I especially thank the staff or tne Publications Department who, faced with the difficult task of typing the taxonomic section, completed it efficiently and accurately. My thanks also to Dr. J. Robert Moore, corner Director, for making the typing possible. Ms. / l u ,. ' ’wu a lia_ I--. ^ t^t Le typed several drafts of the general section. In correcting the taxonomi section, I was assisted by Ms. Janet Trettner, Seward Marine Station. Financial Support of this research by Union Oil and the Institute of Marine Science is most gratefully acknowledged. v TABLE OF CONTENTS Page. ABSTRACT............................................................. iii ACKNOWLEDGMENTS.................................................. iv LIST OF F I G U R E S .................................................... xiii LIST OF TABLES.................................................. xiv GENERAL SECTION .................................................. 1 Introduction.................................................... 1 Purpose ......................................................... 1 Historical Background and Literature........................... 1 Future W o r k .................................................... 4 Materials and Methods .......................................... 6 Discussion...................................................... 9 TAXONOMIC SECTION ................................................ 45 Prosobranch Gastropods.......................................... 45 Family Haliotidae ............................................ 45 Haliotis.................................................... 45 Family Scissurellidae ........................................ 46 Soissurslla................................................ 46 Family Fissurellidae.......................................... 49 Dr /'?/''■' •vj/~f h O Megatebennus................................................ 50 Puncturella (Cranopsis) .................................... 51 Scelidotoma................................................ 59 Family Acmaeidae.............................................. 60 Acmaea...................................................... 60 A n s a i e s .................................................... 68 z . ................ 69 Family Lepetidae.............................................. 86 Cvyptobranckia.............................................. 86 Lepeta...................................................... 88 Family Trochidae.............................................. 92 Batkybcrrfcyx................................................ 92 Calliostoma................................................ -H Cidavina.................................................... 98 Ha.li.ity In ........................... ...... • 99 L irulcvia.....................................................100 Mavgai'ibcs (■■'.'ivjavlic.:)................................. 104 vi TABLE OF CONTENTS CONTINUED Page Margarites (Pupillarza)............................. 113 T e g u u a ........................................................ 134 Family Turbinidae................................................135 Homalopoma.................................................... 135 Moellaria...................................................... 137 Family Cocculinidae............................................. 141 Coooulina...................................................... 141 Family Littorinidae............................................. 142 Littorina...................................................... 142 Family Lacunidae .............................................. 147 Aauilonaria................ 147 Halocon-ka.....................................................148 L a c u n a ........................................................ 149 Family Rissoidae .............................................. 155 Alvania........................................................ 155 Anabathrcn . ................................................169 B a v l e e i a ...................................................... 170 C-ingula (Cingula)............................................. 171 CvnouXa (Nodulus) ............................................. 177 Family Rissoinidae.......... 183 R i s s o i n a ........................... 183 Family Caeciaae..................................................184 F a r t n U i m .............................................................................................. 1 8 4 U'7. .•''9 V3 O'v? £? j /,? <JV}_ »»•*,«•♦••• .LB *5 7 am Ilv SV" ct''.v? r>s i dao < - ............................. 1 8^ Family Vitrinellidae .......................................... 187 Levtogyra................. 187 V-itvinella.................................................... 188 Family Turritellidae.................. 189 Tachvrhvncnus.................................................. 189 T l l 7. 7 O'C-Cl 'Z-.'1 . 1 9 5 Family Vermetidae............................... 196 Dendropoma.................................................... 196 Family Cerithiidae ............................................ 197 Bittiwn................................................ ....197 Ceviihicvr.i.- ................................................ 200 T r i p h o v a ...................................................... 203 Family Epitoniidae ............................................ 204 ........................................................ 2 0 4 O p a l i a ........................................................ 207 11-t ^’jlitnidae 20 ° 214 viii TABLE OF CONTENTS CONTINUED p^n-p Family Asterophilidae........................................... 215 A.si-svovhzlo......................... 215 Family Calyptraeidae .........................................
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Appendix 1 Table A1
    OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S.
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • Research Article Early Development of Monoplex Pilearis
    1 Research Article 2 Early Development of Monoplex pilearis and Monoplex parthenopeus (Gastropoda: 3 Cymatiidae) - Biology and Morphology 4 5 Ashlin H. Turner*, Quentin Kaas, David J. Craik, and Christina I. Schroeder* 6 7 Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Qld, Australia 8 9 *Corresponding authors: 10 Email: [email protected], phone: +61-7-3346-2023 11 Email: [email protected], phone: +61-7-3346-2021 1 12 Abstract 13 Members of family Cymatiidae have an unusually long planktonic larval life stage (veligers) which 14 allows them to be carried within ocean currents and become distributed worldwide. However, little 15 is known about these planktonic veligers and identification of the larval state of many Cymatiidae 16 is challenging at best. Here we describe the first high-quality scanning electron microscopy images 17 of the developing veliger larvae of Monoplex pilearis and Monoplex parthenopeus (Gastropoda: 18 Cymatiidae). The developing shell of Monoplex veligers was captured by SEM, showing plates 19 secreted to form the completed shell. The incubation time of the two species was recorded and 20 found to be different; M. parthenopeus took 24 days to develop fully and hatch out of the egg 21 capsules, whereas M. pilearis took over a month to leave the egg capsule. Using scanning electron 22 microscopy and geometric morphometrics, the morphology of veliger larvae was compared. No 23 significant differences were found between the shapes of the developing shell between the two 24 species; however, it was found that M. pilearis was significantly larger than M.
    [Show full text]
  • Seashore Beaty Box #007) Adaptations Lesson Plan and Specimen Information
    Table of Contents (Seashore Beaty Box #007) Adaptations lesson plan and specimen information ..................................................................... 27 Welcome to the Seashore Beaty Box (007)! .................................................................................. 28 Theme ................................................................................................................................................... 28 How can I integrate the Beaty Box into my curriculum? .......................................................... 28 Curriculum Links to the Adaptations Lesson Plan ......................................................................... 29 Science Curriculum (K-9) ................................................................................................................ 29 Science Curriculum (10-12 Drafts 2017) ...................................................................................... 30 Photos: Unpacking Your Beaty Box .................................................................................................... 31 Tray 1: ..................................................................................................................................................... 31 Tray 2: .................................................................................................................................................... 31 Tray 3: ..................................................................................................................................................
    [Show full text]
  • INVERTEBRATE SPECIES in the EASTERN BERING SEA By
    Effects of areas closed to bottom trawling on fish and invertebrate species in the eastern Bering Sea Item Type Thesis Authors Frazier, Christine Ann Download date 01/10/2021 18:30:05 Link to Item http://hdl.handle.net/11122/5018 e f f e c t s o f a r e a s c l o s e d t o b o t t o m t r a w l in g o n fish a n d INVERTEBRATE SPECIES IN THE EASTERN BERING SEA By Christine Ann Frazier RECOMMENDED: — . /Vj Advisory Committee Chair Program Head / \ \ APPROVED: M--- —— [)\ Dean, School of Fisheries and Ocean Sciences • ~7/ . <-/ / f a Dean of the Graduate Sch6oI EFFECTS OF AREAS CLOSED TO BOTTOM TRAWLING ON FISH AND INVERTEBRATE SPECIES IN THE EASTERN BERING SEA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE 6 By Christine Ann Frazier, B.A. Fairbanks, Alaska December 2003 UNIVERSITY OF ALASKA FAIRBANKS ABSTRACT The Bering Sea is a productive ecosystem with some of the most important fisheries in the United States. Constant commercial fishing for groundfish has occurred since the 1960s. The implementation of areas closed to bottom trawling to protect critical habitat for fish or crabs resulted in successful management of these fisheries. The efficacy of these closures on non-target species is unknown. This study determined if differences in abundance, biomass, diversity and evenness of dominant fish and invertebrate species occur among areas open and closed to bottom trawling in the eastern Bering Sea between 1996 and 2000.
    [Show full text]
  • Proceedings of the United States National Museum
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM VoL 109 WMhington : 1959 No. 3412 MARINE MOLLUSCA OF POINT BARROW, ALASKA Bv Nettie MacGinitie Introduction The material upon which this study is based was collected by G. E. MacGinitie in the vicinity of Point Barrow, Alaska. His work on the invertebrates of the region (see G. E. MacGinitie, 1955j was spon- sored by contracts (N6-0NR 243-16) between the OfRce of Naval Research and the California Institute of Technology (1948) and The Johns Hopkins L^niversity (1949-1950). The writer, who served as research associate under this project, spent the. periods from July 10 to Oct. 10, 1948, and from June 1949 to August 1950 at the Arctic Research Laboratory, which is located at Point Barrow base at ap- proximately long. 156°41' W. and lat. 71°20' N. As the northernmost point in Alaska, and representing as it does a point about midway between the waters of northwest Greenland and the Kara Sea, where collections of polar fauna have been made. Point Barrow should be of particular interest to students of Arctic forms. Although the dredge hauls made during the collection of these speci- mens number in the hundreds and, compared with most "expedition standards," would be called fairly intensive, the area of the ocean ' Kerckhofl Marine Laboratory, California Institute of Technology. 473771—59 1 59 — 60 PROCEEDINGS OF THE NATIONAL MUSEUM vol. los bottom touched by the dredge is actually small in comparison with the total area involved in the investigation. Such dredge hauls can yield nothing comparable to what can be obtained from a mudflat at low tide, for instance.
    [Show full text]
  • A Molecular Phylogeny of the Patellogastropoda (Mollusca: Gastropoda)
    ^03 Marine Biology (2000) 137: 183-194 ® Spnnger-Verlag 2000 M. G. Harasevvych A. G. McArthur A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda) Received: 5 February 1999 /Accepted: 16 May 2000 Abstract Phylogenetic analyses of partiaJ J8S rDNA formia" than between the Patellogastropoda and sequences from species representing all living families of Orthogastropoda. Partial 18S sequences support the the order Patellogastropoda, most other major gastro- inclusion of the family Neolepetopsidae within the su- pod groups (Cocculiniformia, Neritopsma, Vetigastro- perfamily Acmaeoidea, and refute its previously hy- poda, Caenogastropoda, Heterobranchia, but not pothesized position as sister group to the remaining Neomphalina), and two additional classes of the phylum living Patellogastropoda. This region of the Í8S rDNA Mollusca (Cephalopoda, Polyplacophora) confirm that gene diverges at widely differing rates, spanning an order Patellogastropoda comprises a robust clade with high of magnitude among patellogastropod lineages, and statistical support. The sequences are characterized by therefore does not provide meaningful resolution of the the presence of several insertions and deletions that are relationships among higher taxa of patellogastropods. unique to, and ubiquitous among, patellogastropods. Data from one or more genes that evolve more uni- However, this portion of the 18S gene is insufficiently formly and more rapidly than the ISSrDNA gene informative to provide robust support for the mono- (possibly one or more
    [Show full text]
  • 19 Annual Meeting of the Society for Conservation Biology BOOK of ABSTRACTS
    19th Annual Meeting of the Society for Conservation Biology BOOK OF ABSTRACTS Universidade de Brasília Universidade de Brasília Brasília, DF, Brazil 15th -19th July 2005 Universidade de Brasília, Brazil, July 2005 Local Organizing Committees EXECUTIVE COMMITTEE SPECIAL EVENTS COMMITTEE Miguel Ângelo Marini, Chair (OPENING, ALUMNI/250TH/BANQUET) Zoology Department, Universidade de Brasília, Brazil Danielle Cavagnolle Mota (Brazil), Chair Jader Soares Marinho Filho Regina Macedo Zoology Department, Universidade de Brasília, Brazil Fiona Nagle (Topic Area Networking Lunch) Regina Helena Ferraz Macedo Camilla Bastianon (Brazil) Zoology Department, Universidade de Brasília, Brazil John Du Vall Hay Ecology Department, Universidade de Brasília, Brazil WEB SITE COMMITTEE Isabella Gontijo de Sá (Brazil) Delchi Bruce Glória PLENARY, SYMPOSIUM, WORKSHOP AND Rafael Cerqueira ORGANIZED DISCUSSION COMMITTEE Miguel Marini, Chair Jader Marinho PROGRAM LOGISTICS COMMITTEE Regina Macedo Paulo César Motta (Brazil), Chair John Hay Danielle Cavagnolle Mota Jon Paul Rodriguez Isabella de Sá Instituto Venezolano de Investigaciones Científicas (IVIC), Venezuela Javier Simonetti PROGRAM AND ABSTRACTS COMMITTEE Departamento de Ciencias Ecológicas, Facultad de Cien- cias, Universidad de Chile, Chile Reginaldo Constantino (Brazil), Chair Gustavo Fonseca Débora Goedert Conservation International, USA and Universidade Federal de Minas Gerais, Brazil Eleanor Sterling SHORT-COURSES COMMITTEE American Museum of Natural History, USA Guarino Rinaldi Colli (Brazil), Chair
    [Show full text]
  • Comparative Anatomy of Four Primitive Muricacean Gastropods: Implications for Trophonine Phylogeny
    ^/ -S/ COMPARATIVE ANATOMY OF FOUR PRIMITIVE MURICACEAN GASTROPODS: IMPLICATIONS FOR TROPHONINE PHYLOGENY M. G. HARASEWYCH DEPARTMENT OF INVERTEBRATE ZOOLOGY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C. 20560, U.S.A. ABSTRACT The main features of the shell, head-foot, palliai complex, alimentary and reproductive systems of Trophon geversianus (Pallas), Boreotrophon aculeatus (Watson), Paziella pazi (Crosse), and Nucella lamellosa (Gmelin) are described, and phonetic and cladistic analyses based on subsets of these data presented. Similarities in shell morphology revealed by phenetic studies are interpreted as being due to convergence, and are indicative of similar habitats rather than of close phylogenetic relationships. Convergences are also noted in radular and stomach characters. Cladistic analyses of anatomical data support the following conclusions: 1 ) Thaididae are a primitive and ancient family of muricaceans forming a clade equal in taxonomic rank with Muncidae; 2) Within Muricidae, P. pazi more closely resembles the ancestral muricid phenotype than any trophonine; 3) Trophoninae comprise a comparatively recent monophyletic group with differences due to a subsequent austral adaptive radiation. The Muricidae are considered to be the most primitive and D'Attilio, 1976:13) a personal communication from E. H. family within Neogastropoda according to most (Thiele, Vokes "it appears likely that the most northern trophons are 1929; Wenz, 1941; Taylor and Sohl, 1962; Boss, 1982) but derived from the Paziella-Poiheha line, and that the several not all (Golikov and Starobogatov, 1975) recent classifica- austral forms that are unquestionably "trophonine" are prob- tions. Of the five subfamilies of Muricidae, the Trophoninae, ably derived from the Thaididae". proposed by Cossmann (1903) on the basis of shell and Thus, according to most published work, the Tropho- opercular characters to include a number of boreal and ninae are in a position to shed light on the systematics and austral species, are the most poorly understood.
    [Show full text]
  • Silica Biomineralization in the Radula of a Limpet
    Zoological Studies 46(4): 379-388 (2007) Silica Biomineralization in the Radula of a Limpet Notoacmea schrenckii (Gastropoda: Acmaeidae) Tzu-En Hua and Chia-Wei Li* Institute of Molecular and Cellular Biology, College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan (Accepted November 6, 2006) Tzu-En Hua and Chia-Wei Li (2007) Silica biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae). Zoological Studies 46(4): 379-388. The radulae of limpets are regarded as an ideal experimental material for studying biologically controlled mineral deposition, because they possess teeth in dif- ferent mineralization stages. The pattern of silica precipitation in the limpet, Notoacmea schrenckii (Gastropoda: Acmaeidae), was elucidated in this study using transmission electron microscopy (TEM), electron diffraction, energy-dispersive X-ray (EDX) analysis, and inductively coupled plasma mass spectrometry (ICP- MS). The ICP-MS elemental analysis showed that iron and silica both infiltrate into the radula in early stages of tooth development. Electron-dense granules in a nanometer size range were observed in ultrathin sections of tooth specimens in early mineral-deposition stage; electron diffraction analysis indicated that silica is the prima- ry component of these granules. TEM images revealed the intimate association between silica granules and the organic matrix, which implies that the organic matrix may take a more-active role in catalysis besides mere- ly functioning as a physical constraint during mineral deposition. Exposure of the tooth cusp to NH4F treatment and the appearance of silica spheres after the addition of silicate suggest that the organic molecules embedded within the minerals may assist silica precipitation.
    [Show full text]
  • Protocols of the EU Bottom Trawl Survey of Flemish Cap
    NORTHWEST ATLANTIC FISHERIES ORGANIZATION Scientific Council Studies Number 46 Protocols of the EU bottom trawl survey of Flemish Cap 2014 creative cc commons COMMONS DEED Attribution-NonCommercial 2.5 Canada You are free to copy and distribute the work and to make derivative works under the following conditions: Attribution. You must attribute the work in the manner specified by the author or licensor. Noncommercial. You may not use this work for commercial purposes. Any of these conditions can be waived if you get permission from the copyright holder. Your fair dealing and other rights are in no way affected by the above. http://creativecommons.org/licenses/by/2.5/ca/legalcode.en ISSN-0250-6432 Sci. Council Studies, No. 46, 2014, 1–42 Publication (Upload) date: 21 May 2014 Protocols of the EU bottom trawl survey of Flemish Cap Antonio Vázquez1, José Miguel Casas2 and Ricardo Alpoim3 1Instituto de Investigaciones Marinas, Muelle de Bouzas, Vigo, Spain, Email: [email protected] 2Instituto Español de Oceanografía, Apdo. 1552, 36200 Vigo, Spain, Email: [email protected] 3Instituto Português do Mar e da Atmosfera. Av. Brasília, 1400 Lisboa, Portugal, Email: [email protected] Vázquez, A., J. Miguel Casas, R. Alpoim. 2014. Protocols of the EU bottom trawl survey of Flemish Cap. Scientific Council Studies, 46: 1–42. doi:10.2960/S.v46.m1 Abstract Methods and procedures used in the EU bottom trawl survey of Flemish Cap (NAFO Division 3M) are described in detail. The objectives of publicizing these protocols are to achieve a better understanding of its results, and to contribute to the routines being unaltered.
    [Show full text]