Radon Mapping in Savran region, Odessa Oblast, Ukraine

Britt-Marie Ek (SGU), Olga German (Vattenfall AB) mars 2012

Appendix 4.7 Savran district, SGU-rapportmeasurement s2012:9 of radon in soil gas with MARKUS10, 70 cm depth Diarie-nr: 08-221/2010

(!

(! (! (! (! (! (! (! (! (! (! (! (! (! (!(! (! (! (!(! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (!(! (! (!

(! (! (!(!(! (! (! (! ! (! (! (! (! (! (!(! (!(! (! (! (! (! (! (! (! (! (! (! (! (!

Legend 0 5 10 Kilometers Radon kBq/m3 (! < 10,0 (! 10,1 - 20,0 (! 20,1 - 40,0 (! 40,1 - 60,0 (! 60,1 - 81,0 ”Detta dokument har producerats med finansiellt stöd av Styrelsen för internationellt utvecklingssamarbete (Sida). De åsikter som framförs ger inte nödvändigtvis uttryck för Sidas officiella uppfattning.”

Sveriges geologiska undersökning Box 670, 751 28 Uppsala tel: 018-17 90 00 fax: 018-17 92 10 e-post: [email protected] www.sgu.se SUMMARY

A project with the aim to reduce doses from radon gas and natural radiation to the Ukrain- ian population has been held in Odessa and the Savran district. The project has involved training courses and transfer of knowledge. This report describes the training activities during 2010 and 2011 in Odessa and the Savran district. Swedish and Ukrainian experts from SSM, SGU, Marzeev Institute of Hygiene and Medical Ecology, and Odessa region Sanitary Epidemiological Service took part in the pro- ject. Field investigations have been performed in the Savran district with measurements in all villages. Gamma spectrometers were used to measure the uranium, thorium and potassium concentration in soils and emanometers were used to measure radon in soil gas. The results of the measurements are considered representative for Ukrainian soils. The measurements showed that sandy soils have very low concentrations of the naturally occurring radioactive elements while clayey and silty soils have normal to slightly enhanced concentrations. Measurements of radon gas indoors were performed in the winter of 2010 in all villages in the Savran district. The results show that the radon levels are lower in houses in areas with sandy soils e.g. along the Savran river. In the areas with clayey chernozems the radon levels are higher, often above the limit of Equilibrium Volume concentration of 200 Bq/m3.

1 (43) 2 (43) INNEHÅLL

SUMMARY ...... 1

Background ...... 4

Basic information ...... 4 Radon and natural radioactive elements ...... 4 Radon in indoor air ...... 6

Geology and radon sources ...... 6 Bedrock ...... 6 Soils ...... 7 Radioactive elements in water ...... 7

Short overview of Ukrainian geology ...... 7 Crystalline basement and sedimentary bedrock ...... 8 Quaternary deposits ...... 8 Top soils ...... 8

Radon risk mapping ...... 9

Savran Pilot region ...... 10 Training in Odessa ...... 10 Methods ...... 10 Classification ...... 13 Geological setting of the Savran district ...... 14 Pilot mapping in Savran September 2010 ...... 17 Continued mapping in Savran May 2011 ...... 18

Results ...... 19 Indoor measurements ...... 19

Conclusions and recommendations ...... 21

Literature ...... 22

Abbreviations ...... 24

Appendix 1 ...... 25 Program ...... 25 Програма ...... 25

Appendix 2 ...... 28 Results from field measurements in the Savran district.

Appendix 3 ...... 33 Results from radon measurements in Savran district.

Appendix 4 ...... 34 Maps

Appendix 5 ...... 41 Coordinates for field localities (Degrees and minutes)

Appendix 6 ...... 42 Indoor radon concentration of rural dwellings in the Savran district, Odesskya Oblast

3 (43) BACKGROUND

The SSM Project 2009/610 Reduction of lung cancer risks caused by exposure to radon gas and natural radiation has its aim to reduce doses to the Ukrainian population exposed to radon gas and natural radiation by transferring knowledge on methods for measurement and analyses, methods for actions against exposure, and adoption of EU directives and recom- mendations for radon gas and exposure to natural radiation. The project was performed by experts of the Marzeev Institute of Hygiene and Medical Ecology, NAMS in Kiev, Swedish Radiation Safety Authority and Geological Survey of Sweden. The Swedish International Development Cooperation Agency provided funding through the contract with SSM. This report describes the training activities during 2010 and 2011 in Odessa and the Savran district. Swedish and Ukrainian experts from SSM, SGU, IHME, and Odessa region SES took part in the project. Measurements of radon gas activity were done in a number of houses, schools and preschools during the winter of 2010–2011 with radon track detectors. Houses were randomly chosen to represent all villages in the Savran district.

The aim for this part of the project was: In a pilot study, to produce a radon risk map for the Savran district and that the results can be used in a strategy for further actions in Ukraine.

BASIC INFORMATION Radon and natural radioactive elements

There is always enough radon in the ground to cause enhanced radon levels indoors, if the basement holds cracks or openings. Radon from the ground is the most common cause of increased radon levels in buildings. Radon-222 is formed at the decay of radium-226. Radium-226 is in turn formed in the decay series starting with uranium-238, table 1. Uranium is found in all soils and rocks in small quantities, although the amount varies between different rock- and soil types. Even though there is an obvious relation between uranium (radium) and radon the amount of radon atoms formed that can reach the pore space is dependent on type of mineral, cracks in minerals and water content. For soils the grain size, porosity and weathering together with the water content are most important.

Radon is a highly radioactive and carcinogenic inert gas that may cause mutations in the cells of organisms if inhaled or ingested. Radon is next to smoking the most important cause of lung cancer in humans. In the decay series of thorium-232, radon-220 also called thoron is formed at the decay of radium-224. The average concentration of uranium in the Earth’s crust is 3 mg/kg. When young sedi- ments like the Quaternary deposits are formed and rocks are weathered, uranium and its ra- dioactive decay elements (daughters) can migrate in various ways because of variable chemi- cal properties. Under different pH level, electric conductivity and aeration conditions these

4 (43) Table 1. The decay series of uranium-238 (238U). Element Radioactive half-life Radiation type Note Uranium-238 (U-238) 4,5x109years α Solid Thorium-234 (Th-234) 24.1 days β Solid Protactinium-234 (Pa-234) 1.17 minutes β Solid Uranium-234 (U-234) 2.24x105 years α Solid Thorium-230 (Th-230) 8.0x104 years α Solid Radium-226 (Ra-226) 1,602 years α Solid Radon-222 (Rn-222) 3.823 days α Gas Polonium-218 (Po-218) 3.05 minutes α Solid Lead-214 (Pb-214) 26,8 minutes β, γ Solid Bismuth-214 (Bi-214) 19.7 minutes β, γ Solid Polonium-214 (Po-214) 1.6x10-4 microsecond α Solid Lead-210 (Pb-210) 21.3 years β Solid Bismuth-210 (Bi-210) 5.01 days β Solid Polonium-210 (Po-210) 138.4 days α Solid Lead-206 (Pb-206) stable - Solid elements also dissipate or concentrate in different ways. At the same time, due to the short half-life of radon, the Ra/Rn ratio is generally stable and balanced as long as the radon gas concentration is not reduced by ventilation or by radon escaping by diffusion1. In a mineral grain, at the decay of the radium atom, the new born radon atom is pushed out of the mineral lattice by the recoil effect from the emitted alpha particle. The length of transport by the recoil effect in a mineral of normal density is 0.02–0.07 µm, in water 64 µm. If the radium atom is situated close to the surface of the mineral grain or a micro crack in the grain, the newborn radon atom may reach the pore space. This transport of the radon atom from the grain to the pore space is called “emanation”. The partition of radon atoms that emanates to the pore space in a soil depends to a large part of the grain size, but also depends on how the radon atoms are distributed in the different grains. It also depends on the moisture in the soil. Thus the emanation factor is low when the water quota of the soil is low (less than 5%) and increases as the water quota increases. Under normal condi- tions, the emanation factor for gravel is 15–40%, for sand 15–30% and for clay 30–70%. In a soil the transport of the radon atom from the pore space happens by diffusion or by ac- tive transport by moving air or water. In a homogenous soil layer the concentration of radon in soil gas is highest at the depth of 2 m and below that level. At this level a state of equi- librium between emitted and decaying radon atoms occur. Higher up in the soil the radon concentration is reduced by diffusion of radon to the atmosphere above the ground surface or by ventilation effects due to wind. The closer to the ground surface, the better the soil air is aerated and radon migrates into open air. The radon flux from the ground surface is called “radon exhalation”. However, if the pore space in the soil is filled with water (the case under the groundwater level) radon gas can only escape from the water from the upper 6 centimetres (the maximum

1) At radioactive equilibrium within the decay series of 238U there are as many atoms of 238U that decay per time unit as for each following nuclide. Thus the activity concentration, for example expressed in the unit Bq/ kg, is the same for each nuclide at equilibirum.

5 (43) diffusion distance for radon in water before it totally has decayed). Thus in ground water in a soil the radon concentration always is constant and depends on the radium concentration in the soil and the emanation factor of that soil.

Radon in indoor air

There are three sources of indoor radon: water, building material and the ground under the house. The household water will influence indoor radon concentration if the water is pumped into the house directly from the ground water source, with high radon concentration in it. If municipal water is used in the household the risk of elevated radon concentration decreases dramatically due to the long distances of water bearing pipes and the water processing at the water stations. Radon will either decay to very low concentrations or will be blown away during the processing. As for the building materials these are to be produced from radium rich material to be able to cause radon trouble, as was the case in Sweden during several decades of the last century. For the Ukrainian situation no such materials have been used in the country due to rather strict regulatory control of building material. There are radiological limits set by the regula- tory documents which were introduced early during the Soviet Era. Thus the major source of indoor radon in Ukraine is the ground under the building. Almost all buildings are affected by radon that leaks in from the underlying ground and then mixes with the indoor air. The radon gas is either transported together with soil gas, in which case the soil gas is actively driven into the building through cracks, joints and holes in the foun- dation by the stack effect created by the pressure difference between indoor and outdoor at- mosphere, or by the diffusion through the upper soil layer and the floor/concrete slab laying on the ground or above the crawl space. In most buildings the in-leakage of radon only re- sults in low indoor radon concentrations, < 50 Bq/m3, but if the volume of soil air that leaks into the building is larger than 1–5 m3/h or the radon concentration in the soil air is high, > 50,000 Bq/m3, this often results in indoor radon concentrations higher than 200 Bq/m3. As radon transported from the ground is the main cause to indoor radon, knowledge on the concentration of radioactive elements, primarily uranium, in rocks and soils forms the main source for information on radon prone regions, areas and sites.

GEOLOGY AND RADON SOURCES Bedrock

Uranium concentration in the bedrock varies between different rock types. Uranium is a lithophile element which occur primarily together with magmas rich in silica e.g. granites, pegmatites, syenites, aplites and the volcanic rocks rhyolites and porphyrys. Uranium can be mobilized and transported by geological processes like metamorphosis and chemical weath- ering to be precipitated in fissures and in permeable structures. The precipitation often takes place in a reducing environment. Examples of rocks with a secondary enrichment of ura- nium are e.g. shales rich in organic material, some limestones, sedimentary iron stones and permeable sandstones. Uranium is easily leached at a normal pH of around 5–7 and many

6 (43) of the large uranium ore deposits have been formed by ground water that has transported uranium to be precipitated in a reducing environment. Uranium often occurs in the bedrock as very small grains of uranium minerals, e.g. coffenite [U(SiO4)1-x(OH)4x] and uraninite

(U3O8) (or absorbed on the grains or included in the lattice of zircon, apatite, titianite and other accessory minerals). The uranium minerals are much smaller than the other mineral grains in the rock mainly feldspar, quartz and glimmer.

Soils

Soils or overburden consists of broken down and often sorted fragments of bedrock. When the rocks are broken down by chemical weathering the soil remains on the surface of the bedrock. The loose soil can be transported, sorted and redeposited by glacial ice, moving water, waves and wind. Glacial ice can with its movements crush the bedrock, alter, sort and incorporate excisting soils. After the meltdown of the ice a new landscape has been formed where the soils can be divided into tills with all but varying grainsizes, glaciofluvial well sorted sands and gravel (in deltas, eskers, sandurs), fine-grained sea- and lake sediments like clays and silt and wind- blown loess. In the process of soil formation uranium and radium in the soil will be mechanically trans- ported or chemically altered by leaching. Uranium and radium have different chemical properties and are affected to a different extent by chemical leaching which often leads to a separation of uranium and radium. During transport of soil particles by water uranium and radium will be leached and often attached to clay particles. With the successive sorting of the soil by water the content of uranium and radium in most cases gradually diminishes down to sands, that mainly consist of quartz grains, followed by an enrichment of the elements in the fine-grained clays. The result of the sorting and weath- ering of the soils is that the radon content in different soil types varies.

Radioactive elements in water

Naturally occurring radioactive elements in water can cause rather high doses through in- gestion of food and drinking water. Uranium and radon dissolve easily in water. Tho­rium and radium are rela­tively less soluble. Radon escapes when the water is tapped and the gas mixes with the indoor air (at a tem­perature of 20°C 30–90% is released depending on how the water is used). Used indoors the radon from water can give rise to enhanced in­door ra- don concentrations. If the radon concentration in the water used in a dwelling is 1 000 Bq/l it can contribute with about 100 Bq/m3 to the indoor air.

SHORT OVERVIEW OF UKRAINIAN GEOLOGY

Ukraine is a part of the Eastern European Plain and 95% of the Ukrainian territory is flat- land. Only the west and south east outskirts have complex mountainous areas with the Car- pathians and Crimea.

7 (43) Crystalline basement and sedimentary bedrock

The bedrock in Ukraine belong to all groups and systems from the to the Holo- cene. Crystalline rocks of the compose most of Ukraine with metamorphic, ultra metamorphic to magmatic formations of various ages. The younger sedimentary rocks, from to the , are represented by sand- stones, siltstones, argillites and limestones but also dolomites and sometimes breccias, con- glomerates, shales, marls and clays. They are widely distributed throughout the Ukrainian territory but in various degree. The following major structural geological regions are distinguished: The , the Dniepr-Donets Depression, the Donets Basin, the Prichernomorsky Depression, the Mountainous Crimea, the Volyno-Podolsky Platform and the Ukrainian Carpathians. Central and north Odessa region belong to the Prichernomorsky Depression and Kiev and Kirovograd lie within the Ukrainian shield. Uranium occur in the Kirovograd metallogenic region. The basic ore bearing structures are an anorthosite- gritstone-granite pluton.

Quaternary deposits

The Quaternary cover in Ukraine is made up of deposits laid down during cyclic variations with cold and warm periods. Loess strata were formed during the cold periods – glacials – while fossil strata were formed during warm periods – interglacials. Loess formations are found in most parts of the Ukraine platform. Meltwater from the continental glaciers and rivers formed alluvial sediments and fluvial terraces. The alluvial sediments are represented by sands, gravel and sandy loams but also clays. In the north west of Ukraine, moraines from four different glacial periods are found. The continental glaciers carried large amounts of crushed material from the underlying bedrock and erratics from Scandinavia are also found. The moraines are sandy–gravelly to boulder sandy loams and loams. The Dnieper glacier (Saale glacial period, 290 ka) moved along the Dnieper river valley almost up to Dnipropetrovsk. The glacial and meltwater deposits of this stage and glaciogenic structure are complex as a result of irregular deglaciation and repeated ice front oscillations. clays underlie the Quaternary sediments. Marine and estuary sediments from different periods are found in the coastal regions of the Black Sea and the Azov Sea. They are represented by gravel, sand, sandy loams, loams and clays. The depth of the overburden amounts in many places to hundreds of meters. The mountainous areas of Ukraine are not described here.

Top soils

The overburden in Ukraine has been deeply weathered through the climatic influence dur- ing thousands of years. On the loess covering the flat plains of Ukraine the total domineer- ing topsoil is chernozems. The depth of the chernozem in the area now under investigation in the Savran district has been between 0,3 m to more than 2 m. The chernozems granulometric composition is silty clays to clays rich in humus (Figure 1). The soil profile on sandy soils is weekly developed (Figure 2).

8 (43) Fig. 1. Black chernozem Fig. 2. Sandy soil with only a thin topsoil.

RADON RISK MAPPING

As radon transported from the ground is the main cause to indoor radon knowledge on the concentration of radioactive elements in rocks and soils forms the main source for informa- tion on radon prone regions, areas and sites. Mapping of radon potential areas is done to help and ensure that occupants of new and ex- isting buildings are protected from the harmful effects of radon. The maps can be used both to take the proper precautions for new buildings as well as effectively searching for houses with enhanced radon levels among the existing buildings. Even with a very detailed map- ping it is important to realize that every house is unique and radon levels can vary widely be- tween neighbouring houses because of the construction of the house and local geology. The radon potential maps shall be seen as the name implies: they indicate the radon potential of an area. Many countries have mapped the radon risks but the methods used differ. While some countries solely base their radon maps on radon measurements indoors most countries also take into account where the radon comes from i.e. the geology. For the geological based radon potential maps information is gathered of soil and bedrock types, content of uranium and radon in soils and bedrock, permeability and moisture of the soils. Airborne measurements can be very useful as a tool in mapping and finding radon prone areas. There is a close correlation between airborne and ground radiometric measure- ments. Measurements of radon in houses and in drinking water can also be valuable. Some countries like Great Britain, Czech Republic and USA, also include indoor radon concentra- tions.

9 (43) SAVRAN PILOT REGION Training in Odessa

Work at the Savran pilot region started with five training courses in Odessa ar- ranged by SSM in cooperation with SES Odessa and IHME. Experts from SGU, Åkerblom&Åkerblom, CLARA were contracted to participate in the lecturing and field training. The courses developed and conducted in Odessa were as follows: • Radon basics, 1 day • Radioactive elements in water, 1 day • Radon measurements, 2 days • Radon risk mapping, 2 days • Radon remediation, 2 days Staff of the Odessa Oblast SES was the primarily target group for education and training as they carry out regulatory control of radiation protection of the population and provide re- quirements and recommendations on the matter. Being the supervisory body of the Ministry of Health of Ukraine, SES is also the first link and in communication with the population. The training courses in Odessa included radon basics, regulatory documents, health risks, methods and instruments used to measure radon, radon prevention, the geology of radon, measurements and calculation exercises. During the fourth course in Odessa in September 2010 there were demonstrations and practical training with the radon instruments close to the lecture room (and the Black Sea). The participants were divided into two groups so that they could all try the different instru- ments. Results from the training measurements in the soil had to be reported and explained. Lively discussions were held during the whole exercise (Figures 3–7). The program for course 4 is added as appendix 1 as example. Several participants that were trained in measurements and radon risk mapping theory par- ticipated in the field expedition work for radon measurements in Savran as a part of their training. These people are supposed to spread knowledge and experiences further to other regions in Ukraine end even provide expert support in their own regions in future. Two field expeditions were performed in the Savran district with the purpose of measuring radon in ground and collection of the input information necessary for the radon risk map of the district.

Methods

The first field work was carried out in September 2010 and the second part of the work was carried out in May 2011. The first step in preparation for radon risk mapping is to gather all information of geology and soils for the area in question. Measurements of radon in houses and radioactivity in water can also be valuable supporting information in a mapping project. This information forms the basis for planning of a radon mapping project. For the Savran district limited sup- porting information was available.

10 (43) Fig. 3. Lecture building in Odessa.

Fig. 4. During a lecture with Olga German, SSM.

Fig. 5. Instructions in the field.

11 (43) A. B.

Fig. 6. A. Digging the holes was hard work in a very dry soil for the measurements with the gamma spectrom- eter GR-130 (B).

Fig. 7. Discussions of re- sults in lecture room.

Measurements of the concentration of uranium, thorium and potassium in soil were deter- mined by gamma ray spectrometer GR-130 (Figure 8) on the ground surface and in ca 0,8 m dug holes. The result of a measurement in a hole must be multiplied with 0,6 to get the true concentrations. The concentration of radon-222 in soil gas was sampled and analysed in the field with an emanometer of the type Gammadata MARKUS 10 (Figure 9). The samples were taken within 1–3 m from each other at one locality. The field survey measure- ments were carried out with equipment belonging to SGU and SSM (Portable Gamma Ray Spectrometer GR-130 from Exploranium – 2 sets and MARKUS 10–3 sets in 2010 and 4 sets in 2011. The gamma spectrometers are calibrated yearly by SGU and the emanometers MARKUS 10 by Gammadata Instruments. During the work Swedish methods were explained and performed, but also experts of IHME were given the opportunity to test and compare their measurement methods (based on the modified Czeck system). It will though need to be further discussed whether these results are comparable and how the interpretation is carried out and evaluated. Thus results on the ground radon obtained using IHME’s measurements were not used for this radon risk map.

12 (43) A. B.

Fig. 8. Measurement with gammaspectrometer GR-130 in soil (A) and on bedrock (B) in Savran district.

Fig. 9. The emanometer MARKUS 10 measures radon in soil gas. The soil gas is gathered via an iron rod which is hammered into the ground to 0,8 m. Soil gas is pumped into the instrument and results are showed after approx. 10 minutes.

Positioning was gathered (in longitude and latitude) with GPS for all measuring points. Other information that was noted in the measuring protocol at each point was weather con- ditions, soil moisture at the measurement depth, grain size and soil type.

Classification

With the results from the different measurements together with the geological information the radon potential of an area can be classified. Traditionally the ground has been classified as high, normal and low radon ground. In table 2 and 3 are shown the values used when classifying the ground according to Clavensjö & Åkerblom (2004).

13 (43) Note that the radon concentration in the soil gas is nearly always high enough to give too high radon level indoors if enough soil gas can leak in. It is therefore now recommended that the class low radon ground is avoided.

Geological setting of the Savran district

The Savran district (Figure 10) is situated in the northernmost part of Odessa Oblast on the Ukrainian flatland. The flatland is in part undulating and with a number of valleys and riv- ers where the Savran river is the largest, running in an east – west direction. Along the Savran river (Figure 11) there are sandy soils with little fine-grained material. Sandy soils were also found along some smaller rivers but with minor depth and purity. Away from the rivers the soil is generally clayey to silty clayey. On agricultural lands there is a darkbrown to black chernozem in the top layer. The depth of the chernozem varies be- tween 0,2 to more than 2 m (Figure 12). In the large grass covered stepp areas the the top soil is a reddish brown silty clayey soil with the chernozem more or less missing (Figure 13). Some excavations in alluvial sand and gravel with weathered surfaces could be studied in some gravel pits (Figure 14). The bedrock was encountered at two places in the district, at a tributary to the Savran river, a gneiss with pegmatitic veins (Figure 15) and a rock pit with a migmatite east of Savran. The bedrock was also seen just north of the Savran district with the graphite mine at Za- vaille (Figure 16).

Table 2. High radon ground (from The Radon Book, Clavensjö & Åkerblom 2004). Bedrock or soil type Ra-226 (Bq/kg) Radon in soil (kBq/m3) Bedrock surface >200 Fill of blasted rock >80 Gravel, coarse sand, silt and till >50 >50 Silt >70 >60 Clay, clayey till >100 >100

Table 3. Low radon ground (from The Radon Book, Clavensjö & Åkerblom 2004). Bedrock or soil type Ra-226 (Bq/kg) Radon in soil (kBq/m3) Bedrock surface <60 Blasted rock, gravel, sand, coarse <25 <10 silt, till Silt <50 <20 Clay <80 <60

14 (43) Savran

Fig. 10. The Savran district with the village of Savran in the middle of the map.

A. B.

Fig. 11 A & B. The Savran river valley with sandy soils.

15 (43) A. B. Fig. 12 A & B. Black clayey chernozem.

A.

Fig. 13 A & B. Measure- ments in reddish brown B. silty clayey soil.

16 (43) Fig. 14. Layered alluvial sand and gravel.

Pilot mapping in Savran September 2010

During two days in September 2010 field measurements were performed in most villages in the Savran district. The work was done by two working groups with 4–5 persons per group. The work was led by SSM respectively SGU and personnel from the IHME. Transportation was supplied by the Savran SES and local administration and local assistance with digging was received from each village. Measuring sites were chosen close to or within the villages of Savran district. Instruments used were gamma spectrometer GR-130 and emanometer MARKUS-10. In to- tal 70 measurements were made in 13 villages. In the field protocol the following was noted: Soil type, depth of soil profile, water content, weather, depths of measurements, date and time and coordinates from GPS. The results from the field measurements were gathered and processing were started during the winter 2010–2011 at SGU. During the winter 2010–2011 87 radon measurements were performed indoors in private houses, preschools and schools in 10 villages in the Savran district.

Continued mapping in Savran May 2011

The mapping project in Savran continued in the last week of May 2011. The same main pro- cedure was kept for the measurements but with some modifications of the field protocol and for the field work. One local assistant were assigned to each working group for the whole

17 (43) Fig. 15. Gneiss with peg- matite veins.

B.

Fig. 16. The old graphite mine (A) and granate minerals A. (B) close to Zavaille in Kirovograd region.

week. As in 2010 two groups worked parallel during the week. The first work day was spent together to compare methods and instruments. During the field work 10 soil samples were taken for analyses of the granulometric composi- tion and organic content. The analyses were done by SLU, Dept. Of Soil and Environment, Uppsala, during the winter 2011–2012. In total 218 measurements have been done in most villages within the Savran district.

18 (43) RESULTS

All results of the field measurements are presented in appendix 2 to 6. In appendix 3 the results of the radon measurements are also shown separately. In appendix 4 the results are presented on maps. Appendix 6 presents results of indoor measurements. The sites for field measurements were concentrated to the villages of the district and not directed to different types of geology or soil types. This means that a geological based radon potential map will not be presented. The planned map will instead be based on the results of measurements for each village. Within the Savran district two soil types could be distinguished with marked different ura- nium and radon concentrations. The sandy soils, especially along the Savran river, have very low concentrations of radon and low concentration of uranium and thorium while the large areas with silty and clayey chernozems have marked higher concentrations of uranium and radon. In a few localities the uranium concentration was higher on top of the soil than at a depth of 80 cm. These localities were on agricultural fields so the explanation is probably the use of a phosphoritic fertiliser containing uranium. The 10 granulometric analyses showed a clay content of around 40% and a humus content up to 4,7% in dark chernozem samples (table 4). To make radon measurements in clayey and silty soils with the MARKUS-10 is often difficult because the soil is too wet or com- pact. In some localities this was the case and radon results are therefore lacking for these. Despite the high silt and clay content in many soils radon measurements could be done. The high humus content and the grainy structure of the chernozem facilitated apparently the ra- don transport. In Appendix 3 the results of all the radon measurement are shown together with the locality number and soil type. At many localities two (in one case three) radon measurements with MARKUS 10 were done within 1–3 m from each other. As can be seen from the table the results are reasonable similar for the different soil types but there are also some large differ- ences. Sand has generally a radon concentration below 10 kBq/m3, (table 5). As can be seen in Appendix 2 and table 6 the uranium concentration in silt and clay is quite similar and at normal levels at 3–4 ppm. The two soil types was not so easy to separate in the field because of the black topsoil. In sand the uranium concentration were only between 1 and 2 ppm.

Indoor measurements

In appendix 6 the results of the indoor measurements performed in the Savran district in January – February 2011 are presented with the soil type in the village area and the soil type given in the report by Clavensjö (2012) for the single house. There is a difference between the two data sets for soil type which is to be expected. The soil type which is given in col- umn 4 is an estimation of the soil type of the village area based on the field work. The sands which are more common in the report from Clavensjö are the local filling material at the basement, on top of the underlying soil.

19 (43) Table 4. Granulometric analyses of soil samples (%). ID Sample Soil at Clay Fine Silt Coarse Fine Medium Coarse Organic depth locality silt silt sand sand sand matter 0.002- 0.006- 0.02- 0.06- 0.2- 0.6- % <0,002 0,006 0,02 0,06 0,2 0,6 2 og 20 Clay 42,7 10,1 25,8 19,4 1,3 0,6 0 3,2 Cum. % 42,7 52,9 78,7 98,1 99,4 100 100 og 18 Silt 22,1 5,4 14,1 15,4 9,7 29,1 4,2 2,1 Cum. % 22,1 27,5 41,7 57,1 66,7 95,8 100 bm10 70 cm Fine clay 42,4 11,5 24,5 18,8 1,5 1,2 0,1 0,5 Cum. % 42,4 53,9 78,4 97,2 98,7 99,9 100 bm12 15 cm Clay 43,6 10,4 24,6 20,7 0,5 0,2 0 4,4 Cum. % 43,6 54 78,6 99,3 99,8 100 100 bm12 60 cm Clay 43,3 9,5 26,2 20,3 0,5 0,2 0 2,6 Cum. % 43,3 52,8 79 99,3 99,8 100 100 bm15 10 cm Clay 42,8 10,8 24,1 20,1 1,4 0,7 0,1 4,7 Cum. % 42,8 53,6 77,7 97,8 99,3 99,9 100 bm18 15 cm Clay 39,1 9,1 23,4 22 2,2 3,5 0,7 3,6 Cum. % 39,1 48,2 71,6 93,6 95,8 99,3 100 bm18 60 cm Clay 42,2 10,5 25,4 21 0,6 0,4 0 2,1 Cum. % 42,2 52,6 78 99 99,6 100 100 bm29 60 cm Silty 13,2 2,9 7,2 10 16,8 45,5 4,5 1,3 sand Cum. % 13,2 16,1 23,3 33,2 50 95,5 100 bm31 70 cm Clay 40,9 11 23,6 21,7 1,5 1 0,2 1,8 Cum. % 40,9 52 75,6 97,3 98,7 99,8 100

Table 5. Radon (kBq/m3) in soil air in clay, silt and sand. Clay Silt Sand Mean, aritmetric 34,1 39,5 7,7 Mean, geometric 31,5 38 7,0 Max 79 108 23 Min 10 4 0,0 Number 44 44 35

3 The village with the lowest radon concentrations indoors is Vilshanka (meana = 100 Bq/m ) which is situated along the Savran river. The soil in Vilshanka is sandy. The results of meas- urements of radon and uranium in soil also show low concentrations. In the other villages the indoor radon concentration is generally higher but with larger varia- 3 tions. Baksha has the highest meang radon concentration with 317 Bq/m and also the high- est measured radon concentration indoors with 903 Bq/m3. The soil in the Baksha area is dominated by chernozem and clay.

20 (43) Table 6. Results from gamma spectrometer measurments in different soil types, depth 70–80 cm. Clay No Mean a Mean g Max Min

K % 41 2,9 2,9 3,9 1,4 U ppm 41 4,2 3,9 9,3 2,5 Th ppm 41 18,0 18,1 22,5 12,3 Ra Bq/kg 41 51,5 47,7 115,4 30,6

Silt No Mean a Mean g Max Min K % 27 2,8 3,0 3,5 1,0 U ppm 26 3,8 3,9 5,4 0,8 Th ppm 27 17,5 18,9 22,1 4,7 Ra Bq/kg 26 46,5 48,6 67,3 10,5

Sand No Mean a Mean g Max Min K % 20 1,6 1,6 2,7 1,0 U ppm 19 1,6 1,3 4,1 0,4 Th ppm 20 7,3 6,4 17,0 2,2 Ra Bq/kg 19 19,8 16,4 50,8 5,1

Table 7. Relation between gamma spectrometer measurements on the ground surface (s) and in a dug pit (p) ca 70–80 cm depth at the same locality. No Mean a Mean g Max Min

Ks/Kp (%) 87 0,6 0,5 1,2 0,4

Us/Up (ppm) 85 0,7 0,5 1,9 0,2

Ths/Thp (ppm) 85 0,6 0,5 1,2 0,0

CONCLUSIONS AND RECOMMENDATIONS

The project has showed that clayey black chernozem soils in the Savran district have moder- ate concentrations of radon, uranium and thorium. Despite this the radon levels indoors are elevated above 200 Bq/m3 in many houses. The reason for this is: 1. The construction of buildings with sparse insulation towards the ground. 2. The chernozem is, somewhat astonishing, apparently permeable for the transport of ra- don gas. The sandy soils have low concentrations of the radioactive elements and many houses have low radon concentration indoors in these areas. To discriminate the different clayey or silty soil types and if there are any differences in the concentration of the radioactive elements more field investigations are necessary. Soil maps with detailed soil information can be useful in the continued work. Continued investigations of radon concentration indoors are firstly recommended to con- centrate to the clayey chernozem areas.

21 (43) LITERATURE

The literature list contains a number of reports which are relevant for radon potential inves- tigations.

Appleton J.D., Miles J.C.H., Green B.M.R., Larmour R. 2008. Pilot study of the application of Tel- lus airborne radiometric and soil geochemical data for radon mapping. Journal of Environmental Radioactivity 99 (2008) 1687–1697. Appleton J.D., Rawlins B.G., Thornton I. 2008. National-scale estimation of potentially harmful ele- ment ambient background concentrations in topsoil using parent material classified soil: stream– sediment relationships. Applied Geochemistry 23 (2008) 2596–2611. Barnet I., Pacherova P. 2010. Impact of the deeper geological basement on soil gas and indoor radon concentrations in areas of Quaternary fluvial sediments (Bohemian Massif, Czech Republic). Envi- ron Earth Sci DOI 10.1007/s12665-010-0722-0. Buggle B. et al. 2008. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews 27 (2008) 1058–1075. Chernov A. Uranium Production Plans and Developments in the Nuclear Fuel Industries of Ukraine. Clavensjö B. & Åkerblom G. 2004. Radonboken. Förebyggande åtgärder i nya byggnader. FORMAS. Clavensjö B. 2012. Properties in the Savran district, Odessa region, Ukraine. Radon investigation. Clavensjö Radonkonsult HB. Dubois G., Bossew P., Friedmann H. 2007. A geostatistical autopsy of the Austrian indoor radon survey (1992–2002). Darby S., Hill D., Auvinen A. et al. 2004. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. British Journal of Medicine. Doi:10.1136/ bmj.38308.477650.63. Ek B.-M. 1996. Effects of Freezing and Thawing on Radon in Soils. Radon Investigations in the Czech Republic VI and the Third Int. Workshop on the Geological Aspects of Radon Risk Mapping. Shpak P. & Teslenko J.,1997. The Geology of Ukraine. In: The Encyclopedia of Earth Sciences Series. Encyclopedia of European and Asian . Ed:Fairbridge, R.W. German O. 2007. Report: Mission to Kiev Region May 2007. SSI Report. Gozhik P.F. 1995. Glacial history of the Ukraine. In: Glacial Deposits in North-East Europe. Ed: Ehlers J., Kozarski S. & Gibbard P.L. A.A Balkema, Rotterdam. Kemski J., Klingel R., Siehl A., Valdivia-Manchego M. 2008. From radon hazard to risk prediction – based on geological maps, soil gas and indoor measurements in Germany. Environ Geol DOI 10.1007/s00254-008-1226-z. Kemski J., Klingel R., Siehl A., Stegemann R. 2005. Radon transfer from ground to houses and predic- tion of indoor radon in Germany based on geological information. In: McLaughlin J.P., Simopoulos S.E., Steinhaüsler F. (eds) Radioactivity in the environment, 7. The Natural Radiation Environment VII. Elsevier, Amsterdam, pp 820–832. Naturally Occurring Radioactivity in the Nordic Countries – Recommendations. 2000. The Radia- tion Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden, 2000, 73 p. ISBN 91-89230-00. Petersell V., Åkerblom G., Ek B.-M., Enel M., Möttus V. & Täht K. 2005. Radon Risk Map of Estonia. SSI-Rapport 2005:16. Smalley I. 1997. Making the material; The formation of silt-sized primary mineral particles for loess deposits. Quaternary Science Reviews Vol. 14, pp 645–651. Soil Atlas of Europe. European Soil Bureau Network. European Commission. 2005. Sundal A.V., Henriksen H., Soldal O., Strand T. 2004. The influence of geological factors on indoor radon concentrations in Norway. Sci Total Environ 328:41–53.

22 (43) Tanner A.B. 1980. Radon migration in ground: a supplementary review. In: Gesell TF, Lowder WM (eds) The natural radiation environment III, University of Chicago press, Chicago, pp 5–56. Åkerblom G., Petterson B. and Rosén B. 1988. Markradon (Ground Radon). In the series: Radon in Dwellings. (In Swedish). The Swedish Building Council. Report R85. Second revised edition, 1990, 159 p. ISBN 91-540-4937-7. Geological maps of Ukraine (2000) Leaflets 1–5: Geologic Map of Ukraine, Map of Quaternary For- mation of Ukraine, Metallogenic Map of Ukraine, The Map of Mineral Commodities of Ukraine, Geologic Map Pre-Cenozoic Formations of Ukraine. State Geological Servis of Ukraine.

23 (43) ABBREVIATIONS

SSM Swedish Radiation Safety Authority SIDA Swedish International Development Agency SGU Swedish Geological Survey IHME Marzeev Institute of Hygiene and Medical Ecology, National Academy of Medical Science SES Sanitary Epidemiological Services, Ministry of Health

24 (43) APPENDIX 1 Program Програма

Курсу #4 «Оцінка радонового ризику» Одеса і Саврань, 28 вересеня – 1 жовтня 2010р. Понеділок, 27 вересня. Прибуття до Одеси.

Tuesday, September 28. Вівторок, 28 вересня.

Time Activity Name

09:30 Opening and introduction, plans for the week Olga German Відкриття і вступне слово, план на тиждень Ольга Герман, Швеція 10:00 Regulatory documents of Ukraine Mikhail Buzinnyy Регламентуючі документи в Україні (з питань радонової Михайло Бузинний, Україна небезпеки) 10:20 Basic knowledge in radiophysics Mikhail Buzinnyy Базовий курс радіофізики. Михайло Бузинний, Україна 11:00 Coffee, Перерва на каву. 11:20 Natural radioactivity and basic terminology Sergey Karakanza, Olga German Природна радіоактивність і базова термінологія. Сергій Караканза, Україна, і Ольга Герман, Швеція 12:00 Natural radioactivity of water Britt Marie Ek Природна радіоактивність води Бріт Марі Ек, Швеція 13:00 Lunch. Перерва на обід. 14:00 Geological characteristics of Odessa Oblast and Savran’ dis- Sergey Karakanza trict, quarter characteristics Сергій Караканза, Україна Геологічна характеристика Одеської області і Савранського району, четвертинний період 15:00 Repetition and clarification All Повторення і пояснення пройденого матеріалу 15:30 Coffee Перерва на каву. 15:50 How to measure gamma radiation, demonstration of meas- Mikhail Buzinnyy urement equipment Михайло Бузинний, Україна Вимірювання гамма-випромінювань, демонстрація вимірювальної апаратури. 16:20 How to measure radon in soil, demonstration of equipment Britt Marie Ek Вимірювання радону в ґрунтах, демонстрація апаратури Бріт Марі Ек, Швеція 17:00 End of the day Закінчення робочого дня

25 (43) Wednesday, September 29. Середа 29 вересня.

Time Activity Name

9:00 Repetition of day one Olga German Повторення матеріалів першого навчального дня Ольга Герман, Швеція 9:20 Health risks with radon Olga German Радоновий ризик для здоровя. Ольга Герман, Швеція 10:00 Examining soil and making risk assessment Britt Marie Ek Дослідження ґрунтів і критерії оцінки радонового ризику. Бріт Марі Ек, Швеція 11:00 Coffee Перерва на каву 11:20 Täktundersökningar, exempel på markradonundersökningar Britt Marie Ek Исследования подстилающей поверхности, примері оценки Бріт Марі Ек, Швеція радонового риска 12:00 Practical training of measurements out-doors Britt Marie Ek Практичні заняття вимірів на відкритому повітрі. Бріт Марі Ек, Швеція 13:00 LunchО Обід 14:00 Analysis of measurements outdoors All Аналіз результатів вимірів на відкритому повітрі 14:30 Group tasks Britt Marie Ek Групові завдання Бріт Марі Ек, Швеція 15:30 Coffee Перерва на каву 16:00 Calculation and Reporting group tasks All Розрахунки і складання звіту групового обговорення 16:50 Plans for Savran’ trip Olga German План поїздки в Савранський район Ольга Герман, Швеція 17:20 End of the day Закінчення робочого дня

26 (43) Thursday, September 30. Четвер, 30 вересня.

Time Activity Name

8:00 Transfer to Savran’ district Переїзд в Савранський район

11:00 Hotel, planning meeting Olga German Готель, планування засідання Ольга Герман, Швеція

12:00 LunchО Обід Обід

13:00 Start measurements in 2 groups, collecting water samples Початок вимірів в 2 групах, відбір проб води

17:00 Meeting for reporting Фахівці з радіології Засідання з обговорення результатів роботи Швеції і України,

17:30 End of the day Закінчення робочого дня

18:30 Dinner Вечеря Вечер

Friday, October 1. П’ятниця, 1 жовтня.

Time Activity Name 9:00 Planning the day, tasks distribution Планування робочого дня, розподіл роботи 09:30 Measurements in 2 groups, collecting water samples Виміри робота в 2 групах, відбір проб води 12:30 Lunch Перерва на обід 13:30 Continue measurements in groups Продовження вимірів в групах 16:00 Work with the collected data Обробка даних 17:00 Reporting of results Доповідь результатів 17:30 End of the day Закінчення робочого дня 18:30 Departure to Odessa from Savran’ Переїзд із Саврані до Одеси.

27 (43) APPENDIX 2 Results from field measurements in the Savran district.

Id Depth K U Th Ra AI Soil type Topsoil type Markus cm % ppm ppm Bq/kg kBq/m3 bm 1a 0 1,8 1,9 10,2 23 0,5 silt chernozem >80cm bm 1b1 70 3,1 3,8 16,3 47 0,8 silt chernozem >80cm 41 bm 1b2 70 3,0 4,0 20,3 50 0,9 silt chernozem >80cm 37 bm 2a 0 1,5 2,1 7,2 26 0,4 silt chernozem >80cm bm 2b 70 2,7 3,2 14,5 39 0,7 silt chernozem >80cm bm 3a 0 1,3 2,2 9,9 27 0,4 brown gray thin grey 42 silt bm 3b 60 2,8 3,8 19,7 47 0,9 brown gray thin grey 42 silt bm 4a 0 0,7 0,8 2,3 10 0,2 medium grey 3 sand bm 4b1 70 1,2 0,6 2,9 8 0,2 medium grey sand bm 4b2 70 1,2 0,5 2,9 6 0,2 medium grey 4 sand bm 5a 0 1,3 2,2 9,5 27 0,4 silt chernozem bm 5b1 70 2,8 3,6 16,8 44 0,8 silt chernozem 51 bm 5b2 70 2,7 4,1 14,2 51 0,7 silt chernozem 63 bm 6a 0 1,5 7,9 10,0 98 0,7 silt chernozem 54 bm 6b1 0 1,6 5,8 11,5 72 0,6 silt chernozem 108 bm 6b2 80 2,9 5,4 20,2 67 0,9 silt chernozem bm 7a1 0 1,5 5,5 10,3 67 0,6 silt chernozem 49 bm 7a2 0 1,4 4,9 9,3 60 0,5 silt chernozem 44 bm 7c 70 3,5 4,2 19,7 52 0,9 silt chernozem bm 8a 0 1,7 2,5 10,5 31 0,5 silt chernozem 78 bm 8b 70 3,3 4,5 22,0 55 1,0 silt chernozem 76 bm 9a 0 1,7 2,2 9,7 27 0,5 silt chernozem 48 bm 9b1 70 3,5 3,5 19,3 43 0,9 silt chernozem bm 9b2 70 silt chernozem 64 bm 10b1 70 sandy silty chernozem 26 bm 10b2 70 sandy silty chernozem 23 bm 11a 0 1,6 2,0 8,3 24 0,4 silt chernozem 47 bm 11b 70 silt chernozem 57 bm 12a 0 1,6 2,0 11,0 25 0,5 silt chernozem 57 bm 12b 70 3,0 5,0 19,6 61 0,9 silt chernozem 70 bm 13a 0 1,6 1,8 10,6 22 0,5 silt chernozem 51 bm 14a 0 0,4 0,7 1,8 9 0,1 medium no topsoil 6 sand og 1a 0 sand brown 2 og 1b 80 1,3 1,1 4,7 13,9 0,3 sand brown 3 og 2a 0 0,8 0,9 3,3 10,7 0,2 sand chernozem 4 og 2b 80 1,4 1,7 6,3 20,9 0,3 sand chernozem 7 og 3a 0 0,7 0,7 3,3 8,8 0,2 fine sand chernozem 4 og 3b 80 1,6 1,2 7,3 14,2 0,4 fine sand chernozem 4 og 4a 0 0,8 1,0 4,5 12,2 0,2 sand brown 8 og 4b 80 1,6 1,5 8,1 18,8 0,4 sand brown og 5a 0 1,4 2,2 7,6 27,2 0,4 loess, silt chernozem 29 og 5b 80 3,2 4,3 19,4 53,0 0,9 loess, silt chernozem 33 og 6a 0 1,4 2,0 9,0 24,7 0,4 silty clay chernozem 38

28 (43) Id Depth K U Th Ra AI Soil type Topsoil type Markus cm % ppm ppm Bq/kg kBq/m3 og 6b 80 3,1 3,8 20,1 47,5 0,9 silty clay chernozem og 7a 0 1,4 1,1 8,3 13,8 0,4 silt chernozem 17 og 7b 80 2,4 3,6 15,1 44,6 0,7 silt chernozem 25 og 8a 0 1,4 1,8 7,6 22,8 0,4 silt chernozem 28 og 8b 80 2,8 3,0 18,6 36,7 0,8 silt chernozem 38 og 9a 0 1,6 5,5 11,1 67,8 0,6 silt chernozem, podsol 19 og 9b 80 3,4 4,9 22,1 60,2 1,0 silt chernozem, podsol 25 og 10a 0 1,5 6,1 10,5 75,2 0,6 Clay? chernozem 25 og 10b 80 3,5 4,1 21,7 50,5 1,0 Clay? chernozem og 11a 0 1,7 3,1 10,7 38,9 0,5 clay silt chernozem og 11b 100 2,3 5,2 16,6 64,4 0,8 clay silt chernozem og 12a 0 1,5 2,7 9,9 33,8 0,5 silt chernozem 33 og 12b 80 3,3 5,4 18,9 66,6 0,9 silt chernozem og 13a 0 1,6 2,0 9,8 24,5 0,5 silt 24 og 13b 80 3,0 4,3 20,2 53,4 0,9 silt og 14a 0 1,1 1,8 7,6 21,8 0,3 silt chernozem og 14b 80 2,9 3,3 16,1 41,0 0,8 silt chernozem 21 og 15a 0 0,7 1,0 3,3 11,9 0,2 sand chernozem og 15b 70 1,7 0,7 6,4 8,5 0,3 sand chernozem 15 og 16a 0 0,0 0,0 0,0 0,0 0,0 fine sand forest soil og 16b 80 1,3 1,3 5,5 16,4 0,3 fine sand forest soil 7 og 17a 0 0,8 1,8 0,2 21,9 0,2 fine sand chernozem og 17b 80 1,6 1,4 9,1 17,9 0,4 fine sand chernozem og 18a 0 1,4 2,5 11,1 30,4 0,5 Silt? chernozem 38 og 18b 80 3,3 3,7 22,5 45,6 0,9 Silt? chernozem og 19a 0 4,4 6,2 45,8 77,0 1,6 migmatite og 19b 0 3,7 3,7 37,7 45,5 1,3 migmatite og 20a 0 1,1 2,4 8,7 29,3 0,4 silty fine chernozem 18 sand on clay bm 20a 0 1,2 1,4 8,0 16,7 0,3 clay chernozem 28 og 20b 80 2,2 3,6 15,1 44,1 0,7 clay chernozem bm 20b 80 2,2 2,5 13,9 30,6 0,6 clay chernozem bm 21a 0 1,3 2,4 9,1 29,2 0,4 clayey silt, chernozem silty clay og 21a 0 1,3 2,5 10,1 30,6 0,4 clayey silt, chernozem silty clay og 21b 80 2,2 4,2 17,0 51,6 0,7 clayey silt, chernozem silty clay bm 21b 80 2,1 3,8 14,7 46,7 0,7 clayey silt, chernozem silty clay bm 23a 0 0,6 0,9 4,5 10,9 0,2 silt, gray chernozem 4 brown og 23a 0 0,7 1,0 5,1 12,6 0,2 silt, gray chernozem 7 brown bm 23b 80 1,0 1,8 8,0 21,6 0,3 silt, gray chernozem brown og 23b 80 1,0 2,4 7,3 29,2 0,3 silt, gray chernozem brown bm 24a 0 1,4 1,2 6,4 15,3 0,3 silty dark chernozem 25 gray bm 24b 80 3,0 2,7 15,0 33,3 0,7 silty dark gray chernozem

29 (43) Id Depth K U Th Ra AI Soil type Topsoil type Markus cm % ppm ppm Bq/kg kBq/m3 bm 25a1 0 2,6 1,8 26,9 21,6 0,9 gneiss bedrock granitic bm 25a2 0 1,9 1,3 13,4 16,4 0,5 gneiss bedrock granitic bm 25a3 0 3,5 0,4 5,6 5,5 0,5 gneiss bedrock granitic bm 26a 0 0,8 0,6 1,9 7,4 0,1 silty sand chernozem bm 26b 80 1,6 1,4 6,4 17,3 0,4 silty sand chernozem bm 27a 0 1,4 1,5 7,6 18,9 0,4 sandy silt chernozem 45 bm 27b 75 2,6 3,2 15,4 40,1 0,7 clayey chernozem bm 28a 0 1,3 0,8 6,3 9,9 0,3 silty sand yellow 35 on silty clay bm 28b 70 2,9 2,9 14,6 35,4 0,7 silty sand on silty clay bm 29a 0 0,6 0,8 1,7 9,9 0,1 coarse sand medium sand 1 bm 29b 80 1,0 0,4 2,7 5,1 0,2 coarse sand medium sand 4 bm 30a 0 1,0 1,6 4,8 19,8 0,3 sandy chernozem 11 bm 30b 70 1,5 1,0 5,5 12,2 0,3 sandy chernozem 8 bm 31a 0 1,7 2,0 9,1 24,3 0,4 brown fine black chernozem clay bm 31b 70 3,3 4,8 19,6 59,5 0,9 brown fine black chernozem clay bm 32a 0 1,7 1,5 9,8 18,6 0,4 clayey black chernozem bm 33a 0 1,4 6,0 8,9 74,4 0,6 clayey black chernozem 22 bm 33b 60 3,3 4,0 17,9 49,7 0,9 clayey black chernozem 44 bm 34a 0 2,0 1,2 9,8 14,7 0,5 clayey black chernozem 30 bm 35a 0 1,7 1,5 8,6 19,0 0,4 clayey black chernozem 14 bm 35b 70 2,8 3,1 18,4 38,6 0,8 clayey black chernozem 46 bm 36a 0 1,7 1,7 9,6 21,2 0,4 clayey dark gray chernozem 32 bm 36b 60 2,9 3,2 17,0 39,6 0,8 clayey dark gray chernozem bm 37a 0 1,7 1,4 11,4 17,1 0,5 clay black chernozem 41 bm 37b 70 0,0 0,0 0,0 0,0 0,0 clay black chernozem 30 bm 38a 0 1,8 0,8 9,1 10,0 0,4 clay black chernozem 62 bm 38b 70 3,3 4,4 18,0 54,1 0,9 clay black chernozem 54 bm 39a 0 1,8 2,0 9,3 24,7 0,5 clay black brown cher- 48 nozem bm 39b 70 3,2 37,8 1,1 clay black brown cher- 29 nozem bm 40a1 0 1,7 1,0 9,0 12,9 0,4 clay black chernozem bm 40a2 0 1,6 1,4 9,0 17,9 0,4 clay black chernozem 40 bm 40b 70 3,3 3,0 20,2 37,5 0,9 clay black chernozem 33 bm 41a 0 1,6 1,6 7,8 19,3 0,4 clay black chernozem 48 bm 41b 70 3,9 4,0 18,9 49,0 1,0 clay black chernozem bm 42a 0 1,5 0,8 10,3 10,5 0,4 clay black chernozem bm 42b 70 3,0 3,3 20,9 40,2 0,9 clay black chernozem bm 43a 0 1,4 1,3 9,8 15,6 0,4 clay reddish brown bm 44a 0 1,6 1,1 10,0 14,1 0,4 clay black chernozem 62 bm 44b 70 3,0 4,2 18,1 52,1 0,9 clay black chernozem bm 45a 0 0,9 0,6 3,3 7,4 0,2 sandy silt grey black cher- 13 nozem bm 45b 70 1,8 1,4 7,4 17,5 0,4 sandy silt grey black cher- 5 nozem bm 46a 0 0,9 1,0 5,7 12,5 0,3 clayey grey brown sandy silt

30 (43) Id Depth K U Th Ra AI Soil type Topsoil type Markus cm % ppm ppm Bq/kg kBq/m3 bm 47a 0 0,9 0,5 3,1 6,0 0,2 silty fine gray chernozem 9 sand bm 47b 70 1,5 0,8 4,7 10,5 0,3 silty fine gray chernozem 4 sand bm 48a 0 1,5 1,9 8,6 23,0 0,4 clay grey black cher- 27 nozem bm 48b 70 3,2 4,0 18,9 49,9 0,9 clay grey black cher- 42 nozem bm 49a 0 1,6 1,9 9,6 23,1 0,4 clay dark chernozem 34 bm 49b 70 2,8 3,6 17,5 44,8 0,8 clay dark chernozem bm 50a 0 1,2 1,0 6,1 12,4 0,3 sandy silty black chernozem 8 bm 50b 70 1,7 1,3 9,4 15,8 0,4 sandy silty black chernozem 19 bm 51a 0 1,4 1,6 7,6 19,8 0,4 clay black chernozem bm 52a 0 1,6 1,5 11,6 18,5 0,5 clay black chernozem bm 52b 70 3,3 3,7 19,5 45,2 0,9 clay black chernozem bm 53a 0 1,6 1,4 9,0 17,9 0,4 clay dark chernozem bm 53b 70 3,2 3,7 17,5 45,9 0,8 clay dark chernozem bm 54a 0 1,5 1,4 10,0 17,0 0,4 clay chernozem bm 55a 0 1,5 1,4 8,6 17,0 0,4 clay grey black cher- 28 nozem bm 55b 70 3,0 2,7 19,4 33,8 0,8 clay grey black cher- nozem og 24b 0 1,5 2,8 8,9 34,9 0,5 clay black chernozem 17 og 24a 80 2,7 3,8 17,9 46,3 0,8 clay black chernozem 28 og 25a 0 1,7 2,0 10,2 25,0 0,5 clay black chernozem 35 og 25b 80 2,5 5,1 16,5 63,1 0,8 clay black chernozem og 26a 0 1,5 1,9 8,4 23,2 0,4 clay chernozem 32 og 26b 80 2,7 5,5 17,2 68,4 0,9 clay chernozem 19 og 27a 0 1,0 2,2 5,6 27,3 0,3 sandy clay 13 og 27b 80 2,4 2,6 10,2 32,2 0,6 sandy clay 10 og 28a 0 1,4 1,4 7,5 17,2 0,4 clay chernozem 17 og 28b 80 2,4 3,5 12,3 42,8 0,6 clay chernozem 14 og 29a 0 0,7 1,0 2,3 12,9 0,2 sand 4 og 29b 80 1,3 1,3 4,7 16,1 0,3 sand 4 og 30a 0 1,2 2,4 7,5 29,9 0,4 Clay? chernozem >85cm 10 og 30b1 80 1,5 11,8 145,7 0,6 Clay? chernozem >85cm og 30b2 80 1,3 3,6 17,0 44,1 0,6 Clay? chernozem >85cm og 31a 0 0,8 1,4 4,1 17,4 0,2 sand grey forest soil 2 og 31b 80 1,5 0,9 4,0 11,6 0,3 sand grey forest soil 4 og 33a 0 1,3 2,0 9,2 24,4 0,4 coarse 8 sand og 33b 90 1,5 3,1 10,9 38,8 0,5 coarse 12 sand og 34a 0 1,2 1,6 6,7 20,3 0,3 Silty? chernozem >80cm 5 og 34b 80 2,9 17,7 0,6 Silty? chernozem >80cm 30 og 35a1 0 1,4 2,0 7,6 25,1 0,4 peat on clay og 35a2 0 1,1 1,5 6,9 18,1 0,3 peat on clay og 36a 0 1,5 4,6 0,4 56,4 0,4 clay podzol chernozem og 36b 60 3,4 4,0 20,3 50,0 0,9 clay podzol chernozem og 37a 0 1,4 2,3 9,0 27,9 0,4 clay podzol chernozem og 38a 0 2,0 2,1 11,4 25,7 0,5 clay podzol chernozem

31 (43) Id Depth K U Th Ra AI Soil type Topsoil type Markus cm % ppm ppm Bq/kg kBq/m3 og 38b 90 3,3 3,9 14,1 47,7 0,8 clay podzol chernozem og 39a 0 1,7 2,2 10,4 26,6 0,5 chernozem >90 cm og 39b 90 2,1 9,3 18,2 115,4 1,0 chernozem >90 cm og 40a 0 1,8 2,6 10,4 32,4 0,5 chernozem >70 cm og 40b 70 3,6 4,5 21,4 56,0 1,0 chernozem >70 cm og 41a1 70 0,0 0,0 0,0 peat chernozem 15 og 41a2 70 0,0 0,0 0,0 peat chernozem 13 og 42a1 0 0,7 1,0 2,3 11,8 0,2 sand chernozem 7 og 42a2 0 0,7 0,5 3,8 6,4 0,2 sand chernozem og 42b1 90 1,7 3,3 0,2 sand chernozem 21 og 42b2 90 1,8 1,2 0,2 sand chernozem og 43a 0 1,3 1,2 7,9 14,3 0,3 silt chernozem 22 og 43b1 80 2,2 0,1 19,5 1,6 0,6 silt chernozem 27 og 43b2 80 2,5 3,0 16,1 37,1 0,7 silt chernozem og 44a 0 1,4 1,7 7,9 21,2 0,4 clay chernozem og 44b 80 2,7 3,8 18,2 47,0 0,8 clay chernozem og 45a 0 1,8 1,9 9,2 23,8 0,5 clay podzol chernozem 23 og 45b 80 3,8 4,4 21,2 54,7 1,0 clay podzol chernozem 31 og 46a 0 1,9 1,9 9,7 23,4 0,5 clay chernozem og 46b 80 3,2 3,8 19,5 46,7 0,9 clay chernozem og 47a 0 1,7 1,6 9,3 20,0 0,4 clay chernozem 24 og 47b 80 3,3 4,7 19,4 58,0 0,9 clay chernozem 44 og 48a 0 1,5 1,6 9,5 20,2 0,4 clay chernozem og 48b 80 2,6 5,0 15,5 61,7 0,8 clay chernozem og 49a 0 1,3 1,9 8,8 23,6 0,4 clay chernozem 12 og 49b 80 2,2 3,1 17,1 38,0 0,7 clay chernozem 29 og 50a 0 1,4 2,2 10,6 26,8 0,5 silt chernozem >80 cm 44 og 50b 80 3,2 4,5 19,0 55,5 0,9 silt chernozem >80 cm og 51a1 0 1,6 1,9 9,4 22,9 0,4 silt chernozem >80 cm 51 og 51a2 0 1,6 2,0 10,6 24,3 0,5 silt chernozem >80 cm og 51b 80 3,1 5,4 21,4 67,3 1,0 silt chernozem >80 cm og 52a 0 1,6 2,7 9,1 33,9 0,5 clay chernozem 69 og 52b 80 2,8 4,7 19,9 58,7 0,9 clay chernozem og 53a 0 1,4 2,2 9,4 27,6 0,4 clay chernozem 79 og 53b 80 2,9 4,5 20,2 55,7 0,9 clay chernozem og 54a 0 1,5 1,6 9,7 19,6 0,4 silt chernozem og 54b 70 3,0 4,0 20,7 48,8 0,9 silt chernozem og 55a 0 1,6 2,0 9,6 24,3 0,4 silt chernozem 22 og 55b 70 2,8 4,2 18,6 51,8 0,8 silt chernozem og 56a 0 1,2 1,8 7,4 22,0 0,4 sand chernozem 13 og 56b 80 2,3 3,4 14,5 41,5 0,7 sand chernozem og 57a 0 1,5 2,2 9,0 27,7 0,4 sand pozol 23 og 57b 70 2,7 4,1 17,0 50,8 0,8 sand pozol og 58a 0 1,4 1,3 9,7 16,5 0,4 clay pozol 20 og 58b 80 2,2 3,3 17,7 41,3 0,7 clay pozol og 59a 0 1,6 2,7 10,7 32,9 0,5 clay chernozem 44 og 59b 70 3,0 5,4 18,4 66,6 0,9 clay chernozem og 60a 0 1,5 2,3 9,0 28,7 0,4 clay chernozem 45 og 60b 70 3,0 5,1 19,3 63,0 0,9 clay chernozem

32 (43) APPENDIX 3 Results from radon measurements in Savran district.

ID Soil Radon ID Soil Radon ID Soil Radon kBq/m3 kBq/m3 kBq/m3 bm 1b1 silt 41 og 12a silt 33 bm 55a clay 28 bm 1b2 silt 37 og 13a silt 24 og 24a clay 17 bm 3a silt 42 og 14b silt 21 og 24b clay 28 bm 3b silt 42 og 15b sand 15 og 25a clay 35 bm 4a sand 3 og 16b sand 7 og 26a clay 32 bm 4b2 sand 4 og 18a silt 38 og 26b clay 19 bm 5b1 silt 51 og 20a clay 18 og 27a sandy 13 bm 5b2 silt 63 bm 20a clay 28 og 27b sandy 10 bm 6a silt 54 bm 23a silt 4 og 28a clay 17 bm 6b1 silt 108 og 23a silt 7 og 28b clay 14 bm 7a1 silt 49 bm 24a silt 25 og 29a sand 4 bm 7a2 silt 44 bm 27a silt 45 og 29b sand 4 bm 8a silt 78 bm 28a clay 35 og 30a clay? 10 bm 8b silt 76 bm 29a sand 1 og 31a sand 2 bm 9a silt 48 bm 29b sand 4 og 31b sand 4 bm 9b2 silt 64 bm 30a sand 11 og 33a sand 8 bm 10b1 silt 26 bm 30b sand 8 og 33b sand 12 bm 10b2 silt 23 bm 33a clay 22 og 34a silty 5 bm 11a silt 47 bm 33b clay 44 og 34b silty 30 bm 11b silt 57 bm 34a clay 30 og 41b1 peat 15 bm 12a silt 57 bm 35a clay 14 og 41b2 peat 13 bm 12b silt 70 bm 35b clay 46 og 42a1 sand 7 bm 13a silt 51 bm 36a clay 32 og 42b1 sand 21 bm 14a sand 6 bm 37a clay 41 og 43a silt 22 og 1a sand 2 bm 37b clay 30 og 43b1 silt 27 og 1b sand 3 bm 37a clay 62 og 45a clay 23 og 2a sand 4 bm 38b clay 54 og 45b clay 31 og 2b sand 7 bm 39a clay 48 og 46b clay 24 og 3a sand 4 bm 39b clay 29 og 47a clay 44 og 3b sand 4 bm 40a2 clay 40 og 49a clay 12 og 4a sand 8 bm 40b clay 33 og 49b clay 29 og 4b sand 0 bm 41a clay 48 og 50a silt 44 og 5a silt 29 bm 44a clay 62 og 51a1 silt 51 og 5b silt 33 bm 45a sandy 13 og 52a clay 69 og 6a clay 38 bm 45b sandy 5 og 53a clay 79 og 7a silt 17 bm 47a sand 9 og 55a silt 22 og 7b silt 25 bm 47b sand 4 og 56a sand 13 og 8a silt 28 bm 48a clay 27 og 57a sand 23 og 8b silt 38 bm 48b clay 42 og 58a clay 20 og 9a silt 19 bm 49a clay 34 og 59a clay 44 og 9b silt 25 bm 50a sandy 8 og 60a clay 45 og 10a clay 25 bm 50b sandy 19

33 (43) APPENDIX 4 Maps

Appendix 4.1 Savran district, gammaspectrometric measurements on soil

")") ") ") ") ") ") ") ") ") ") ") ") ") Quarry ") ") ") ") ")") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ")") ") ") ") ") ") ")") ") ")") ") ") ") ")")") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ")") ") ") ") ") ") ") ")") ") ") ") ")

")

Legend 0 5 10 Kilometers Uranium, on the surface ppm ") <1,0 ") 1,1 - 2,0 ") 2,1 - 3,0 ") 3,1 - 5,0 ") 5,1 - 8,0

34 (43) Appendix 4.2 Savran district, gammaspectrometric measurements in soil

")") ") ") ") ") ") ") ") ") ") ") ") ")

") ") ")") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ") ")") ") ") ") ") ")") ")") ") ") ")")") ") ") ") ") ") ") ") ") ") ") ") ") ")") ")")") ") ") ") ") ") ") ")

")

Legend 0 5 10 Kilometers Uranium, 70 - 80 cm depth ppm ") <1,0 ") 1,1 - 2,0 ") 2,1 - 3,0 ") 3,1 - 5,0 ") 5,1 - 15,0

35 (43) Appendix 4.3 Savran district, gammaspectrometric measurements on soil

Quarry

Legend 0 5 10 Kilometers Thorium, on the surface ppm < 5,0 5,1 - 10,0 10,1 - 15,0 15,1 - 25,0 25,1 - 50,0

36 (43) Appendix 4.4 Savran district, gammaspectrometric measurements in soil

Legend 0 5 10 Kilometers Thorium, 70 - 80 cm depth ppm < 5,0 5,1 - 10,0 10,1- 15,0 15,1 - 25,0 25,1 - 50,0

37 (43) Appendix 4.5 Savran district, gammaspectrometric measurements on soil

+$+$ +$ +$ +$ +$ +$ $ +$ ++$ +$ +$ +$+$ Quarry +$ +$ +$ +$+$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$+$ +$ +$ +$ +$ +$+$ +$ +$ +$+$ +$ +$ +$ +$+$+$ +$ +$ +$ +$ +$ +$ +$$ +$+$ +$ +$ +$ + +$+$ +$+$+$ +$ +$ +$ +$ +$+$ +$ +$ +$ +$ +$

Legend 0 5 10 Kilometers Potassium, on the surface K proc +$ < 1,0 +$ 1,1 - 2,0 +$ 2,1 - 3,0 +$ 3,1 - 4,5

38 (43) Appendix 4.6 Savran district, gammaspectrometric measurements in soil

+$+$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$+$ +$ +$ +$ +$+$ +$ +$ +$ +$+$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$ +$+$ +$ +$ +$ +$ +$+$ +$+$ +$ +$ +$+$+$ +$ +$ +$ +$ +$$ +$+$ +$ +$ +$ + +$+$ +$+$+$ +$ +$ +$ +$+$ +$ +$ +$

+$

0 5 10 Kilometers Legend Potassium, 70-80 cm depth K proc +$ < 1,0 +$ 1,1 - 2,0 +$ 2,1 - 3,0 +$ 3,1 - 4,0

39 (43) Appendix 4.7 Savran district, measurements of radon in soil gas with MARKUS10, 70 cm depth

(!

(! (! (! (! (! (! (! (! (! (! (! (! (! (!(! (! (! (!(! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (! (!(! (! (!

(! (! (!(!(! (! (! (! ! (! (! (! (! (! (!(! (!(! (! (! (! (! (! (! (! (! (! (! (! (!

Legend 0 5 10 Kilometers Radon kBq/m3 (! < 10,0 (! 10,1 - 20,0 (! 20,1 - 40,0 (! 40,1 - 60,0 (! 60,1 - 81,0

40 (43) APPENDIX 5 Coordinates for field localities (Degrees and minutes)

IDnr North East IDnr North East bm1a 48,18093333 29,95078333 bm40a 48,01057 29,95783333 bm2a 48,18690000 29,92625000 bm41a 48,03568 29,92403333 bm3a 48,17810000 29,90531667 bm42a 48,04393 29,90896667 bm4a 48,10266667 29,89751667 bm43a 48,0527 29,91126667 bm5a 48,12538333 29,89670000 bm44a 48,06602 29,91600000 bm6a 48,03416667 29,92525000 bm45a 48,10323 29,91945000 bm7a 48,04788333 29,92551667 bm46a 48,10318 29,89145000 bm8a 48,02366667 29,96423333 bm47a 48,1044 29,89180000 bm9a 48,00621667 30,00356667 bm48a 48,16795 29,98561667 bm10b 48,00006667 30,03566667 bm49b 48,19367 29,99213333 bm11a 48,01101667 30,04045000 bm50a 48,11435 30,07183333 bm12a 48,03591667 30,07736667 bm51a 48,08408 30,06956667 bm13a 48,06428333 30,00333333 bm52a 48,04097 30,06950000 bm14a 48,11471667 30,05550000 bm53a 48,04343 30,04160000 og1a 48,14126667 30,16366667 bm54a 48,0422 30,08071667 og2a 48,13771667 30,16163333 bm55a 48,03225 30,06468333 og3a 48,14361667 30,18113333 og24b 48,15398 30,02930000 og4a 48,14258333 30,13140000 og25a 48,15393 30,02973333 og5a 48,09518333 30,20676667 og26a 48,14887 30,01985000 og6a 48,1077 30,20821667 og27a 48,1456 30,02075000 og7a 48,1077 30,20821667 og28a 48,13173 30,02786667 og8a 48,10838333 30,20728333 og29a 48,12703 30,05746667 og9a 48,06393333 30,13640000 og30a 48,1131 30,05441667 og10a 48,0643 30,12876667 og31a 48,11417 30,05450000 og11a 48,06211667 30,14288333 og33a 48,11518 30,08668333 og12a 48,06843333 30,14210000 og34a 48,12197 30,11690000 og13a 48,04066667 30,19066667 og35a1 48,1226 30,08043333 og14a 48,12751667 30,28095000 og36a 48,08747 30,11105000 og15a 48,13598333 30,13873333 og37a 48,08788 30,11001667 og16a 48,13501667 30,26818333 og38a 48,08712 30,10990000 og17a 48,1433 30,25978333 og39a 48,07932 30,11313333 og18a 48,03471667 30,24546667 og40a 48,08112 30,12175000 og19a 48,14768333 30,19685000 og41a 48,12788 30,13173333 og20a 48,11306667 30,07271667 og42a 48,13497 30,23363333 bm21a 48,11133333 30,07256667 og43a 48,1263 30,22868333 bm23a 48,15101667 30,05981667 og44a 48,10247 30,20180000 bm24a 48,1460 30,02268333 og45a 48,03823 30,18705000 bm25a 48,14655 30,02186667 og46a 48,03082 30,20108333 bm26a 48,12478333 29,99200000 og47a 48,03082 30,20631667 bm27a 48,12623333 29,94620000 og48a 48,03078 30,24736667 bm28a 48,1094 29,95123333 og49a 48,033 30,23683333 bm29a 48,11825 30,01683333 og50a 48,03847 30,21601667 bm30a 48,1099 29,99910000 og51a 48,04683 30,18230000 bm31a 48,08865 30,03040000 og52a 48,1719 29,97348333 bm32a 48,07993333 29,98491667 og53a 48,18397 29,98410000 bm33a 48,00435 29,97700000 og54a 48,2115 29,99130000 bm34a 47,98565 30,01705000 og55a 48,21413 29,98263333 bm35a 47,9679 30,07078333 og56a 48,20442 29,96206667 bm36a 47,99128 30,03925000 og57a 48,17222 29,93766667 bm37a 47,99252 30,05215000 og58a 48,17312 29,91521667 bm38a 48,02127 29,09806667 og59a 48,18512 29,90415000 bm39a 48,007 29,97323333 og60a 48,17597 29,95876667

41 (43) APPENDIX 6 Indoor radon concentration of rural dwellings in the Savran district, Odesskya Oblast

Concentration Domineering soil Soil type according Concentration Place 222Rn, Bq×м-3 type in the village to Clavensjö under 222Rn, Bq×м-3 Meana and meang per village area building Baibuzivka 215 179 /176 Silt/Sand Sand and clay Baibuzivka 250 Silt/Sand Sand and clay Baibuzivka 235 Silt/Sand ? Baibuzivka 123 Silt/Sand Baibuzivka 83 Silt/Sand Baibuzivka 338 Silt/Sand Sand Baibuzivka 75 Silt/Sand Baibuzivka 163 Silt/Sand Baibuzivka 188 Silt/Sand Baibuzivka 120 Silt/Sand Baksha 143 317/ 222 Clay ? Baksha 168 Clay ? Baksha 275 Clay Baksha 903 Clay Clay Baksha 365 Clay Baksha 93 Clay Baksha 155 Clay Baksha 435 Clay Vilshanka 43 104/92 Sand Vilshanka 125 Sand ? Vilshanka 85 Sand Vilshanka 88 Sand Vilshanka 110 Sand Vilshanka 243 Sand Sand Vilshanka 120 Sand Vilshanka 48 Sand Vilshanka 95 Sand Vilshanka 85 Sand Glubochok 68 147/113 Silt/Clay Glubochok 280 Silt/Clay Glubochok 213 Silt/Clay Glubochok 73 Silt/Clay Glubochok 268 Silt/Clay Soil Glubochok 135 Silt/Clay Glubochok 103 Silt/Clay Glubochok 113 Silt/Clay Glubochok 70 Silt/Clay Dubinovo 173 166/173 Silt/Sand Sand Dubinovo 188 Silt/Sand Dubinovo 175 Silt/Sand Sand Dubinovo 145 Silt/Sand Dubinovo 180 Silt/Sand Dubinovo 150 Silt/Sand Dubinovo 150 Silt/Sand Iosipovka 288 179/153 Clay ? Iosipovka 125 Clay Clay

42 (43) Concentration Domineering soil Soil type according Concentration Place 222Rn, Bq×м-3 type in the village to Clavensjö under 222Rn, Bq×м-3 Meana and meang per village area building Iosipovka 388 Clay Clay Iosipovka 153 Clay Iosipovka 153 Clay Iosipovka 83 Clay Iosipovka 60 Clay Iosipovka 185 Clay Кам’yanе 263 277/263 Clay Clay Кам’yanе 35 Clay Кам’yanе 178 Clay Кам’yanе 368 Clay Sand Кам’yanе 698 Clay Sand Кам’yanе 85 Clay Кам’yanе 308 Clay Sand Кам’yanе 333 Clay Sand Кам’yanе 200 Clay Кам’yanе 320 Clay Sand Кам’yanе 258 Clay Sand Каpustyanka 345 214/173 Clay Каpustyanka 435 Clay Silt, clay Каpustyanka 173 Clay Каpustyanka 198 Clay Каpustyanka 145 Clay Каpustyanka 100 Clay Каpustyanka 100 Clay Polyanetske 125 150/125 Clay ? Polyanetske 178 Clay Sand Polyanetske 125 Clay Polyanetske 118 Clay Polyanetske 35 Clay Polyanetske 225 Clay Polyanetske 90 Clay Polyanetske 123 Clay Polyanetske 340 Clay Polyanetske 140 Clay Polyanetske 150 Clay Slyusareve 370 148/101 Sand/silt/clay ? Slyusareve 143 Sand/silt/clay Sand Slyusareve 55 Sand/silt/clay Slyusareve 58 Sand/silt/clay Slyusareve 50 Sand/silt/clay Slyusareve 213 Sand/silt/clay Sand

43 (43)