Rapida RDC 106 – High Performance in Die-Cutting Rapida RDC 106
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FAQ About Recycling Cartons
FREQUENTLY ASKED QUESTIONS ABOUT CARTONS WHAT IS A CARTON? » Cartons are a type of packaging for food and beverage products you can purchase at the store. They are easy to recognize and are available in two types—shelf-stable and refrigerated. Shelf-stable cartons (types of products) Refrigerated (types of products) » Juice » Milk » Milk » Juice » Soy Milk » Cream » Soup and broth » Egg substitutes » Wine You will find these You will find these products in the chilled products on the shelves sections of grocery stores. in grocery stores. WHAT ARE CARTONS MADE FROM? » Cartons are mainly made from paper in the form of paperboard, as well as thin layers of polyethylene (plastic) and/or aluminum. Shelf-stable cartons contain on average 74% paper, 22% polyethylene and 4% aluminum. Refrigerated cartons contain about 80% paper and 20% polyethylene. ARE CARTONS RECYCLABLE? » Yes! Cartons are recyclable. In fact, the paper fiber contained in cartons is extremely valuable and useful to make new products. WHERE CAN I RECYCLE CARTONS? » To learn if your community accepts cartons for recycling, please visit RecycleCartons.com or check with your local recycling program. HOW DO I RECYCLE CARTONS? » Simply place the cartons in your recycle bin. If your recycling program collects materials as “single- stream,” you may place your cartons in your bin with all the other recyclables. If your recycling program collects materials as “dual-stream” (paper items together and plastic, metal and glass together), please place cartons with your plastic, metal and glass containers. WAIT, YOU JUST SAID CARTONS ARE MADE MAINLY FROM PAPER. Don’t I WANT TO PUT THEM WITH OTHER PAPER RECYCLABLES? » Good question. -
Refreshing Your Label Increasing a Successful Brand’S Perceived Value Through Evolutionary Packaging Modifications
Refreshing Your Label Increasing a successful brand’s perceived value through evolutionary packaging modifications Tony Auston Tony Auston is the brand architect and creative director of Auston Design Group. His experience in wine branding spans more than 25 years and encompasses a wide range of successful, award-winning package designs for national and international brands. Auston is involved in every aspect of the creative process at Auston Design Group, from initial consultation and strategic development, through final design. of your package is not such a product, thus eroding consumer connection to the brand. Brand loyalists hard decision when you have a decent product and your sales have been flat often associate the brand with the experiences they’ve had while enjoying the or on the decline. In these cases, it might be worth taking a risk and losing product—and the package is the face of their brand. Too much of a change a percentage of your current consumer base to potentially attract a higher can deter once-loyal consumers and sales may suffer. percentage of new consumers. A redesign can make a sizable difference in A good example of an ill-advised packaging decision came with the brand perception and appeal to a much larger audience. redesign of the Smoking Loon brand. Roughly 10 years ago, it was one of the But what can you do to keep the image and packaging of an established, top-selling brands with huge upward momentum—a brand that competi- highly successful brand from becoming stale or out-of-date? It is the rare tors held as a benchmark. -
Different Perspectives for Assigning Weights to Determinants of Health
COUNTY HEALTH RANKINGS WORKING PAPER DIFFERENT PERSPECTIVES FOR ASSIGNING WEIGHTS TO DETERMINANTS OF HEALTH Bridget C. Booske Jessica K. Athens David A. Kindig Hyojun Park Patrick L. Remington FEBRUARY 2010 Table of Contents Summary .............................................................................................................................................................. 1 Historical Perspective ........................................................................................................................................ 2 Review of the Literature ................................................................................................................................... 4 Weighting Schemes Used by Other Rankings ............................................................................................... 5 Analytic Approach ............................................................................................................................................. 6 Pragmatic Approach .......................................................................................................................................... 8 References ........................................................................................................................................................... 9 Appendix 1: Weighting in Other Rankings .................................................................................................. 11 Appendix 2: Analysis of 2010 County Health Rankings Dataset ............................................................ -
Technical Bulletin Die-Cutting
DIE-CUTTING "What do we understand by die -cutting?" The force required to sever a material by the pressing action of the die is considerably greater The answer is as follows. than the force required for a cutting process using a blade. Die-cutting is a process by which the material is compressed and cut with the aid of a die. The Various factors influence the forces which come process is performed either on a flat-bed die- into play during the die-cutting process: cutting machine or on a rotary die-cutting machine. The nature of the material to be die-cut The dies on a flat-bed die-cutting machine are shaped out of steel strip. A rotary die-cutting The configuration of the cutting lines machine is equipped either with a magnetic cylinder, onto which an engraved die plate is mounted, or The width of the cutting lines with a cylinder which is itself the die-cutting tool, that is to say, the cutting lines are engraved directly The type of material to be die-cut will determine into the solid body of the cylinder. the type of cutting die to be used. If paper is to be die-cut, a single-bevelled tool is normally used, When die-cutting self-adhesive paper, the print carrier with an angle of bevel of approx. 80°. If a relatively and the adhesive are compressed by the die until tough polyethylene film is to be die-cut, a double- the paper tears and recoils. In the case of film, the bevelled, more acutely angled tool is required. -
Corrugated Board Structure: a Review M.C
ISSN: 2395-3594 IJAET International Journal of Application of Engineering and Technology Vol-2 No.-3 Corrugated Board Structure: A Review M.C. Kaushal1, V.K.Sirohiya2 and R.K.Rathore3 1 2 Assistant Prof. Mechanical Engineering Department, Gwalior Institute of Information Technology,Gwalior, Assistant Prof. Mechanical Engineering 3 Departments, Gwalior Engineering College, Gwalior, M. Tech students Maharanapratap College of Technology, Gwalior, [email protected] [email protected] [email protected] ABSTRACT Corrugated board is widely used in the packing industry. The main advantages are lightness, recyclability and low cost. This makes the material the best choice to produce containers devoted to the shipping of goods. Furthermore examples of structure design based on corrugated boards can be found in different fields. Structural analysis of paperboard components is a crucial topic in the design of containers. It is required to investigate their strength properties because they have to protect the goods contained from lateral crushing and compression loads due to stacking. However in this paper complete and detailed information are presented. Keywords: - corrugated boards, recyclability, compression loads. Smaller flutes offer printability advantages as well as I. INTRODUCTION structural advantages for retail packaging. Corrugated board is essentially a paper sandwich consisting of corrugated medium layered between inside II. HISTORY and outside linerboard. On the production side, corrugated In 1856 the first known corrugated material was patented is a sub-category of the paperboard industry, which is a for sweatband lining in top hats. During the following four sub-category of the paper industry, which is a sub-category decades other forms of corrugated material were used as of the forest products industry. -
Tyvek Graphics Technical Data Sheet
DuPont ™ Tyvek ® for Graphics DURABLE – ECO-FRIENDLY – RECYCLABLE Available in sheets or rolls; usable for nearly all print technolo gies DuPont Tyvek a is a tough, durable, eco-friendly and 100% recyclable material available in sheets and rolls for all print technologies. DuPont Tyvek ® products are used for long-lasting signs, banners, flags, displays, visual merchandising, map and book printing, packaging, credit card sleeves, envelopes, shopping bags, wallets, wall coverings, drapery, and promotional apparel. Tyvek ® is also gaining use as a template material for signs because it is lightweight, durable, and is unaffected by moisture. Conventional laser printing is not recommended on Tyvek ® because of the temperatures involved in the printing units. For the same reason, Tyvek ® should not be used in electrostatic copiers. PRODUCT TYPE OF PRINTING USED FOR COATED MILS OZ. [GSM] CORE NOTES IDEAL USES STOCK WIDTHS Black Tyvek Flexography, Gravure, Offset Uncoated 5 mil 1.25 oz 2” Paper-like. Banners & Signs 36", 45" Lithography, Screen Process, UV-cure [42 gsm] Hard Structure Custom sizes available Inkjet (w/ testing due to lighter weight) Available in 10-yard rolls 1085D Digital on Demand, Flexography, Uncoated 10.3 mil 3.2 oz 3” Paper-like. Banners & Signs. Extra body 48.25", 57.125", 114.25" Gravure, Offset Lithography, Screen [109 gsm] Hard Structure for shape development. Custom sizes available Process, UV-cure Inkjet Available in 10-yard rolls 1079 Digital on Demand, Flexography, Uncoated 7.9 mil 2.85 oz 3” Paper-like. Tags & Labels 48" Gravure, Offset Lithography, Screen [97 gsm] Hard Structure Custom sizes available Process, Thermal Transfer, UV-cure Available in 10-yard rolls Inkjet 1073D Digital on Demand, Flexography, Uncoated 7.5 mil 2.2 oz 3” Paper-like. -
The Impact of the Flexo Folder-Gluer on Packaging Distribution
The Impact of the Flexo Folder-Gluer on Packaging Distribution Alexandra Hartford Michigan State University School of Packaging A322 Bailey Hall East Lansing, MI 48825 [email protected] 231.884.4840 Table of Contents Introduction 1 The Flexo Folder-Gluer 2 Feed Section 3 Printing Section 4 Creaser-Slotter 5 In-Line Die Cutter 6 Glue Lap Unit 8 Folding Section 9 Delivery End 9 Conclusion 10 Hartford 1 Introduction Corrugated boxes have been successful for over 100 years and statistics show that the corrugated industry is still thriving. Corrugated boxes are one of the most stable packaging forms in today’s industry. According to The Marketing Guide to the U.S. Packaging Industry, in 2004 paperboard packaging products made up 40.3% of the shipment packaging industry. Paperboard sales were more than double any other material during both 2004 and 2005. Inside of the paperboard industry, corrugated board made up 64% of all paperboard sales in 2004. According to the same source, corrugated shipping containers alone had $29.5 billion in shipments during the 2005 year. This was more than all plastic packaging material combined which totaled $26.346 billion. Not only do corrugated shipping containers dominate as distribution packages, the industry continues to grow. It is expected that the corrugated container industry will grow by 1.3% from 2005 to 2010 despite the threat from other packaging materials, such as plastics (The Marketing Guide, 2006). The properties of corrugated boxes make them valuable distribution packages and give the corrugated industry a slight advantage over other competitors. Corrugated boxes are best suited as a shipping container because of their strength to cost ratio (Jonson, 1999). -
Manufacturing of Paperboard and Corrugated Board Packages
Lecture 9: Manufacturing of paperboard and corrugated board packages Converting operations: printing, die-cutting, folding, gluing, deep-drawing After lecture 9 you should be able to • describe the most important converting operations in paper and paperboard package manufacturing • discuss important runnability considerations in paperboard package handling • relate factors affecting runnability to pppaperboard app earance and pyphysical performance quality parameters 1 Literature • Pulp and Paper Chemistry and Technology - Volume 4, Paper Products Physics and Technology, Chapter 10 • Paperboard Reference Manual, p. 157-225 • Fundamentals of packaging technology Chapters 4, 6, 15 and 18 Paperboard Packaging Design is the result of • Personal creativity plus – Knowledge and understanding of packaging materials, including: • Structural properties • Graphic capabilities • Converting processes and converting properties • Customer packaging systems • Marketing objectives • Distribution requirements • Retail outlet expectations • Needs and desires of end user • How end user will use the product • Many people may contribute to the design 2 Overall, the design must provide: • Containment of product • Protection of product • Ease in handling through distribution • Prevention of product spoilage • Tamper evidence • Consumer convenience • Brand identification • Communications for the consumer: – Instructions for product use – Coding for quality assurance, expiration dates – Dietary and nutritional information The design should consider: 1. Converting -
Label Liners: Meeting the Sustainability Challenge
Label liners: meeting the sustainability challenge By Mariya Nedelcheva, Product Manager Film & With ever-greater emphasis placed on packaging and waste reduction, Jenny Wassenaar, Compliance & Sustainability brand owners are looking for solutions that secure their sustainability Director, Avery Dennison credentials. Consumers pay particularly close attention to packaging, where there are significant environmental gains to be made. For example, waste from labelling can create useful by-products and circular economies. Waste is not always visible on the final packaging, but its impact on brand reputation is no less real. Consumers’ perceptions of a brand can be enhanced when sustainability is improved. label.averydennison.com Matrix Liner Final White paper waste waste label 16% 35% 37% Start-up waste plus Challenge printed End-user The challenge of recycling waste from the labelling process in error scrap - and ideally creating useful by-products - is complex. Many 10% 1% different elements must be addressed in order to move towards the ultimate goal of zero waste. For example, the word ‘recyclable’ can mean many things, and should not be viewed in isolation. Today there is a chance that recyclable products will still end up in landfill, so what matters is establishing genuinely viable end-to-end recycling solutions. That means considering every component within packaging, including where it comes from, how much material has been used, and what happens at every stage of the package’s journey through the value chain. This paper discusses how the sustainability of labelling laminates can be improved, with a particular focus on the label release liners that are left behind once labels have been dispensed. -
U.S. Postal Service Mail Addressing Guidelines
U.S. Postal Service Mail Addressing Guidelines Address Placement Placement of the address on the face of an envelope should conform to the following U. S. Postal Service specifications. • The address should be in an area, one inch from each side of the envelope. • The top of the address should be no more than 2 3/4 inches from the bottom of the envelope and the bottom no more than 5/8's of an inch from the bottom of the envelope. • The area 4 1/2 inches by 5/8 's of an inch in the lower right hand corner of the envelope MUST remain empty for bar code placement for any maul that is processed by the Mail Center. Enclosures Correspondence Mail of any kind for transport by the U. S. Postal Service must be enclosed in an appropriate envelope or parcel and sealed. The type of enclosures determine the mailing classification. Non-mailables Several items are listed by the U. S. Postal Service as non-mailable in envelopes: • paper clips • metal pieces • glass, chips • sand. These can jam or damage the mailing machines and can cause serious injury to Mail Center and Postal employees. The following are also classified as non-mailables and subject to return to sender: envelopes and cards less than 3 1/2 inches in height or 5 inches in length. It is recommended that when mailing questionable items to U. S. or foreign destinations, the mailer should contact the Mail Center for assistance. All foreign countries also impose various restrictions. Brochures, letters and newsletters being mailed without an envelope must be folded consistently and must be tabbed with the recommended number of tabs. -
The HP Molded Fiber Advanced Tooling Solution White Paper | the HP Molded Fiber Advanced Tooling Solution
White paper The HP Molded Fiber Advanced Tooling Solution White paper | The HP Molded Fiber Advanced Tooling Solution Macrotrends driving the packaging market The packaging market is transitioning from foam/plastic to molded fiber (also known as molded pulp) packaging for sustainability reasons, with environmental packaging (i.e., replacing foam with paper) favoring the growth of this segment. The molded fiber packaging market is a worldwide industry, valued at $8 billion, and is the fastest-growing segment in the packaging market, with growth being fueled by growing consumer demand for sustainable and environmentally friendly packaging solutions, as well as the increase in take-out food and e-commerce.1 Asia-Pacific countries (APAC) are the biggest geographical market, especially China, Hong Kong, and Taiwan. The region is experiencing the highest growth and is expected to be the largest market by 2024. This growth can be attributed to the rising importance of disposable packaging,2 as well as the lower cost of tooling production in these areas, which presents a significant price advantage over other regions. The primary segments currently are food and beverage and electronics, which are estimated to have the highest growth. The increasing use of molded pulp products for the packaging of various electronic products (including mobile phones and accessories, computers, printers, modems, trimmers, and projectors, among others) due to its convenience, improved sustainability, and low cost are some of the factors contributing to the growth of this segment.2 Molded fiber manufacturing The thermoformed tooling segment is expected to outgrow other segments, propelled by increased consumer demand for high-quality molded fiber packaging and ongoing innovation driving down thermoforming-packaging manufacturing costs. -
Dupont™ Tyvek® Water-Resistive Barriers Installation Guidelines
DuPont™ Tyvek® Water-Resistive Barriers Installation Guidelines HELPING YOU GET THE JOB DONE RIGHT VERSION 2 Table of Contents Applicable Products ..................................................................................................................................................................2 Recommended Materials .........................................................................................................................................................2 Code Requirements ..................................................................................................................................................................3 General Instructions .................................................................................................................................................................3 Special Considerations .............................................................................................................................................................3 Installation Instructions .............................................................................................................................................................4 Continuity Terminations ........................................................................................................................................................................6 Gable Ends ...........................................................................................................................................................................6