TRAPPIST: Transiting Planets and Planetesimals Small Telescope

Total Page:16

File Type:pdf, Size:1020Kb

TRAPPIST: Transiting Planets and Planetesimals Small Telescope Telescopes and Instrumentation TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope Emmanuël Jehin1 Michaël Gillon1 Didier Queloz2 E. Jehin/ESO E. Pierre Magain1 Jean Manfroid1 Virginie Chantry1 Monica Lendl2 Damien Hutsemékers1 Stephane Udry2 1 Institut d’Astrophysique de l’Université de Liège, Belgium 2 Observatoire de l’Université de Genève, Switzerland TRAPPIST is a 60-cm robotic telescope that was installed in April 2010 at the ESO La Silla Observatory. The project is led by the Astrophysics and Image Pro- cessing group (AIP) at the Department of Figure 1. The TRAPPIST telescope in its 5­metre time is obviously needed to monitor the Astrophysics, Geophysics and Ocean- enclosure at the La Silla Observatory, Chile. activity of several comets with a fre­ ography (AGO) of the University of Liège, quency of a few times per week. Some in close collaboration with the Geneva TRAPPIST is an original project using a comets are known, but others appear Observatory, and has been funded by single telescope that has been built and serendipitously. For the latter, telescope the Belgian Fund for Scientific Research optimised to allow the study of those two availability is crucial if we want to react (F.R.S.-FNRS) and the Swiss National aspects of the growing field of astrobiol­ rapidly to observe those targets at the Science Foundation (SNF). It is devoted ogy. It provides high quality photometric appropriate moment and for several hours to the detection and characterisation of data of exoplanet transits and allows or nights in a row; this strategy can pro­ exoplanets and to the study of comets the gaseous emissions of bright comets vide unique datasets impossible to obtain and other small bodies in the Solar Sys- to be monitored regularly. The project otherwise. tem. We describe here the goals of the is centred on three main goals: (1) the project and the hardware and present detection of the transits of new exoplan­ some results obtained during the first six ets; (2) the characterisation of known Telescope and instrumentation months of operation. transiting planets, in particular the pre­ cise determination of their size; and (3) For low cost operations and high flexibil­ the survey of the chemical composition of ity, TRAPPIST (see Figure 1) had to be The science case bright comets and the evolution of their a robotic observatory. The observation activity during their orbit. programme, including the calibration The hundreds of exoplanets known today plan, is prepared in advance and submit­ allow us to place our own Solar System ted daily to a specific software installed in the broad context of our own Galaxy. A dedicated robotic telescope on the computer controlling the obser­ In particular, the subset of known exo­ vatory. This computer controls all the planets that transit their parent stars are The basic project concept is a robotic tel­ technical aspects of the obser vations: key objects for our understanding of escope fully dedicated to high precision dome control, pointing, focusing, image the formation, evolution and properties of exoplanet and comet time-series pho­ acquisition, astrometry and software planetary systems. The objects of the tometry, providing the large amount of guiding, calibrations, data storage... It is Solar System are, and will remain, exqui­ observing time requested for those in sleep mode during daytime and wakes site guides for helping us understand research projects. Exoplanet transits typi­ up one hour before sunset, opening the the mechanisms of planetary formation cally last several hours, up to a full night. dome and starting to cool the CCD. This and evolution. Comets, in particular, are There are now many known transiting process is made possible thanks to a most probably remnants of the initial planets, and many more candidates found collection of computer programs working population of planetesimals of the outer by transit surveys which need to be together and interacting with the tele­ part of the protoplanetary disc. Therefore confirmed and characterised. Moreover scope, dome, CCD camera, filter wheels the study of their physical and chemical these targets need to be observed at and meteorological station. Such a properties allows the conditions that very specific times, during eclipses, put­ complete and rapid integration, using prevailed during the formation of the four ting even more constraints on telescope mostly off­the­shelf solutions, would have giant planets to be probed. availability. Similarly a lot of observing been impossible a few years ago and 2 The Messenger 145 – September 2011 WASP—43b TRAPPIST I+z 1 0.99 Flux 0.98 0.97 σ = 0.0003 0.96 –0.04 –0.02 0 0.02 0.04 dT (days) aluminium components, it weighs only Figure 3. TRAPPIST I + z transit photometry of the 65 kg and was allied to a compact Ger­ planet WASP­43b, period­folded and binned per two minute intervals, with the best-fit transit model man equatorial mount, the New Technol­ superimposed. The residuals of the fit, shifted along ogy Mount NTM-500, from the same the y-axis for the sake of clarity, are shown below company. This robust mount uses direct and their standard deviation is 300 parts per million drive technology to avoid the well­known (ppm). This light curve results from the global analy­ sis of 20 transits observed by TRAPPIST for this exo­ periodic errors found on the usual equa­ planet. Figure 2. Close­up of the 60­cm TRAPPIST torial mounts for small telescopes and telescope. therefore permits accurate pointing and tracking. The accuracy of the tracking (1.3 arcseconds per pixel) and a 10% allowed us to set up the experiment in allows an exposure time of four minutes accuracy are B­band 16.2, V­band less than two years. maximum, which is usually enough for 16.4, Rc­band 16.4, Ic­band 15.5 and our bright targets. Each frame is cali­ I + z­band 15.6; and in 200 seconds, The observatory is controlled through a brated in right ascension and declination B­band 19.7, V­band 19.4, Rc­band 19.2 VPN (Virtual Private Network) connection and software guiding runs continuously to and Ic-band 18.1. between La Silla and Liège University. keep the target centred on the same few The telescope and each individual sub­ pixels for the whole exposure sequence. The camera is fitted with a double filter system can be used from anywhere in wheel specifically designed for the pro­ the world, provided an internet connec­ The CCD camera was built by Finger ject and allowing a total of 12 different tion is available. In case of a low­level Lakes Instrumentation, with thermo­ 5 × 5 cm filters and one clear position. mechanical failure, we can count on the electric cooling and a CCD of the latest One filter wheel is loaded with six broad­ help of the Swiss technician on site or generation. This is a thinned broad­ band filters (Johnson-Cousins BVRcIc, the La Silla staff. band backside­illuminated Fairchild chip Sloan z’, and a special I + z filter for exo­ with 2048 × 2048 15-µm pixels providing planet transits) and the other filter wheel Hundreds of images, amounting to a field of view of 22 by 22 arcminutes is loaded with six narrowband filters 2–15 GB, are produced every night. and a plate scale of 0.6 arcseconds per for the comet programme. The comet Reduction pipelines run on a dedicated pixel. The sensitivity is excellent over filters were designed by NASA for the computer installed in the control room. all the spectral range, with a peak of 98% international Hale–Bopp campaign For the exoplanet programme, only tables at 750 nm, declining to around 80% (Farnham et al., 2000). Four filters iso- and plots with the final results are trans­ at 550 nm and 60% at 300 nm. It is opti­ lating the main molecular emission lines ferred to Liège, while for the comet pro­ mised for low fringe level in the far red present in cometary spectra (OH [310 nm], gramme, it is often necessary to transfer and achieves a sensitivity of 40% at CN [385 nm], C3 [405 nm], C2 + NH2 dozens of frames in order to perform 950 nm. The gain is set to 1.1 e­/ADU. [515 nm]) are permanently mounted, more interactive tasks on the images. There are three different readout modes: while the two other filters of the set + + Every third month, a backup disk is sent a low noise readout mode (readout noise (CO [427 nm] and H2O [705 nm]) are to Belgium and transferred to the archive [RON] 9.7 e­ in 8s), a fast mode (RON also available. In addition two narrow­ machine. 14 e­ in 4s) and a very fast readout of 2s band filters, isolating “continuum win­ using two quadrants. The cooling is dows” (BC [445 nm] and GC [525 nm]) for The telescope is a 60­cm f/8 Ritchey– –55 deg below ambient, usual operation the estimation of the solar spectrum Chrétien design built by the German being at –35 °C with a dark count of reflected by the dust of the comet, are ASTELCO company (see Figure 2). Owing 0.11 e­/s/pixel. Typical magnitudes mounted. to its open design with carbon fibre and reached in 20s with a 2 × 2 binning The Messenger 145 – September 2011 3 Telescopes and Instrumentation Jehin E. et al., TRAPPIST : TRAnsiting Planets and PlanetesImals Small Telescope Installation, first light and start of allowing us to constrain its bulk compo­ Characterisation of known transiting operations sition. Furthermore, the special geometry planets of the orbit makes the study of impor­ Once a transiting planet is detected, it is The telescope was installed in April 2010 tant properties of the planet (e.g., atmos­ of course desirable to characterise it in the T70 Swiss telescope building pheric composition, orbital obliquity, etc) thoroughly with high precision follow­up belonging to Geneva University (Figure 1).
Recommended publications
  • The Astronomy Department of the University of Geneva (UNIGE) and Its Exoplanet Team
    Département D'Astronomie Chemin des Mailletess 5 Université De Genève CH-5290 Versoix Sauverny Switzerland +45 22 379 22 00 [email protected] www.unige.ch/sciences/astro/en/ The Astronomy Department of the University of Geneva (UNIGE) and its Exoplanet Team About the Astronomy Department The Department of Astronomy of the University of Geneva (UNIGE) is located on the commune of Versoixs 5 km from the Geneva city center. The main buidings (l’Observatoire) are in the forest on the site of Sauvernys km from the town of Versoix. Another sites Ecogias closer to town hosts most of our space developments. Grounded in 5772 as the Geneva Observatory the insttute became the Department of Astronomy of UNIGE in 5973. Todays a group of approximately 5 0 people are employeds including scientstss PhD candidatess studentss technical staf (computer and electronics specialistss mechanics)s as well as administratve staf. The Astronomy Department manages a permanent astronomical observaton statonn a 5s2 m telescope on the site of La Silla (ESOs Chile). Observatons are also regularly obtained with the other ESO facilitess from the 5.93m telescope on the site of St-Michel (Observatory of Haute Provences OHPs France)s and from La Palma (Canary Islandss Spain). Astronomy Department Research Overview Research in the Department of Astronomy is described according to the Roadmap for Astronomy in Switzerland 2007-2056 four main themesn Exoplanetary systems Stars formaton evoluton Galaxies Universe Extreme Universe Main Building of the Astronomy Department in Versoix/Geneva 5 Département D'Astronomie Chemin des Mailletess 5 Université De Genève CH-5290 Versoix Sauverny Switzerland +45 22 379 22 00 [email protected] www.unige.ch/sciences/astro/en/ Research at the Exoplanetary Group The discovery of planets orbitng other stars (exoplanets) has been one of the major breakthroughs in astronomy of the past decades.
    [Show full text]
  • Patrick Moore's Practical Astronomy Series
    Patrick Moore’s Practical Astronomy Series Other Titles in this Series Navigating the Night Sky Astronomy of the Milky Way How to Identify the Stars and The Observer’s Guide to the Constellations Southern/Northern Sky Parts 1 and 2 Guilherme de Almeida hardcover set Observing and Measuring Visual Mike Inglis Double Stars Astronomy of the Milky Way Bob Argyle (Ed.) Part 1: Observer’s Guide to the Observing Meteors, Comets, Supernovae Northern Sky and other transient Phenomena Mike Inglis Neil Bone Astronomy of the Milky Way Human Vision and The Night Sky Part 2: Observer’s Guide to the How to Improve Your Observing Skills Southern Sky Michael P. Borgia Mike Inglis How to Photograph the Moon and Planets Observing Comets with Your Digital Camera Nick James and Gerald North Tony Buick Telescopes and Techniques Practical Astrophotography An Introduction to Practical Astronomy Jeffrey R. Charles Chris Kitchin Pattern Asterisms Seeing Stars A New Way to Chart the Stars The Night Sky Through Small Telescopes John Chiravalle Chris Kitchin and Robert W. Forrest Deep Sky Observing Photo-guide to the Constellations The Astronomical Tourist A Self-Teaching Guide to Finding Your Steve R. Coe Way Around the Heavens Chris Kitchin Visual Astronomy in the Suburbs A Guide to Spectacular Viewing Solar Observing Techniques Antony Cooke Chris Kitchin Visual Astronomy Under Dark Skies How to Observe the Sun Safely A New Approach to Observing Deep Space Lee Macdonald Antony Cooke The Sun in Eclipse Real Astronomy with Small Telescopes Sir Patrick Moore and Michael Maunder Step-by-Step Activities for Discovery Transit Michael K.
    [Show full text]
  • Three Decades of Small-Telescope Science
    Three Decades of Small-Telescope Science A Report on the 2011 Society for Astronomical Sciences 30th Annual Sym- posium on Telescope Science Robert K. Buchheim For three decades, the Society for Astronomical Sciences has supported small telescope sci- ence, encouraged amateur research, and facilitated pro-am collaboration. On May 24-26, more than one hundred participants in the 30th anniversary SAS Symposium heard presentations cov- ering a wide range of astronomical topics, reaching from the laboratory to the distant cosmos. From Planets to Galaxies Sky & Telescope Editor-in-Chief Bob Naeye opened the technical session with a review of the amateur contributions to exoplanet discovery and research through monitoring of transits and micro-lensing events. R. Jay GaBany described his participation as an astro-imager in the search for evidence of galactic mergers. His exquisite deep images taken with his 24-inch telescope displayed the di- verse patterns of star streams that can be left behind when a dwarf galaxy is disrupted and ab- sorbed by a larger galaxy. He also noted that not all faint structures are evidence of galactic mergers: the faint ”loop” structure near M-81 is actually foreground “galactic cirrus” in our own Milky Way masquerading as a faux tidal loop. Education and Outreach Several papers related to education and outreach were presented. Debra Ceravolo applied her expertise in the generation and perception of colors, to describe a new method of merging narrow-band (e.g. Hα) and broad-band (e.g. RGB) images into a natural-color image that displays enhanced detail without glaring false colors.
    [Show full text]
  • A Simple Guide to Backyard Astronomy Using Binoculars Or a Small Telescope
    A Simple Guide to Backyard Astronomy Using Binoculars or a Small Telescope Assembled by Carol Beigel Where and When to Go Look at the Stars Dress for the Occasion Red Flashlight How to Find Things in the Sky Charts Books Gizmos Binoculars for Astronomy Telescopes for Backyard Astronomy Star Charts List of 93 Treasures in the Sky with charts Good Binocular Objects Charts to Get Oriented in the Sky Messier Objects Thumbnail Photographs of Messier Objects A Simple Guide to Backyard Astronomy Using Binoculars or a Small Telescope www.carolrpt.com/astroguide.htm P.1 The Earth’s Moon Moon Map courtesy of Night Sky Magazine http://skytonight.com/nightsky http://www.skyandtelescope.com/nightsky A Simple Guide to Backyard Astronomy Using Binoculars or a Small Telescope www.carolrpt.com/astroguide.htm P.2 A Simple Guide to Backyard Astronomy using Binoculars or a Small Telescope assembled by Carol Beigel in the Summer of 2007 The wonderment of the night sky is a passion that must be shared. Tracking the phases of the Moon, if only to plan how much light it will put into the sky at night, and bookmarking the Clear Sky Clock, affectionately known as the Cloud Clock become as common as breathing. The best observing nights fall about a week after the Full Moon until a few days after the New Moon. However, don't wait for ideal and see what you can see every night no matter where you are. I offer this simple guide to anyone who wants to look upward and behold the magnificence of the night sky.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • CV En Didier Queloz.Pdf
    1 CURRICULUM VITAE Didier Queloz July 2012 Date of birth 23 February 1966 Nationality Swiss Current Position Professor, Geneva University, Geneva Observatory 51ch des Maillettes, CH-1290 Sauverny Switzerland Academic degrees 1990 Master in physics, Geneva University 1992 Astronomy and Astrophysics Certificate (DEA) 1995 PhD with Prof M. Mayor “Research by cross-correlation techniques”, Geneva University Awards § Science quotation (1995) for Discovery of the first extra-solar planet as on of the 10 most important discovery of the year § “Vacheron Constantin” prize (1996) for best phD of the Geneva science faculty § “Balzers” prize from the Swiss Physical Society (1996) for the discovery of the planet orbiting the star 51Peg § IAU Medal of honor (1996) commission 51 Bioastronomy § “Prix de la ville de Genève” 2011, Science category § BBVA Foundation Frontiers of Knowledge Awards 2011 § Honorary degrees from Employments 1996-1997 Post-doc, Geneva University 1997-1999 Distinguished visiting scientist, Jet Propulsion Lab, CA, USA 2000-2002 Research associate (“maitre assistant”), Geneva University 2003-2007 Faculty (“MER”), Geneva University 2008 Professor (PAD), Geneva University Professional service and committees • ESA Scientific Advisory group for IRSI-DARWIN (1997-2001) • IAU “radial velocity commission” (1997-2006) 2 • Board of the science advisory councilors of the OHP (1997-2000) • Study science team for PRIMA (ESO) (1998-2000) • ESO Observation Program Committee (OPC) (ESO telescope allocation) (2000-2001) • ESA Astronomical Working
    [Show full text]
  • A Three-Planet Extrasolar System
    quires that common properties in all the Acknowledgements Koch A. et al. 2006a, The Messenger 123, 38 dSphs be identified – we must therefore Koch A. et al. 2006b, AJ 131, 895 Mark I. Wilkinson acknowledges the Particle Physics Majewski S. R. et al. 2005, AJ 130, 2677 carry out similar studies of all dSphs. and Astronomy Research Council of the United Martin N. et al. 2006, MNRAS 367, L69 Kingdom for financial support. Andreas Koch and Mateo M. et al. 1993, AJ 105, 510 Finally, in the area of dynamical model- Eva K. Grebel thank the Swiss National Science Mateo M. 1997, ASP Conf. Ser. 116, 259 ling, identifying correlations between the Foundation for financial support. Mateo M. et al. 1998, AJ 116, 2315 Monelli M. et al. 2003, AJ 126, 218 kinematics and abundances of the stel- Munoz R. R. et al. 2005, ApJ 631, L137 lar populations in dSphs (e.g. Tolstoy et References Shetrone M. D. et al. 2001, ApJ 548, 592 al. 2006) is likely to provide important Tolstoy E. et al. 2006, The Messenger 123, 33 new information about the formation and Aaronson M. 1983, ApJ 266, L11 Wilkinson M. I. et al. 2002, MNRAS 330, 778 Belokurov V. et al. 2006, ApJL, submitted, Wilkinson M. I. et al. 2004, MNRAS 611, L21 evolution of these objects, which in turn astro-ph/0604355 Wilkinson M. I. et al. 2006, in proceedings of XXIst will further constrain models of any astro- Goerdt T. et al. 2006, MNNRAS 368, 1073 IAP meeting, EDP sciences, astro-ph/0602186 physical feedback on their dark matter.
    [Show full text]
  • To Photographing the Planets, Stars, Nebulae, & Galaxies
    Astrophotography Primer Your FREE Guide to photographing the planets, stars, nebulae, & galaxies. eeBook.inddBook.indd 1 33/30/11/30/11 33:01:01 PPMM Astrophotography Primer Akira Fujii Everyone loves to look at pictures of the universe beyond our planet — Astronomy Picture of the Day (apod.nasa.gov) is one of the most popular websites ever. And many people have probably wondered what it would take to capture photos like that with their own cameras. The good news is that astrophotography can be incredibly easy and inexpensive. Even point-and- shoot cameras and cell phones can capture breathtaking skyscapes, as long as you pick appropriate subjects. On the other hand, astrophotography can also be incredibly demanding. Close-ups of tiny, faint nebulae, and galaxies require expensive equipment and lots of time, patience, and skill. Between those extremes, there’s a huge amount that you can do with a digital SLR or a simple webcam. The key to astrophotography is to have realistic expectations, and to pick subjects that are appropriate to your equipment — and vice versa. To help you do that, we’ve collected four articles from the 2010 issue of SkyWatch, Sky & Telescope’s annual magazine. Every issue of SkyWatch includes a how-to guide to astrophotography and visual observing as well as a summary of the year’s best astronomical events. You can order the latest issue at SkyandTelescope.com/skywatch. In the last analysis, astrophotography is an art form. It requires the same skills as regular photography: visualization, planning, framing, experimentation, and a bit of luck.
    [Show full text]
  • Who Really Discovered the First Exoplanet?
    Who Really Discovered the First Exoplanet? Two Swiss astronomers got a well-deserved Nobel for finding an exoplanet, but there’s an intriguing backstory By Josh Winn The year 1995, like 1492, was the dawn of an age of discovery. The new explorers, instead of using seagoing vessels to discover continents, use telescopes to discover planets revolving around distant stars. Thousands of these extrasolar planets, a term usually shortened to “exoplanets,” have been found, including a few potentially Earth- like worlds, along with bizarre objects that bear no resemblance to any of the planets in our solar system. Two of these exoplanet explorers, Michel Mayor and Didier Queloz, were recently awarded half of the Nobel Prize in Physics for the discovery they made in 1995. My colleagues and I are united in our admiration for their pioneering work, and in our pride to be continuing what they began. But there is something peculiar about the Nobel Prize citation. It says: “for the discovery of an exoplanet orbiting a solar-type star.” Shouldn’t it say the first exoplanet? After all, hundreds of astronomers have discovered an exoplanet. I’ve helped find a few. Even high school students and amateur astronomers have discovered them. Did the Nobel Committee make a typographical error? No, they did not, and thereby hangs a tale. Just as it is problematic to decide who discovered America (Christopher Columbus? John Cabot? Leif Erikson? Amerigo Vespucci, whose name is the one that stuck? Those who came on foot from Siberia tens of thousands of years ago?) it is difficult to say who discovered the first exoplanet.
    [Show full text]
  • Searching for Red Worlds
    mission control Searching for red worlds The SPECULOOS project aims to detect terrestrial exoplanets well suited for detailed atmospheric characterization, explains Principal Investigator Michaël Gillon. tudying alien worlds circling stars (La Silla Observatory, Chile) and other than the Sun is no longer science TRAPPIST-North (Oukaïmeden Sfiction. Within the last 15 years, the first Observatory, Morocco), also participate in observational constraints have been gathered SPECULOOS, focusing on its ~100 brightest on the atmospheric properties of some giant targets. In fact, SPECULOOS started back exoplanets in orbit around bright nearby in 2011 as a prototype mini-survey on stars1. Extending these pioneering studies TRAPPIST-South with a target list composed to smaller and more temperate exoplanets of the 50 brightest southern ultracool dwarf holds the promise of revolutionizing our Fig. 1 | The SPECULOOS Southern Observatory stars. The goal of this prototype was to assess understanding of rocky planets by enabling at Paranal. Credit: M. Gillon. the feasibility of SPECULOOS, but it did us to assess their diversity at the Galactic much better than expected. Indeed, it detected scale, not only in terms of orbits, but also in around one of its targets, TRAPPIST-1, an terms of atmospheric compositions, surface 12 × 12 arcmin and a pixel scale of 0.35 amazing planetary system composed of seven conditions, and, eventually, habitability. A arcsec on the CCD. The observations are Earth-sized planets in temperate orbits of promising shortcut to this revolution consists carried out using a single ‘I + z’ filter that 1.5 to 19 days4,5, at least three of which orbit of the detection of temperate rocky planets has a transmittance of more than 90% from within the habitable zone of the star.
    [Show full text]
  • A Catalog of Rotational and Radial Velocities for Evolved Stars V
    A&A 561, A126 (2014) Astronomy DOI: 10.1051/0004-6361/201220762 & c ESO 2014 Astrophysics A catalog of rotational and radial velocities for evolved stars V. Southern stars, J. R. De Medeiros1,S.Alves1,S.Udry2, J. Andersen3,4,B.Nordström3, and M. Mayor2 1 Departamento de Física, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970 Natal, RN, Brasil e-mail: [email protected] 2 Observatoire de Genève, Université de Genève, Chemin des Maillettes 51, 1290 Sauverny, Switzerland 3 The Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 4 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain Received 19 November 2012 / Accepted 10 December 2013 ABSTRACT Rotational and radial velocities have been measured for 1589 evolved stars of spectral types F, G, and K and luminosity classes IV, III, II, and Ib, based on observations carried out with the CORAVEL spectrometers. The precision in radial velocity is better than 0.30 km s−1 per observation, whereas rotational velocity uncertainties are typically 1.0 km s−1 for subgiants and giants and 2.0 km s−1 for class II giants and Ib supergiants. Key words. stars: late-type – stars: fundamental parameters – binaries: spectroscopic – techniques: radial velocities – catalogs – stars: evolution 1. Introduction enabling reliable investigations of stellar rotational character- istics in different regions of the H−Rdiagram(Carlberg et al. Over the past two decades, observations have been carried out at 2011; Cortés et al. 2009; Melo et al. 2001), the relation- the Geneva Observatory, Switzerland, and the Federal University ship between rotation and different stellar properties (Monaco of Rio Grande do Norte, Brazil, to accurately measure projected v et al.
    [Show full text]
  • Interior Structures and Tidal Heating in the TRAPPIST-1 Planets Amy C
    A&A 613, A37 (2018) https://doi.org/10.1051/0004-6361/201731992 Astronomy & © ESO 2018 Astrophysics Interior structures and tidal heating in the TRAPPIST-1 planets Amy C. Barr1, Vera Dobos2,3,4, and László L. Kiss2,5 1 Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719, USA e-mail: [email protected] 2 Konkoly Thege Miklós Astronomical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 1121 Konkoly Thege Miklós út 15–17, Budapest, Hungary 3 Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 9400 Csatkai Endre u. 6–8, Sopron, Hungary 4 ELTE Eötvös Loránd University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary 5 Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia Received 25 September 2017 / Accepted 14 December 2017 ABSTRACT Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims. We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets’ compositions. Methods. Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet.
    [Show full text]