SPECULOOS Search for Habitable Planets Eclipsing Ultra-Cool Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activity Induced Variation in Spin-Orbit Angles As Derived from Rossiter–Mclaughlin Measurements M
A&A 619, A150 (2018) https://doi.org/10.1051/0004-6361/201833709 Astronomy & © ESO 2018 Astrophysics Activity induced variation in spin-orbit angles as derived from Rossiter–McLaughlin measurements M. Oshagh1,2, A. H. M. J. Triaud3, A. Burdanov4, P. Figueira2,5, A. Reiners1, N. C. Santos2,6, J. Faria2, G. Boue7, R. F. Díaz8,9, S. Dreizler1, S. Boldt1, L. Delrez10, E. Ducrot4, M. Gillon4, A. Guzman Mesa1, E. Jehin4, S. Khalafinejad11,12, S. Kohl11, L. Serrano2, and S. Udry13 1 Institut für Astrophysik, Georg-August Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 4 Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium 5 European Southern Observatory, Alonso de Cordova 3107, Vitacura Casilla 19001, Santiago 19, Chile 6 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 7 IMCCE, Observatoire de Paris, UPMC University Paris 6, PSL Research University, Paris, France 8 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina 9 CONICET – Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires 1428, Argentina 10 Astrophysics Group, Cavendish Laboratory, -
Searching for Red Worlds
mission control Searching for red worlds The SPECULOOS project aims to detect terrestrial exoplanets well suited for detailed atmospheric characterization, explains Principal Investigator Michaël Gillon. tudying alien worlds circling stars (La Silla Observatory, Chile) and other than the Sun is no longer science TRAPPIST-North (Oukaïmeden Sfiction. Within the last 15 years, the first Observatory, Morocco), also participate in observational constraints have been gathered SPECULOOS, focusing on its ~100 brightest on the atmospheric properties of some giant targets. In fact, SPECULOOS started back exoplanets in orbit around bright nearby in 2011 as a prototype mini-survey on stars1. Extending these pioneering studies TRAPPIST-South with a target list composed to smaller and more temperate exoplanets of the 50 brightest southern ultracool dwarf holds the promise of revolutionizing our Fig. 1 | The SPECULOOS Southern Observatory stars. The goal of this prototype was to assess understanding of rocky planets by enabling at Paranal. Credit: M. Gillon. the feasibility of SPECULOOS, but it did us to assess their diversity at the Galactic much better than expected. Indeed, it detected scale, not only in terms of orbits, but also in around one of its targets, TRAPPIST-1, an terms of atmospheric compositions, surface 12 × 12 arcmin and a pixel scale of 0.35 amazing planetary system composed of seven conditions, and, eventually, habitability. A arcsec on the CCD. The observations are Earth-sized planets in temperate orbits of promising shortcut to this revolution consists carried out using a single ‘I + z’ filter that 1.5 to 19 days4,5, at least three of which orbit of the detection of temperate rocky planets has a transmittance of more than 90% from within the habitable zone of the star. -
Greeting Fellow Naturalists. As of This Writing, We Have Come Back To
Hawk Watch Team by John Wright Galveston Bay Area Chapter - Texas Master Naturalists June 2018 Table of Contents President’s Corner by George Kyame, President 2018 Wetland Wanderings 2 Prairie Ponderings 2 Greeting Fellow Naturalists. Dire Diseases in 3 As of this writing, we have come back to reality after an interesting spring. The mercury Deer, Part 2 finally hit 90, and won't be changing soon. Of course this means we must properly AT: iNaturalist 4 prepare for all of our outdoor stewardship. Please remember the big three: hydration, AT: Gems of the Gulf 5 sun protective clothing, and SPF 30 and above. A cooler beginning to 2018 was nice, although it was accompanied by a rather rainy season, which brings me to my next Heritage Book Study - 6 point. Review The Big Picture - 6 Ah, Beach and Bay. Last year's record attendance would be hard to beat even without Ocean Worlds and the wind and rain that was visited upon us! Impressive was the number of attendees Our World’s Oceans that did come out, and, with our dedicated volunteers, braved the elements! Alas, we Another Botany 8 shut down a little early, but not before our participants got some extra hands-on Question attention. Thank you all for the hard work. AT: The Big Thicket 8 The City Nature Challenge wrapped up 96 hours of species observation on April 30. So 2018 Class Fun and 10 how did the Houston Metro fare? In the Most Species category (my favorite), Houston Adventures placed 2nd. We were 1st last year. -
Interior Structures and Tidal Heating in the TRAPPIST-1 Planets Amy C
A&A 613, A37 (2018) https://doi.org/10.1051/0004-6361/201731992 Astronomy & © ESO 2018 Astrophysics Interior structures and tidal heating in the TRAPPIST-1 planets Amy C. Barr1, Vera Dobos2,3,4, and László L. Kiss2,5 1 Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719, USA e-mail: [email protected] 2 Konkoly Thege Miklós Astronomical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 1121 Konkoly Thege Miklós út 15–17, Budapest, Hungary 3 Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 9400 Csatkai Endre u. 6–8, Sopron, Hungary 4 ELTE Eötvös Loránd University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary 5 Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia Received 25 September 2017 / Accepted 14 December 2017 ABSTRACT Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims. We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets’ compositions. Methods. Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet. -
Présentation Powerpoint
Hunting for habitable exoplanets around the nearest very-low-mass stars Michaël Gillon (University of Liège, Belgium) CERN– 17 Jan 2019 Is our blue world unique? Credit: NASA Earth: a rocky planet hosting a complex surface biosphere Credit: NASA Earth: a rocky planet with surface liquid water « Habitable » planet Credits: Howard Perlman, USGS The « habitable zone » of the Sun Credits: NASA No little green men on Mars Credits: NASA We must search beyond our solar system Credits: Ryan Sullivan 1995: beginning of the exoplanet era A giant planet in very short orbit around a Sun-like star Didier Queloz Michel Mayor The exoplanet revolution 51 Peg b 9 Planets everywhere Credits: ESO/M. Kornmesser The diversity of planetary systems Compact Hot Jupiters systems Very eccentric Free-floating orbits planets Credits: NASA/JPL-Caltech; Northwestern University; SETI Institute 11 A few dozen possible biospheres A few dozen BILLIONS in the whole Milky Way! 12 A few exoplanets have been imaged Spectroscopy of terrestrial planets Best spectral range for the detection of molecules is infrared Infrared spectroscopy of potentially habitable exoplanets Spectroscopy of exoplanets Imaging planets around other stars Imaging planets around other stars Planetary transit Transit of exoplanet Credits: Deeg & Garrido Atmospheric study of a transiting exoplanet Credits: C. Daniloff/MIT, J. de Wit 20 Atmospheric study of a transiting exoplanet Credits: E. Sedaghati et al. 2018 21 Atmospheric study of a transiting exoplanet Credits: NASA/JPL 22 Atmospheric study of a transiting exoplanet Credits: Grillmair et al. 2008 23 The smaller the star, the better Low-mass stars are small and cold Credits: ESO The habitable zone of hot and cold stars Credits: NASA 26 Most stars are smaller and colder than the Sun 27 Search for habitable Planets EClipsing ULtra-cOOl Stars Search for habitable Planets EClipsing ULtra-cOOl Stars What are « ultra-cool stars »? Ultracool dwarfs: Teff < 2700K, (Kirckpatrick erSun al. -
SPECULOOS: Ultracool Dwarf Transit Survey Target List and Strategy?
A&A 645, A100 (2021) Astronomy https://doi.org/10.1051/0004-6361/202038827 & c ESO 2021 Astrophysics SPECULOOS: Ultracool dwarf transit survey Target list and strategy? D. Sebastian1, M. Gillon1, E. Ducrot1, F. J. Pozuelos1,3, L. J. Garcia1, M. N. Günther4, L. Delrez1,3,5 , D. Queloz2, B. O. Demory6, A. H. M. J. Triaud7, A. Burgasser8, J. de Wit4, A. Burdanov4, G. Dransfield7, E. Jehin3, J. McCormac9, C. A. Murray2, P. Niraula4, P. P. Pedersen2, B. V. Rackham4, S. Sohy3, S. Thompson2, and V. Van Grootel3 1 Astrobiology Research Unit, University of Liège, Allée du 6 Août, 19, 4000 Liège, Sart-Tilman, Belgium e-mail: [email protected] 2 Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK 3 Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 19C, 4000 Liège, Belgium 4 Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 5 Observatoire de l’Université de Genéve, Chemin des Maillettes 51, Versoix 1290, Switzerland 6 University of Bern, Center for Space and Habitability, Gesellschaftsstrasse 6, 3012 Bern, Switzerland 7 School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 8 University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 9 Department of Physics, University of Warwick, Coventry CV4 7AL, UK Received 2 July 2020 / Accepted 27 October 2020 ABSTRACT Context. One of the most promising avenues for the detailed study of temperate Earth-sized exoplanets is the detection of such planets in transit in front of stars that are small and near enough to make it possible to carry out a thorough atmospheric characterisation with next-generation telescopes, such as the James Webb Space telescope (JWST) or Extremely Large Telescope (ELT). -
Activity Induced Variation in Spin-Orbit Angles As Derived from Rossiter-Mclaughlin Measurements? M
Astronomy & Astrophysics manuscript no. RM-VARIATION-ARXIV c ESO 2018 September 5, 2018 Activity induced variation in spin-orbit angles as derived from Rossiter-McLaughlin measurements? M. Oshagh1;2, A. H. M. J. Triaud3, A. Burdanov4, P. Figueira2;5, A. Reiners1, N. C. Santos2;6, J. Faria2, G. Boue7, R. F. D´ıaz8;9, S. Dreizler1, S. Boldt1, L. Delrez10, E. Ducrot4, M. Gillon4, A. Guzman Mesa1, E. Jehin4, S. Khalafinejad11;12, S. Kohl11, L. Serrano2, S. Udry13 1 Institut f¨urAstrophysik, Georg-August Universit¨atG¨ottingen,Friedrich-Hund-Platz 1, 37077 G¨ottingen,Germany 2 Instituto de Astrof´ısicae Ci^enciasdo Espa¸co,Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal 3 University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 4 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Universit´ede Li`ege, All´eedu 6 Ao^ut17, Bat. B5C, 4000 Li`ege,Belgium 5 European Southern Observatory, Alonso de Cordova 3107, Vitacura Casilla 19001, Santiago 19, Chile 6 Departamento de F´ısicae Astronomia, Faculdade de Ci^encias,Universidade do Porto,Rua do Campo Alegre, 4169- 007 Porto, Portugal 7 IMCCE, Observatoire de Paris, UPMC Univ. Paris 6, PSL Research University, Paris, France 8 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, 1428, Argentina 9 CONICET - Universidad de Buenos Aires, Instituto de Astronoma y F´ısicadel Espacio (IAFE), Buenos Aires, 1428, Argentina 10 Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK 11 Hamburg Observatory, Hamburg University, Gojenbergsweg 112, 21029, Hamburg, Germany 12 Max Planck Institute for Astronomy, K¨onigstuhl17, 69117 Heidelberg, Germany 13 Observatoire de Gen`eve, Universit´ede Gen`eve, 51 chemin des Maillettes, 1290 Versoix, Switzerland Received XXX; accepted XXX ABSTRACT One of the most powerful methods used to estimate sky-projected spin-orbit angles of exoplanetary systems is through a spectroscopic transit observation known as the RossiterMcLaughlin (RM) effect. -
Shadows of Other Worlds Two Telescopes Due to Launch This Year Should Reveal a Host of New Exoplanets by Joshua N
ORBITING A RED DWARF, this imagined planet has its own moon. Both are bathed in a warm glow from the star and its flares. PLANETARY SCIENCE SHADOWS OF OTHER WORLDS Two telescopes due to launch this year should reveal a host of new exoplanets By Joshua N. Winn Illustrations by Ron Miller sad0318Winn4p.indd 32 1/23/18 4:54 PM IN BRIEF The world’s most prolific planet-hunting satellite, NASA’s Kepler spacecraft, is preparing to shut down, but several new missions target- ing exoplanets are due to launch this year. The Transiting Exoplanet Survey Satellite (TESS) and the Characterising Exoplanet Satellite ( CHEOPS) will both search for signs of other worlds crossing in front of their parent stars. Scientists stand to add many SHADOWS OF OTHER WORLDS more exoplanets to the grow- ing tally, which should help them get closer to answering two questions: Are there oth- er habitable worlds out there, and is there life beyond Earth in the universe? March 2018, ScientificAmerican.com 33 sad0318Winn4p.indd 33 1/23/18 4:54 PM Joshua N. Winn is an astrophysicist at Princeton University, who studies how planets form and evolve around other stars. He was a participating scientist in the NASA Kepler team and is a co-investigator for the upcoming Transiting Exoplanet Survey Satellite (TESS). 21, 2017, , , great anticipation. In a few minutes we would be enveloped by the moon’s shadow. Along with millions of other people who had made their way to a narrow strip of land extending from Ore- gon to South Carolina, we were about to see a total eclipse of the sun. -
TRAPPIST: Transiting Planets and Planetesimals Small Telescope
Telescopes and Instrumentation TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope Emmanuël Jehin1 Michaël Gillon1 Didier Queloz2 E. Jehin/ESO E. Pierre Magain1 Jean Manfroid1 Virginie Chantry1 Monica Lendl2 Damien Hutsemékers1 Stephane Udry2 1 Institut d’Astrophysique de l’Université de Liège, Belgium 2 Observatoire de l’Université de Genève, Switzerland TRAPPIST is a 60-cm robotic telescope that was installed in April 2010 at the ESO La Silla Observatory. The project is led by the Astrophysics and Image Pro- cessing group (AIP) at the Department of Figure 1. The TRAPPIST telescope in its 5metre time is obviously needed to monitor the Astrophysics, Geophysics and Ocean- enclosure at the La Silla Observatory, Chile. activity of several comets with a fre ography (AGO) of the University of Liège, quency of a few times per week. Some in close collaboration with the Geneva TRAPPIST is an original project using a comets are known, but others appear Observatory, and has been funded by single telescope that has been built and serendipitously. For the latter, telescope the Belgian Fund for Scientific Research optimised to allow the study of those two availability is crucial if we want to react (F.R.S.-FNRS) and the Swiss National aspects of the growing field of astrobiol rapidly to observe those targets at the Science Foundation (SNF). It is devoted ogy. It provides high quality photometric appropriate moment and for several hours to the detection and characterisation of data of exoplanet transits and allows or nights in a row; this strategy can pro exoplanets and to the study of comets the gaseous emissions of bright comets vide unique datasets impossible to obtain and other small bodies in the Solar Sys- to be monitored regularly. -
Billy Edwards, Lorenzo Mugnai, Giovanna Tinetti
@EXOLEMONS POTENTIAL TARGETS FOR ARIEL BILLY EDWARDS, LORENZO MUGNAI, GIOVANNA TINETTI, ENZO PASCALE AND SUBHAJIT SARKAR Does Ariel’s current design allow us to achieve our science goals? Ariel Exoplanet Catalogue Master Catalogue NASA Exoplanet Catalogue Supplementary Catalogues Exoplanet.eu Open Exoplanet Catalogue TEPCat Ariel Exoplanet Catalogue Master Catalogue TESS Exoplanet Yield NASA Exoplanet Catalogue Barclay, Pepper & Quintana, 2018 Supplementary Catalogues Methodology Exoplanet.eu Catalogue of target stars Open Exoplanet Catalogue Planetary Occurrence Statistics TEPCat Likelihood of detection with TESS Ariel Exoplanet Catalogue • Many more surveys will provide planets for Ariel to characterise Kepler/K2 KELT HAT-Net CARMENES PLATO KPS SPIRO ESPRESSO WASP CHEOPS NGTS HARPS MEarth HAT-South SPECULOOS ArielRad Mugnai, Pascale, Edwards et al., in prep Edwards et al. 2019 Mission Candiate Sample • Tier 1: • ∼2000 planets in ≤ 5 observations • Tier 2: • ∼1000 planets in ≤ 20 observations • Tier 3: • ∼150 planets in ≤ 2 observations Example Mission Reference Sample Edwards et al. 2019 Edwards et al. 2019 Example Mission Reference Sample Edwards et al. 2019 + 10% mission time for other science (e.g. phase-curves, targets of opportunity) Does Ariel’s current design allow us to achieve our science goals? How do we maximise the scientific yield of Ariel? Exploring Different Samples Edwards et al. 2019 Fulton et al. 2018 Discuss MRS with Community Discuss MRS with Community Before After Thanks to Laura Mayorga and Vivien Parmentier! Continue -
TRAPPIST : a Robotic Telescope to Study Planetary Systems
TRAPPIST : a robotic telescope to study planetary systems TRAPPIST = TRAnsiting Planets and PlanetesImals Small Telescope Emmanuël Jehin and TRAPPIST team (Liège University Belgium – FNRS) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) TRAPPIST : a robotic telescope to study planetary systems TRAPPIST = TRAnsiting Planets and PlanetesImals Small Telescope Emmanuël Jehin and TRAPPIST team (Liège University Belgium – FNRS) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) The existence of other worlds : An old question “There are countless suns; countless land revolve around these suns, in the same way the seven planets revolve around the Sun” Giordano Bruno (1548-1600) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) TRAPPIST consortium Université de Liège (ULg Belgium) Team : Michaël Gillon, Emmanuël Jehin, Pierre Magain, Jean Manfroid, Damien Hutsemékers, Aurélie Fumel, Alice Decock, Sandrine Sohy Observatoire de Genève (Switzerland) Team : Didier Queloz, Monica Lendl, Amaury Triaud, Stéphane Udry and Gregory Lambert on site Funds : Belgian FNRS + Swiss FNS European Southern Observatory (ESO) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) The site : La Silla Observatory (ESO, Chile) I40 Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) -
The La Silla Observatory — from Inauguration to the Future Held at Universidad De La Serena, Chile, 25–29 March 2019
Astronomical News DOI: 10.18727/0722-6691/5192 Report on the ESO Workshop The La Silla Observatory — From Inauguration to the Future held at Universidad de La Serena, Chile, 25–29 March 2019 Ivo Saviane 1 gigantic steps over La Silla’s history, from History Bruno Leibundgut 1 single- pixel detectors to the large arrays Linda Schmidtobreick 1 in use today. La Silla also experienced The workshop opened with welcome the transition from photographic plates addresses by the Rector of Universidad and simple electronic detectors to de La Serena (ULS) Nibaldo Avilés 1 ESO charge-coupled devices (CCDs) and Pizarro, by Mayor of the Higuera munici- today’s infrared arrays. La Silla also pality Yerko Galleguillos, and by President hosted the first large submillimetre dish in of the ESO Council Willy Benz. Also in This five-day workshop celebrated the the southern hemisphere. Different attendance were Vice-Dean of Research achievements of ESO’s first observa- operational schemes were tested at La and Development of ULS Eduardo Notte, tory, La Silla, on the occasion of its 50th Silla; some new adventures in running and Director of Research and Develop- anniversary. La Silla, officially inaugu- observatories included remote observing ment of ULS Sergio Torres. rated on 25 March 1969, was the culmi- with the NTT and the Coudé Auxiliary nation of the vision of European astron- Telescope (CAT), and The historical context of astronomical omers to create a major observatory in the introduction of service observing at observatories in Chile was given by the southern hemisphere. In the follow- the NT T.