Searching for Red Worlds

Total Page:16

File Type:pdf, Size:1020Kb

Searching for Red Worlds mission control Searching for red worlds The SPECULOOS project aims to detect terrestrial exoplanets well suited for detailed atmospheric characterization, explains Principal Investigator Michaël Gillon. tudying alien worlds circling stars (La Silla Observatory, Chile) and other than the Sun is no longer science TRAPPIST-North (Oukaïmeden Sfiction. Within the last 15 years, the first Observatory, Morocco), also participate in observational constraints have been gathered SPECULOOS, focusing on its ~100 brightest on the atmospheric properties of some giant targets. In fact, SPECULOOS started back exoplanets in orbit around bright nearby in 2011 as a prototype mini-survey on stars1. Extending these pioneering studies TRAPPIST-South with a target list composed to smaller and more temperate exoplanets of the 50 brightest southern ultracool dwarf holds the promise of revolutionizing our Fig. 1 | The SPECULOOS Southern Observatory stars. The goal of this prototype was to assess understanding of rocky planets by enabling at Paranal. Credit: M. Gillon. the feasibility of SPECULOOS, but it did us to assess their diversity at the Galactic much better than expected. Indeed, it detected scale, not only in terms of orbits, but also in around one of its targets, TRAPPIST-1, an terms of atmospheric compositions, surface 12 × 12 arcmin and a pixel scale of 0.35 amazing planetary system composed of seven conditions, and, eventually, habitability. A arcsec on the CCD. The observations are Earth-sized planets in temperate orbits of promising shortcut to this revolution consists carried out using a single ‘I + z’ filter that 1.5 to 19 days4,5, at least three of which orbit of the detection of temperate rocky planets has a transmittance of more than 90% from within the habitable zone of the star. transiting host stars that are small, cool, 750 nm to beyond 1 μ m, with the red end of The detection of TRAPPIST-1 out of and nearby enough to make their detailed the effective bandpass being defined by the a target list of only 50 objects, and the atmospheric characterization — including spectral responses of the CCD. The typical apparent low densities of most of its planets, the detection of potential biosignatures — exposure times are between 30 and 60 s. The suggest that compact systems of water- possible by eclipse spectroscopy with the mean monitoring duration per target is ~19 rich rocky planets could be very common James Webb Space Telescope (JWST) and nights, and is fine-tuned as a function of each around ultracool dwarf stars, in agreement other upcoming facilities2. target’s spectral type so as to reach a 70% with recent theoretical predictions6. If this The SPECULOOS (Search for habitable probability of observing the transit of a planet is the case, then SPECULOOS should find Planets EClipsing ULtra-cOOl Stars) project that receives the same irradiation from its many other TRAPPIST-1-like systems, to aims to seize this opportunity by exploring host star as the Earth does from the Sun. For eventually produce a catalogue of several the nearest 'ultracool dwarf'3 stars for a given night, each SPECULOOS telescope dozen temperate rocky planets well suited transits. With masses ranging from 7–10% observes the same target continuously, so for detailed atmospheric characterization. of the Sun, these Jupiter-sized stars are as to maximize its capacity to detect a low- SPECULOOS is a project led by the located at the extreme bottom of the main amplitude transit. University of Liège (Belgium) and carried sequence. Their luminosities are less than SPECULOOS will eventually be based out in collaboration with MIT, the 0.1% of the Sun, which makes their habitable on two nodes, one in each hemisphere. Universities of Cambridge, Jeddah, Bern, zones correspond to orbits of only a few The southern one, the SPECULOOS Birmingham, California (San Diego), Cadi days, maximizing the transit probability Southern Observatory (SSO), is currently Ayyad and the Astrophysics Institute of and frequency of a putative temperate being commissioned at the ESO Paranal the Canaries. It is primarily funded by the planet. Their Jupiter-like sizes translate Observatory in the Chilean Atacama Desert European Research Council and several into transit depths of ~1% for an (Fig. 1). It consists of four 1-m telescopes private sponsors and the Simons and the Earth-sized planet — within reach of that will explore ~500 southern ultracool Heising-Simons foundations. ❐ ground-based telescopes. dwarf stars for transits. This exploration The basic concept of SPECULOOS is to should take ~7 years. The northern node of Michaël Gillon search for transits in the ~1,000 ultracool SPECULOOS, the SPECULOOS Northern FNRS Research Associate at the University of Liège, dwarf stars that are bright enough in the Observatory (SNO), is also planned to Liège, Belgium. near-infrared to make the atmospheric consist of four 1-m telescopes, and it will e-mail: [email protected] characterization of an Earth-sized planet with be located at Teide Observatory in Tenerife the JWST possible. For this purpose it uses (Canary Islands). Its first telescope will be Published online: 5 April 2018 ground-based 1-m-class optical telescopes, installed at the end of 2018, and the full https://doi.org/10.1038/s41550-018-0443-y equipped with robotic equatorial mounts observatory is planned to be operational for References and deeply-depleted 2k × 2k CCD cameras early 2020. SAINT-EX, a new robotic 1-m 1. Crossfeld, I. J. M. Publ. Astron. Soc. Pacifc 127, 941 (2015). that individually monitor each of the project’s telescope being installed at San Pedro Mártir 2. Kaltenegger, L. & Traub, W. A. Astrophys. J. 698, 519–527 (2009). 1,000 targets. The telescopes have a Ritchey– Observatory (Mexico) will also partially 3. Kirkpatrick, J. D. Ann. Rev. Astron. Astrophys 43, 195–245 (2005). 4. Gillon, M. et al. Nature 533, 221–224 (2016). Chrétien optical design with a focal length of contribute to SPECULOOS. Finally, two 5. Gillon, M. et al. Nature 542, 456–460 (2017). 8 m that translates into a field of view of 60-cm robotic telescopes, TRAPPIST-South 6. Alibert, Y. & Benz, W. Astron. Astrophys. 598, L5 (2017). 344 NATURE AstRONOMY | VOL 2 | APRIL 2018 | 344 | www.nature.com/natureastronomy © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved..
Recommended publications
  • Astronomy Astrophysics
    A&A 408, 1047–1055 (2003) Astronomy DOI: 10.1051/0004-6361:20031011 & c ESO 2003 Astrophysics Multisite observations of the PMS δ Scuti star V351 Ori?;?? V. Ripepi1,M.Marconi1,S.Bernabei2;3,F.Palla4,F.J.G.Pinheiro5,D.F.M.Folha5,T.D.Oswalt6,L.Terranegra1, A. Arellano Ferro7,X.J.Jiang8,J.M.Alcal´a1, S. Marinoni2,M.J.P.F.G.Monteiro5, M. Rudkin6, and K. Johnston6 1 INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy 2 INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy 3 Departimento de Astrof´ısica, Universidad de La Laguna, Avda. Astrofisico F. S´anchez sn, 30071 La Laguna, Spain 4 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze, Italy 5 Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 6 Florida Inst. Technology, 150 W Univ. Blvd., Melbourne, FL 32901-6988, USA 7 Instituto de Astronom´ıa, UNAM, Apdo. Postal 70-264, M´exico D.F., CP 04510, M´exico 8 National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, PR China Received 5 September 2002 / Accepted 20 June 2003 Abstract. We present the results of multisite observations spanning two years on the pre–main-sequence (PMS) star V351 Ori. A total of around 180 hours of observations over 29 nights have been collected, allowing us to measure five different periodic- ities, most likely related to the δ Scuti variability of V351 Ori. Comparison with the predictions of linear nonadiabatic radial pulsation models put stringent constraints on the stellar parameters and indicate that the distance to V351 Ori is intermediate between the lower limit measured by Hipparcos (210 pc) and that of the Orion Nebula (450 pc).
    [Show full text]
  • Astrotourism–Exceeding Limits of the Earth and Tourism Definitions?
    sustainability Article Astrotourism–Exceeding Limits of the Earth and Tourism Definitions? Martina Pásková , Nicol Budinská and Josef Zelenka * Faculty of Informatics and Management, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic; [email protected] (M.P.); [email protected] (N.B.) * Correspondence: [email protected] Abstract: Emerging forms of alternative or even niche tourism represent a dynamic trend in tourism development. Astrotourism is completely off the beaten path. The aim of this study is to provide a deeper insight into this phenomenon. It strives to reveal motivations, experiences, and perceptions of its participants. It also aspires to propose its complex definition as an activity including both terrestrial astrotourism and space tourism. It is suggested to perceive it not only as a form of alternative and/or niche tourism, but also that of mass and professional tourism. To reach these objectives, the authors analyzed relevant published studies and astrotourism products presented on relevant websites and social media. They elaborated the collected secondary data by mental mapping and the comparative analysis of terrestrial and space tourism products. Moreover, the authors collected primary data through a survey with open-ended questions addressed to persons interested in astrotourism and through semi-structured interviews with terrestrial astrotourism participants and personalities. The results provide insight into both the specifity and variability of astrotourism and their typical products, as well as a discussion of their future trends. They also bring a motivation spectrum for the astrotourism participants and benefits perceived by them. Keywords: astrotourism; space tourism; terrestrial astrotourism; tourism participant motivation; archaeoastronomy Citation: Pásková, M.; Budinská, N.; Zelenka, J.
    [Show full text]
  • May 18 −26 , 2020
    MAY 18 −26 , 2020 TEIDE OBSERVATORY WITH RICHARD BINZEL, MIT PROFESSOR OF PLANETARY SCIENCES DEAR MIT STUDY LEADER ALUMNI AND FRIENDS, Travel with us to the Canary Islands next May for multiple opportunities to stargaze from one of the best places for night sky viewing on Earth. On Tenerife explore Teide National Park, home of Spain’s highest peak, and the first World Heritage Site to be designated as a “Starlight Destination.” Take a behind-the-scenes tour of Teide Observatory, the largest solar Richard Binzel is one of the world’s leading scientists in the study of observatory on Earth. Visit the Technological asteroids and Pluto. As the inventor of the Torino Scale, his scientific and Renewable Energy Institute (ITER), and analysis has shown the link between major meteorite groups and learn about its cutting edge research. Enjoy an their formation and source locations. Asteroid number 2873 bears his afternoon of whale watching and swimming name, an honor bestowed by the International Astronomical Union in from a private catamaran and sample the local recognition of his contributions to the field. He is also a co-investigator wines in the scenic La Orotava Valley. Then fly on NASA’s OSIRIS-REx asteroid sample return mission where he leads to the island of La Palma, the first UNESCO the development of a student-built flight instrument, the Regolith X-ray Starlight Reserve on Earth, for a private tour of Imaging Spectrograph (REXIS). Binzel was awarded the H. C. Urey Roque de los Muchachos Observatory. Walk Prize by the American Astronomical Society in 1991.
    [Show full text]
  • The ESA Optical Ground Station
    Sodnik.qxd 11/21/07 2:01 PM Page 34 Ten Years Since First Light Sodnik.qxd 11/21/07 2:01 PM Page 35 Optical Station Zoran Sodnik, Bernhard Furch & Hanspeter Lutz Mechanical Engineering Department, Directorate of Technical and Quality Management, ESTEC, Noordwijk, The Netherlands SA’s Optical Ground Station, created to test the laser-communications terminal E on the Artemis geostationary satellite, has been operating for 10 years. Using a 1 m- diameter telescope, it simulates a low-orbit laser-communications terminal, allowing the performance of its partner on Artemis to be verified. The Station has seen extensive service over a wide range of applications, becoming a general-purpose facility for a multitude of ESA, national and international endeavours. Introduction ESA’s Optical Ground Station (OGS), on the premises of the Instituto Astro- física de Canarias (IAC) at the Observatorio del Teide, Tenerife (E), was developed to test the ‘Semi- conductor laser Intersatellite Link Experiment’ (SILEX) carried by the Agency’s Artemis satellite in geostation- ary orbit. SILEX is an optical system that receives data from France’s Spot-4 Earth-observation satellite in low orbit via a 50 Mbit/s laser link to Artemis. The data are then relayed to the ground via a Ka-band radio link. This means that Spot-4 can download its images esa bulletin 132 - november 2007 35 Sodnik.qxd 11/21/07 2:01 PM Page 36 Technical & Quality Management OGS The Observatorio del Teide site at Izaña, Tenerife with the ESA Optical Ground Station. (IAC) even when it is beyond the limited range of ground stations.
    [Show full text]
  • Na LGS Height Profiles at Teide Observatory, Canary Islands
    Na LGS height profiles at Teide Observatory, Canary Islands. Julio A. Castro-Almaz´ana,b, Angel´ Alonsoa,b, Domenico Bonaccini Caliac, Mauro Centroned, Gianluca Lombardie, Ic´ıarMontillaa,b, Casiana Mu~noz-Tu~n´ona,b, and Marcos Reyesa,b aInstituto de Astrof´ısicade Canarias, V´ıaL´actea,s/n - E-38205, La Laguna, Spain bDept. Astrof´ısica.Universidad de La Laguna, E-38200, La Laguna, Spain cEuropean Southern Observatory, D-85748 Garching, Germany dINAF-OAR National Institute for Astrophysics, Via Frascati 33, I-00078 Monte Porzio Catone, Roma, Italy eGran Telescopio Canarias, Cuesta de San Jos´e,s/n - E-38712, Brea Baja, La Palma, Spain ABSTRACT The Na Laser Guide Star (LGS) spots appear elongated in the adaptive optics (AO) wavefront sensors (WFS) because of the perspective subtended between the main and the launching telescopes. The LGS spots unveil the Mesopause Na vertical distribution and its variability impacts the WFS performance. To measure the absolute LGS height profile is important to get the total flux return and it can be obtained from an auxiliary telescope in a bistatic configuration. In 2015-2016, the 20W CW ESO Wendelstein LGS Unit (WLGSU) was installed in the Teide Observatory (OT) to carry out an experiment to maximize the photon flux return from the Na LGS. The experiment included the LGS profiling from the IAC80 telescope. Here we are presenting some preliminary results. Keywords: Laser Guide Star, LGS profiling, Na layer, Teide Observatory 1. INTRODUCTION The overall Strehl ratio achieved by an adaptive optics (AO) system is depending on all the errors involved in the wavefront sensor (WFS) function.
    [Show full text]
  • Interior Structures and Tidal Heating in the TRAPPIST-1 Planets Amy C
    A&A 613, A37 (2018) https://doi.org/10.1051/0004-6361/201731992 Astronomy & © ESO 2018 Astrophysics Interior structures and tidal heating in the TRAPPIST-1 planets Amy C. Barr1, Vera Dobos2,3,4, and László L. Kiss2,5 1 Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719, USA e-mail: [email protected] 2 Konkoly Thege Miklós Astronomical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 1121 Konkoly Thege Miklós út 15–17, Budapest, Hungary 3 Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 9400 Csatkai Endre u. 6–8, Sopron, Hungary 4 ELTE Eötvös Loránd University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary 5 Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia Received 25 September 2017 / Accepted 14 December 2017 ABSTRACT Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims. We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets’ compositions. Methods. Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet.
    [Show full text]
  • SPECULOOS Search for Habitable Planets Eclipsing Ultra-Cool Stars
    SPECULOOS Search for habitable Planets EClipsing ULtra-cOOl Stars M. Gillon ([email protected]), E. Jehin, L. Delrez, P. Magain, C. Opitom, S. Sohy Department of Astrophysics, Geophysics and Oceanography (AGO), University of Liège, Belgium Transiting planets: treasures in the sky TRAPPIST/UCDTS : the prototype Among the hundreds of planets detected outside our solar system, the ones No existing transit survey is optimized for detecting Earth-size planets transiting the that transit their parent star are genuine Rosetta Stones for the study of nearest ultra-cool stars. Extensive simulations show us that robotic 1m-class exoplanets, because they can be studied in greatest detail. Indeed, their orbital telescopes equipped with modern CCD cameras highly sensitive in near-IR, operating parameters, mass and radius can be precisely measured, and their atmosphere from an exquisite astronomical site, and monitoring individually nearby ultra-cool can be probed during and outside eclipses, bringing strong constraints on their stars, should be able to probe eficiently their habitable zone for terrestrial planets. actual nature (Winn 2010). Within the last two decades, more than three hundred transiting exoplanets have been detected. This large harvest includes many gas giants, but also a steeply growing fraction of terrestrial planets. In parallel to this galore of detections, many projects aiming to characterize giant exoplanets have been successful, bringing notably a Eirst glimpse at their atmospheric properties (Seager & Deming 2010). Fig. 3. Actual TRAPPIST/UCDTS light curves for three ultra-cool stars, aer injecBon of a fake transit of an habitable Earth-size planet. The best-fit transit models are overimposed in red.
    [Show full text]
  • Teide Observatory on Tenerife, Spain 14 April 2017
    Image: Teide Observatory on Tenerife, Spain 14 April 2017 about 5–10 cm in low orbit and 0.3–1 m at geostationary altitudes. Only a small fraction – about 1200 – are intact, operating satellites today. Provided by European Space Agency Credit: CC BY-SA 3.0 IGO ESA operates its Optical Ground Station (OGS) at the Teide Observatory on Tenerife, Spain, where a Zeiss 1 m-diameter telescope is used to survey and characterise objects near the 'geostationary ring' some 36 000 km above the equator. The telescope has RitcheyChrétien optics and highly efficient digital cameras. The telescope can detect and track objects around geostationary altitudes down to 10–15 cm in size. With this performance, the ESA telescope is top- ranked worldwide. The data provided by the telescope are a major input for space debris environment models. The telescope is also capable of conducting photometric observations, to determine the 'colour' of objects. This enables the material properties of unknown objects to be characterised and provides valuable information on the potential origin of newly detected fragments. In almost 60 years of space activities, more than 5250 launches have resulted in some 42 000 tracked objects in orbit, of which about 23 000 remain in space and are regularly tracked by the US Space Surveillance Network and maintained in their catalogue, which covers objects larger than 1 / 2 APA citation: Image: Teide Observatory on Tenerife, Spain (2017, April 14) retrieved 29 September 2021 from https://phys.org/news/2017-04-image-teide-observatory-tenerife-spain.html This document is subject to copyright.
    [Show full text]
  • Présentation Powerpoint
    Hunting for habitable exoplanets around the nearest very-low-mass stars Michaël Gillon (University of Liège, Belgium) CERN– 17 Jan 2019 Is our blue world unique? Credit: NASA Earth: a rocky planet hosting a complex surface biosphere Credit: NASA Earth: a rocky planet with surface liquid water « Habitable » planet Credits: Howard Perlman, USGS The « habitable zone » of the Sun Credits: NASA No little green men on Mars Credits: NASA We must search beyond our solar system Credits: Ryan Sullivan 1995: beginning of the exoplanet era A giant planet in very short orbit around a Sun-like star Didier Queloz Michel Mayor The exoplanet revolution 51 Peg b 9 Planets everywhere Credits: ESO/M. Kornmesser The diversity of planetary systems Compact Hot Jupiters systems Very eccentric Free-floating orbits planets Credits: NASA/JPL-Caltech; Northwestern University; SETI Institute 11 A few dozen possible biospheres A few dozen BILLIONS in the whole Milky Way! 12 A few exoplanets have been imaged Spectroscopy of terrestrial planets Best spectral range for the detection of molecules is infrared Infrared spectroscopy of potentially habitable exoplanets Spectroscopy of exoplanets Imaging planets around other stars Imaging planets around other stars Planetary transit Transit of exoplanet Credits: Deeg & Garrido Atmospheric study of a transiting exoplanet Credits: C. Daniloff/MIT, J. de Wit 20 Atmospheric study of a transiting exoplanet Credits: E. Sedaghati et al. 2018 21 Atmospheric study of a transiting exoplanet Credits: NASA/JPL 22 Atmospheric study of a transiting exoplanet Credits: Grillmair et al. 2008 23 The smaller the star, the better Low-mass stars are small and cold Credits: ESO The habitable zone of hot and cold stars Credits: NASA 26 Most stars are smaller and colder than the Sun 27 Search for habitable Planets EClipsing ULtra-cOOl Stars Search for habitable Planets EClipsing ULtra-cOOl Stars What are « ultra-cool stars »? Ultracool dwarfs: Teff < 2700K, (Kirckpatrick erSun al.
    [Show full text]
  • SPECULOOS: Ultracool Dwarf Transit Survey Target List and Strategy?
    A&A 645, A100 (2021) Astronomy https://doi.org/10.1051/0004-6361/202038827 & c ESO 2021 Astrophysics SPECULOOS: Ultracool dwarf transit survey Target list and strategy? D. Sebastian1, M. Gillon1, E. Ducrot1, F. J. Pozuelos1,3, L. J. Garcia1, M. N. Günther4, L. Delrez1,3,5 , D. Queloz2, B. O. Demory6, A. H. M. J. Triaud7, A. Burgasser8, J. de Wit4, A. Burdanov4, G. Dransfield7, E. Jehin3, J. McCormac9, C. A. Murray2, P. Niraula4, P. P. Pedersen2, B. V. Rackham4, S. Sohy3, S. Thompson2, and V. Van Grootel3 1 Astrobiology Research Unit, University of Liège, Allée du 6 Août, 19, 4000 Liège, Sart-Tilman, Belgium e-mail: [email protected] 2 Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK 3 Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 19C, 4000 Liège, Belgium 4 Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 5 Observatoire de l’Université de Genéve, Chemin des Maillettes 51, Versoix 1290, Switzerland 6 University of Bern, Center for Space and Habitability, Gesellschaftsstrasse 6, 3012 Bern, Switzerland 7 School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 8 University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 9 Department of Physics, University of Warwick, Coventry CV4 7AL, UK Received 2 July 2020 / Accepted 27 October 2020 ABSTRACT Context. One of the most promising avenues for the detailed study of temperate Earth-sized exoplanets is the detection of such planets in transit in front of stars that are small and near enough to make it possible to carry out a thorough atmospheric characterisation with next-generation telescopes, such as the James Webb Space telescope (JWST) or Extremely Large Telescope (ELT).
    [Show full text]
  • TRAPPIST: Transiting Planets and Planetesimals Small Telescope
    Telescopes and Instrumentation TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope Emmanuël Jehin1 Michaël Gillon1 Didier Queloz2 E. Jehin/ESO E. Pierre Magain1 Jean Manfroid1 Virginie Chantry1 Monica Lendl2 Damien Hutsemékers1 Stephane Udry2 1 Institut d’Astrophysique de l’Université de Liège, Belgium 2 Observatoire de l’Université de Genève, Switzerland TRAPPIST is a 60-cm robotic telescope that was installed in April 2010 at the ESO La Silla Observatory. The project is led by the Astrophysics and Image Pro- cessing group (AIP) at the Department of Figure 1. The TRAPPIST telescope in its 5­metre time is obviously needed to monitor the Astrophysics, Geophysics and Ocean- enclosure at the La Silla Observatory, Chile. activity of several comets with a fre­ ography (AGO) of the University of Liège, quency of a few times per week. Some in close collaboration with the Geneva TRAPPIST is an original project using a comets are known, but others appear Observatory, and has been funded by single telescope that has been built and serendipitously. For the latter, telescope the Belgian Fund for Scientific Research optimised to allow the study of those two availability is crucial if we want to react (F.R.S.-FNRS) and the Swiss National aspects of the growing field of astrobiol­ rapidly to observe those targets at the Science Foundation (SNF). It is devoted ogy. It provides high quality photometric appropriate moment and for several hours to the detection and characterisation of data of exoplanet transits and allows or nights in a row; this strategy can pro­ exoplanets and to the study of comets the gaseous emissions of bright comets vide unique datasets impossible to obtain and other small bodies in the Solar Sys- to be monitored regularly.
    [Show full text]
  • TRAPPIST : a Robotic Telescope to Study Planetary Systems
    TRAPPIST : a robotic telescope to study planetary systems TRAPPIST = TRAnsiting Planets and PlanetesImals Small Telescope Emmanuël Jehin and TRAPPIST team (Liège University Belgium – FNRS) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) TRAPPIST : a robotic telescope to study planetary systems TRAPPIST = TRAnsiting Planets and PlanetesImals Small Telescope Emmanuël Jehin and TRAPPIST team (Liège University Belgium – FNRS) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) The existence of other worlds : An old question “There are countless suns; countless land revolve around these suns, in the same way the seven planets revolve around the Sun” Giordano Bruno (1548-1600) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) TRAPPIST consortium Université de Liège (ULg Belgium) Team : Michaël Gillon, Emmanuël Jehin, Pierre Magain, Jean Manfroid, Damien Hutsemékers, Aurélie Fumel, Alice Decock, Sandrine Sohy Observatoire de Genève (Switzerland) Team : Didier Queloz, Monica Lendl, Amaury Triaud, Stéphane Udry and Gregory Lambert on site Funds : Belgian FNRS + Swiss FNS European Southern Observatory (ESO) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) The site : La Silla Observatory (ESO, Chile) I40 Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)
    [Show full text]