Microfossils and Biostratigraphy

Total Page:16

File Type:pdf, Size:1020Kb

Microfossils and Biostratigraphy Chapter 3 Microfossils and Biostratigraphy FIGURE 3.1. Four species of planktic foraminifers from the tropical western Atlantic: upper left: Globigerinoides ruber, upper right: Globigerinoides sacculifer, lower left: Globorotalia menardii, lower right: Neogloboquadrina dutertrei. Scale bar = 100 µm (100 µm = 0.1 mm). Photo courtesy of Mark Leckie. SUMMARY Microfossils are important, and in places the dominant constituents of deep sea sediments (see Chapter 2). The shells/hard parts of calcareous microfos- sils can be geochemically analyzed, for example by stable isotopes of oxygen and carbon, which are powerful proxies (indirect evidence) in paleocea- nography and climate change studies (see Chapter 6). Microfossil evolution Reconstructing Earth’s Climate History: Inquiry-Based Exercises for Lab and Class, First Edition. Kristen St John, R Mark Leckie, Kate Pound, Megan Jones and Lawrence Krissek. © 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd. NAME has provided a rich archive for establishing relative time in marine sedi- mentary sequences. In this chapter you will gain experience using micro- fossil distributions in deep-sea cores to apply a biostratigraphic zonation and interpret relative age, correlate from one region of the world ocean to another, and calculate rates of sediment accumulation. In Part 3.1, you will learn about the major types of marine microfossils and their habitats; you will consider their role in primary productivity in the world oceans, their geologic record and diversity through time, as well as the relationship between microfossil diversity and sea level changes through time. In Part 3.2, you will explore microfossil distribution in a deep-sea core and consider microfossils as age indicators. In Part 3.3, you will apply microfossil first and last occurrences (datum levels) in a deep-sea core to establish biostrati- graphic zones. In Part 3.4, you will use these same microfossil datum levels to determine sediment accumulation rates. In Part 3.5, you will explore the reliability of microfossil datum levels in multiple locations. Microfossils and Biostratigraphy Part 3.1. What are Microfossils? Why are they Important in Climate Change Science? While there are many types of tiny animals and microorganisms living in the sunlit surface waters of the ocean, at depth in the water column and on the seafloor, most of these organisms do not possess the hard parts necessary for them to be preserved on the sedimentary record as fossils. However, recalling from Chapter 2, there are some groups of organisms that have mineralized shells or other hard parts consisting of carbonate (CaCO3) or silica (SiO2), and others that possess a tough organic wall. The vast majority of the “microfos- sils” preserved in deep-sea sediments are single-celled protists belonging to the Kingdom Protoctista (i.e., not plants, not animals). Many of these protists reside in the upper water column and passively drift with other types of plank- ton at the whim of ocean currents (planktic habitat), mostly within or near the photic zone (the upper part of the water column where there is enough sunlight available to drive photosynthesis). Some of these shelled protists are able to photosynthesize and they are called phytoplankton, whereas those that do not are called zooplankton. Examples of phytoplankton include the calcareous coccolithophorids (calcareous nannofossils) and siliceous diatoms; examples of zooplankton include the calcareous planktic foraminifers (“planktic forams”; Figure 3.1) and the siliceous radiolarians (Figure 3.2). In addition to planktic microfossils, there are a number of important micro- fossil groups that live on the seafloor benthic( habitat), including the benthic foraminifera and ostracods. Benthic “forams” live at all depths and all lati- tudes, from coastal salt marshes and estuaries to the deepest parts of the MICROFOSSILS AND BIOSTRATIGRAPHY 81 NAME FIGURE 3.2. Calcareous microfossils (calcareous nannofossils and planktic forams) and siliceous microfossils (diatoms and radiolarians). All are single-celled protists with mineralized hard parts. The calcareous nannofossils (x400; polarized light) and diatoms (x100; plain light) are photosynthetic primary producers (i.e., autotrophs). The planktic foraminifera (x50; reflected light) and radiolarians (x100; plain light) are consumers (i.e., heterotrophs). Planktic foram photomicrograph courtesy of Dave Walker; all other photomicrographs from the IODP School of Rock 2005. ocean, and from tropical coral reefs to frigid polar waters. Ostracods are tiny crustaceans (i.e., true animals) with two calcareous valves (shells) that super- ficially resemble microscopic clams. Earth scientists study modern living organisms and the microfossils left behind. Micropaleontologists specialize in the study of microfossils, those fossils that are small enough to require the use of a microscope to identify the features of specimens and recognize species. 1 In Chapter 2, Seafloor Sediments, you learned that there are a variety of marine microfossils found in deep-sea sediments. Why are microfossils found in deep-sea sediments? Explain. _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ Trophic Levels and Productivity 2 What types of organisms make up the base of the food chain (i.e., food webs, food pyramids) on land? 82 MICROFOSSILS AND BIOSTRATIGRAPHY NAME _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ 3 Why are these organisms at the base of the food chain? _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ 4 What types of organisms make up the base of the food chain in the ocean? _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ 5 How might these organisms be similar, and how might they differ from those on land? _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ 6 It is very cold and pitch black on the seafloor below 1000 m water depth. Speculate about the types of organisms that make up the base of the food chain in the deep ocean. _______________________________________________________________________ _______________________________________________________________________ MICROFOSSILS AND BIOSTRATIGRAPHY 83 NAME _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ MARINE MICROFOSSILS AND PRODUCTIVITY The siliceous diatoms and calcareous coccolithophorids (and other cal- careous nannofossils) are similar to plants, in that they contain chloro- phyll and, like plants, they are autotrophs (“self-feeding”; Figure 3.2). These autotrophs synthesize organic molecules (e.g., carbohydrates, pro- teins, and fats) from inorganic molecules (CO2, water, and nutrients) using solar radiation. In other words, they make organic carbon from inorganic carbon. Such organisms are considered to be primary producers because they manufacture the organic materials that other types of organism require as food; thus, primary producers form the basis of many marine food chains/food pyramids. The process of organic carbon production in the sunlit surface waters is called photosynthesis. Free oxygen (O2) is produced by the reduction of CO2 and water during photosynthesis. The generalized reaction below describes the process of photosynthesis: 6CO2 + 6H2O + inorganic + solar energy → C 6H12O6 + 6O2 nutrients carbon water nitrates, phosphates, glucose free oxygen dioxide trace elements & vitamins (a simple sugar) The siliceous radiolarians and calcareous planktic foraminifers (Figures 3.1 & 3.2) are similar to animals in that they are consumers, and like animals, they are heterotrophs (“other feeding”; Figure 3.2) and depend on other organisms, either autotrophs or other heterotrophs, for their food. The dinoflagellates are a diverse group of organic-walled protists that include both autotrophs and heterotrophs. The process of organic carbon consumption is called respiration. Carbon dioxide (CO2) is released as a product during respiration. The generalized reaction for respiration is the reverse of that for photosynthesis: C6H12O6 + 6O2 6CO2 + 6H2O + solid waste + chemical energy & nutrients ‘food’ oxygen carbon water to be broken-down for metabolic (carbohydrates, dioxide further
Recommended publications
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Volume 144 Index
    Index to Volume 144 INDEX TO VOLUME 144 This index provides coverage for both the Initial Reports and Scientific Results portions of Volume 144 of the Proceedings of the Ocean Drilling Program. Refer- ences to page numbers in the Initial Reports are preceded by “A” with a colon (A:), and to those in the Scientific Results (this book), by “B” with a colon (B:). In addi- tion, reference to material on CD-ROM is shown as “bp:CD-ROM.” The index was prepared by Earth Systems, under subcontract to the Ocean Drill- ing Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry fol- lowed by a page reference. The index is presented in two parts: (1) a Subject Index and (2) a Taxonomic Index. Both parts cover text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear-slide data, or thin-section descriptions; these are given in the Initial Reports. Also excluded from the index are biblio- graphic references, names of individuals, and routine front and back matter. The Subject Index follows a standard format. Geographic, geologic, and other terms are referenced only if they are subjects of discussion. This index also includes broad fossil groups such as nannofossils and radiolarians. A site chapter in the Ini- tial Reports is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index.
    [Show full text]
  • Applications of Calcareous Nannofossils and Stable Isotopes To
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Applications of Calcareous Nannofossils and Stable Isotopes to Cenozoic Paleoceanography: Examples from the Eastern Equatorial Pacific, Western Equatorial Atlantic and Southern Indian Oceans Shijun Jiang Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES APPLICATIONS OF CALCAREOUS NANNOFOSSILS AND STABLE ISOTOPES TO CENOZOIC PALEOCEANOGRAPHY: EXAMPLES FROM THE EASTERN EQUATORIAL PACIFIC, WESTERN EQUATORIAL ATLANTIC AND SOUTHERN INDIAN OCEANS By SHIJUN JIANG A dissertation submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2007 The members of the Committee approve the Dissertation of Shijun Jiang defended on July 13, 2007. ____________________________________ Sherwood W. Wise, Jr. Professor Directing Dissertation ____________________________________ Richard L. Iverson Outside Committee Member ____________________________________ Anthony J. Arnold Committee Member ____________________________________ Joseph F. Donoghue Committee Member ____________________________________ Yang Wang Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii To Shuiqing and Jenny iii ACKNOWLEDGEMENTS First of all, I would like to thank my mentor Dr. Sherwood W. Wise, Jr., who constantly encouraged and supported me with his enthusiasm, reliance, guidance and, most of all, patience throughout my Ph.D adventure. He also opened a door into my knowledge of the paleo world, generously shared his time and his wealth of knowledge, patiently guided me through a western educational system totally different from my own background, and has successfully fostered my interest and enthusiasm in teaching.
    [Show full text]
  • Cenozoic-Mesozoic-Paleozoic Integrated Stratigraphy and User- Generated Time Scale Graphics and Charts
    GeoArabia, Vol. 11, No. 3, 2006 Gulf PetroLink, Bahrain LETTER TO THE EDITOR hank you again for another outstanding issue of GeoArabia (vol. 11, no. 1, 2006). There is Tabsolutely no doubt that GeoArabia is the best stratigraphic journal in the world. This is for the simple reason that the geoscience described in this journal directly uses and directly refers to Stratigraphy in all its aspects and in a very comprehensive manner. The published papers are outstanding and serve the upstream industry, as well as scientific research and educational institutions. The International Commission on Stratigraphy (ICS) is presently working on improving the highly popular program Time Scale Creator (TS-Creator©) that can be downloaded freely from the ICS website. This data base is coordinated by Jim Ogg and the program was developed by Adam Lugowski. It provides large bio-, magneto-, chemo- and chrono-sequence stratigraphic charts for specific basins and specific time intervals. The ICS would like to extend this work to the Middle East basins by working closely with geoscientists from your region. In this regard we thank GeoArabia for explaining the studies conducted by the ICS to the Middle East geoscience community by publishing the feature on the ICS (vol. 11, no. 1, p. 159–160) and the following article. We look forward to hearing back from interested Middle East stratigraphers. Felix Gradstein Chair, International Commission on Stratigraphy TS-Creator© - Chronostratigraphic data base and visualisation: Cenozoic-Mesozoic-Paleozoic integrated stratigraphy and user- generated time scale graphics and charts Felix Gradstein and James Ogg Summary The International Commission on Stratigraphy (ICS) has produced an electronic version of the international standard Cenozoic-Mesozoic-Paleozoic bio-magneto-sequence, time-scale charts.
    [Show full text]
  • 4. Calibration of Miocene Nannofossil Events to Orbitally Tuned Cyclostratigraphies from Ceara Rise1
    Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), 1997 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154 4. CALIBRATION OF MIOCENE NANNOFOSSIL EVENTS TO ORBITALLY TUNED CYCLOSTRATIGRAPHIES FROM CEARA RISE1 Jan Backman2 and Isabella RafÞ3 ABSTRACT Ocean Drilling Program Site 926 sediments are well suited to serve as a reference section for calcareous nannofossil bio- stratigraphy from the low-latitude Atlantic Ocean in the 0- to 14-Ma time interval. Reasons include completeness in deposition and recovery, superbly resolved orbitally tuned chronologic control, generally good carbonate preservation, and the fact that this site represents a location where much evolution evidently occurred. Thirty-four nannofossil events, from the top of Cera- tolithus acutus to the top of Sphenolithus heteromorphus, have been investigated at 10-cm sample resolution (averaging 6 k.y.) in over 1400 samples from the earliest Pliocene (5.046 Ma) to the middle Miocene (13.523 Ma). These 34 events have been determined with an average chronological precision of ±7 k.y. This study emphasizes (1) the importance of quantitative approaches to determine time-dependent abundance variation of species to improve the understanding of paleoecologic responses of biostratigraphically useful species to variable and changing paleoenvironmental conditions; and (2) the importance of determining the smallest meaningful sampling interval to capture the Þnest details of the records of evolutionary emergence or extinction of species that are preserved in cores. INTRODUCTION ically continuous sampling sections for the Pliocene/Pleistocene and large portions of the Miocene at several sites. Biostratigraphic zonal schemes based on calcareous plankton High-resolution time control has been established for approxi- groups were well established by the time the Deep Sea Drilling mately the past 14 m.y.
    [Show full text]
  • Cenozoic Fossil Mollusks from Western Pacific Islands; Gastropods (Eratoidae Through Harpidae)
    Cenozoic Fossil Mollusks From Western Pacific Islands; Gastropods (Eratoidae Through Harpidae) GEOLOGICAL SURVEY PROFESSIONAL PAPER 533 Cenozoic Fossil Mollusks From Western Pacific Islands; Gastropods (Eratoidae Through Harpidae) By HARRY S. LADD GEOLOGICAL SURVEY PROFESSIONAL PAPER 533 Descriptions or citations of 195 representatives of 21 gastropod families from 7 island groups UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Ladd, Harry Stephen, 1899- Cenozoic fossil mollusks from western Pacific islands. (Geological Survey professional paper ; 533) Bibliography: p. Supt. of Docs, no.: I 19.16:533 1. Gastropoda, Fossil. 2. Paleontology Cenozoic. 3. Paleontology Islands of the Pacific. I. Title. II. Series: United States. Geological Survey. Professional paper ; 533. QE75.P9 no. 533 [QE808] 557.3'08s [564'.3'091646] 75-619274 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02975-8 CONTENTS Page Page Abstract _ _ _ _ ___ _ _ 1 Paleontology Continued Introduction ____ _ _ __ 1 Systematic paleontology Continued 1 Families covered in the present paper Continued Stratigraphy and correlation _ _ _ q Cymatiidae 33 6 35 Tonnidae __ _______ 36 6 Ficidae _ - _ _ _ _ ___ 37 Fiji _ __ __ __ _____ __ ____ __ _ 6 37 New Hebrides 7 Thaididae __ _ _ _ _ _ 39 14 41 14 Columbellidae - 44 14 Buccinidae _ - - 49 51 (1966, 1972) 14 Nassariidae _ - 51 "P1 ?} TYllllPQ.
    [Show full text]
  • 14. Oligocene to Recent Calcareous Nannoplankton from the Philippine Sea, Deep Sea Drilling Project Leg 59
    14. OLIGOCENE TO RECENT CALCAREOUS NANNOPLANKTON FROM THE PHILIPPINE SEA, DEEP SEA DRILLING PROJECT LEG 59 Erlend Martini, Geologisch-Palàontologisches Institut der Universitàt, Frankfurt am Main, Germany INTRODUCTION substitute species. Its last occurrence marks the top of Zone NP 25 in Leg 59. During Leg 59 of the Deep Sea Drilling Project, five A different zonation, mainly based on Bukry (1971a, sites (447 to 451) were occupied and seven holes drilled 1973), was used during Leg 31 in the Western Philippine between Okinawa and Guam in the Philippine Sea (Fig. Sea and during Leg 60 at the eastern transect of the 1). All holes except Hole 447 yielded common calcare- Philippine Sea. For better comparison of results both ous nannoplankton at certain intervals cored. Nanno- zonations and their correlation are shown in Figure 2. plankton assemblages and their age assignments will be The zonations differ in some parts of the tabulated time discussed for each site, and fossil lists for selected interval but are otherwise very similar because 20 boun- samples from Holes 447A, 448, 450, and 451 are pre- daries are identical in both zonations. There is also sented in Tables 1 to 4, covering the middle Oligocene to general agreement on the age of some major boun- the Quaternary. daries, indicated by an asterisk in Figure 2. A few remarks, however, seem necessary to avoid misinter- CALCAREOUS NANNOPLANKTON ZONATION pretation, especially in the Oligocene, where some con- For the Tertiary and Quaternary, I have used the fusion may arise because the same zonal names are used standard calcareous nannonplankton zonation (Mar- for different time intervals.
    [Show full text]
  • Paleontology of the Upper Eocene to Quaternary Postimpact Section in the USGS-NASA Langley Core, Hampton, Virginia
    Paleontology of the Upper Eocene to Quaternary Postimpact Section in the USGS-NASA Langley Core, Hampton, Virginia By Lucy E. Edwards, John A. Barron, David Bukry, Laurel M. Bybell, Thomas M. Cronin, C. Wylie Poag, Robert E. Weems, and G. Lynn Wingard Chapter H of Studies of the Chesapeake Bay Impact Structure— The USGS-NASA Langley Corehole, Hampton, Virginia, and Related Coreholes and Geophysical Surveys Edited by J. Wright Horton, Jr., David S. Powars, and Gregory S. Gohn Prepared in cooperation with the Hampton Roads Planning District Commission, Virginia Department of Environmental Quality, and National Aeronautics and Space Administration Langley Research Center Professional Paper 1688 U.S. Department of the Interior U.S. Geological Survey iii Contents Abstract . .H1 Introduction . 1 Previous Work and Zonations Used . 3 Lithostratigraphy of Postimpact Deposits in the USGS-NASA Langley Corehole . 7 Methods . 8 Paleontology . 9 Chickahominy Formation . 9 Drummonds Corner Beds . 17 Old Church Formation . 19 Calvert Formation . 20 Newport News Beds . 20 Plum Point Member . 20 Calvert Beach Member . 21 St. Marys Formation . 27 Eastover Formation . 28 Yorktown Formation . 29 Tabb Formation . 31 Discussion . 31 Summary and Conclusions . 31 Acknowledgments . 33 References Cited . 34 Appendix H1. Full Taxonomic Citations for Taxa Mentioned in Chapter H . 39 Appendix H2. Useful Cenozoic Calcareous Nannofossil Datums . 46 Plates [Plates follow appendix H2] H1–H9. Fossils from the USGS-NASA Langley core, Hampton, Va.: H1. Dinoflagellate cysts from the Chickahominy Formation H2. Dinoflagellate cysts from the Chickahominy Formation H3. Dinoflagellate cysts from the Chickahominy Formation, Drummonds Corner beds, and Old Church Formation H4. Dinoflagellate cysts from the Old Church and Calvert Formations H5.
    [Show full text]
  • Coccolithophores
    Coccolithophores From Molecular Processes to Global Impact Bearbeitet von Hans R Thierstein, Jeremy R Young 1. Auflage 2004. Buch. xiii, 565 S. Hardcover ISBN 978 3 540 21928 6 Format (B x L): 21 x 29,7 cm Gewicht: 1129 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Botanik > Phykologie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. What is new in coccolithophore biology? Chantal BILLARD1 and Isao INOUYE2 1 Laboratoire de Biologie et Biotechnologies Marines, Université de Caen, F-14032 Caen, France. [email protected] 2 Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305- 8572 Ibaraki, Japan. [email protected] Summary Knowledge of the biology of coccolithophores has progressed considerably in re- cent years thanks to culture studies and meticulous observations of coccospheres in wild samples. It has been confirmed that holococcolithophores and other "anomalous" coccolithophores are not autonomous but stages in the life cycle of oceanic heterococcolithophores. The existence of such heteromorphic life cycles linking former "species" has far reaching consequences on the taxonomy and no- menclature of coccolithophores and should foster research on the environmental factors triggering phase changes. The cytological characteristics of coccolithopho- res are reviewed in detail with special attention to the cell covering, coccolitho- genesis and the specificity of appendages in this group.
    [Show full text]
  • Reproductive Biology of Plants
    K21132 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 711 Third Avenue New York, NY 10017 an informa business 2 Park Square, Milton Park A SCIENCE PUBLISHERS BOOK www.crcpress.com Abingdon, Oxon OX14 4RN, UK About the pagination of this eBook Due to the unique page numbering scheme of this book, the electronic pagination of the eBook does not match the pagination of the printed version. To navigate the text, please use the electronic Table of Contents that appears alongside the eBook or the Search function. For citation purposes, use the page numbers that appear in the text. Reproductive Biology of Plants Reproductive Biology of Plants Editors K.G. Ramawat Former Professor & Head Botany Department, M.L. Sukhadia University Udaipur, India Jean-Michel Mérillon Université de Bordeaux Institut des Sciences de la Vigne et du Vin Villenave d’Ornon, France K.R. Shivanna Former Professor & Head Botany Department, University of Delhi Delhi, India p, A SCIENCE PUBLISHERS BOOK GL--Prelims with new title page.indd ii 4/25/2012 9:52:40 AM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140117 International Standard Book Number-13: 978-1-4822-0133-8 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 13
    13. TYRRHENIAN RISE - SITE 132 The Shipboard Scientific Party1 SITE DATA convinced as to such permanence, other workers have envisioned the creation of new areas of young crust by the Occupied: September 24-26, 1970. opening of sphenochasms and the. drifting apart of Position: On a relatively smooth rise approximately 60 continents following the break up of Pangaea (Carey, 1958; kilometers west and about 800 meters above the level of Vogt et al., 1971). The proposed age of the extensional the central bathyal plain. phases in the western Mediterranean, during which simatic Latitude: 40° 15.7θ'N crust was suspected to have been accreted, spans a broad Longitude: 11° 26.47'E range of time from the Lower Jurassic (Smith, 1971) to the Water Depth: 2835 meters. late Eocene-Oligocene (Ryan et al, 1971; Le Pichon et al, Cores Taken: Twenty-seven. 1971), and even into the Miocene (Argand, 1922; Stanley Total Penetration: 223 meters. andMutti, 1968). There are still others who argue that the present bathyal Deepest Unit Recovered: Solid gypsum rock of Upper areas of the Tyrrhenian Sea came into existence following Miocene (Messinian) age displaying undulating lami- the collapse of a craton (e.g., Merla, 1951; Klemme, 1958; nations characteristic of algal stromatolites. Maxwell, 1959; Aubouin, 1965; Pannekoek, 1969; Van MAIN RESULTS Bemmelen, 1969; Morelli, 1970; Heezen et al, 1971). As to when the oceanization occurred, a recent paper of Selli and A continuous sequence of Pleistocene and Pliocene Fabbri (1971) reports on fossil assemblages found in fossiliferous pelagic ooze of a deep-water (bathyal) facies "littoral" conglomerates recovered in dredge samples from was found directly overlying Late Miocene evaporites which the Stromboli and Oresi Canyons and the Baronie include barren pyritic, dolomitic, and gypsiferous marls, Seamount (Figure 1), and concludes that the foundering and indurated gypsum rock.
    [Show full text]
  • Redalyc.The Pliocene Mediterranean Infilling of the Messinian Erosional
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España LANCIS, C.; TENT-MANCLÚS, J.E.; FLORES, J.A.; SORIA, J.M. The Pliocene Mediterranean infilling of the Messinian Erosional Surface: New biostratigraphic data based on calcareous nannofossils (Bajo Segura Basin, SE Spain) Geologica Acta: an international earth science journal, vol. 13, núm. 3, septiembre, 2015, pp. 211-228 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50541392004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol. 13, Nº 3, September 2015, 211-228 DOI: 10.1344/GeologicaActa2015.13.3.4 The Pliocene Mediterranean infilling of the Messinian Erosional Surface: New biostratigraphic data based on calcareous nannofossils (Bajo Segura Basin, SE Spain) C. LANCIS1 J.E. TENT-MANCLÚS1* J.A. FLORES2 J.M. SORIA1 1Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante Apto. 99. 03080 San Vicente del Raspeig. Alicante, Spain. Lancis E-mail: [email protected], Tent-Manclús E-mail: [email protected], Soria E-mail: [email protected] Fax: (+ 34) 965909862 2Departamento de Geología, Universidad de Salamanca Plaza de la Merced s/n, 37008-Salamanca, Spain. E-mail: [email protected] Fax: (+ 34) 923294514 *Corresponding author ABS TRACT The Bajo Segura Basin (eastern Betic Cordillera) is a Mediterranean marginal basin where the Messinian Erosional Surface (MES), formed during the Messinian Salinity Crisis sea-level fall, is well developed.
    [Show full text]