Hyacinthian Correspondences on Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Hyacinthian Correspondences on Geometry Pre - Hyacinthian Correspondences on Geometry Floor van Lamoen Paul Yiu Goes, and Boca Raton, Florida, The Netherlands USA April 1999 to December 1999 Floor van Lamoen, Thursday, April 15. Preprints. Dear Mr. Yiu, I received from Professor Clark Kimberling a couple of preprints from your hand. I have been reading these preprints with a lot of pleasure, and the pleasure will continue, because I haven’t fully studied all material yet. I was especially struck by the beauty of “Those Ubiquitous Archimedean Cirles”. It seems to me that two very simple Archimedean circles, that might be of slight interest, are not mentioned in this manuscript. Maybe they might be a tiny addition. Construct a line from O2 tangent to (O1), and let Wx be the point of tan- gency. Then, if we let (Wx) be the smallest circle that is tangent to the common tangent CD of (O1)and(O2), we find that (Wx) is an Archimedean circle. This r1r2 canbeeasilyverifiedbythep = r formula and Pythagoras’theorem. InthesamewaywecanconstructalinefromO1 tangent to (O2), and let Wy be the point of tangency. And we find an Archimedean circle (Wy). Please let me know if you like to recieve comments like this. Best regards. Floor van Lamoen, Goes, The Netherlands. Paul Yiu, April 15, 1999. Dear Mr. van Lamoen, It is indeed a great delight to receive your kind words. Your comments and suggestions on the preprints, or any other communication in plane Euclidean geometry, are very much appreciated. The two Archimedean circles you mentioned are indeed wonderful. I have not realized these before. I shall communicate these to my coauthors. I am sure they will be as delighted as I am. The point Wx, in the notation of the preprint Those Ubiquitous Archimedean Circles,isthepointS1 in Figure 26. As you said, that these are Archimedean 1 vanLamoenandYiu:Pre-HyacinthianGeometry 2 follow easily from Euclid’s proof of Pythagoras’ Theorem: the radius of (Wx) being 2 r1 r1r2 r1 − = . r1 + r2 r1 + r2 Also not mentioned in the same article are two other Archimedean circles discovered by Frank Power, who took a geometry course with me last summer. Let R1 be the highest point of the circle (O1), as in Figure 15 of the preprint. ThecircletangenttoOR1 at this point and also to (O) internally has radius x given by 2 2 2 2 x +(r1 + r2)=(r1 + r2 − x) . From this it is readily seen that r1r2 x = , r1 + r2 showing that the circle is Archimedean. The same equation holds for the radius of the analogous circle at the highest point R2 of the circle (O2). Archimedean circles are indeed ubiquitous! Best regards. Sincerely, Paul Yiu Department of Mathematics Florida Atlantic University Boca Raton, FL 33431-0991 USA Floor van Lamoen, Monday, April 19, 1999. The radical center of the excircles of a triangle Dear Mr. Yiu, I have read your preprint “The radical center of the excircles of a triangle”. I was surprised to find the construction as in figure 2, which has been presented by John Conway in the Geometry-puzzles mailing list in March, 1998. Very interesting to find it this way! I wondered why you did not give a construction for the circle orthogonal to the incircle and two of the excircles. I am not√ fully sure how you derived that the power of S w.r.t. either excircle 1 2 2 is equal to 2 r + s . However, it seems reasonable to me that, when the incir- cle is taken for the A−excircle, the power of the A−excenter of triangle DEF 1 2 − 2 w.r.t. the incircle will be 2 ra +[(b + c a)/2] . In that case the construction of the circle of the circle orthogonal to the B− and C−excircles and the incircle is a variation on Figure 2: Leave FA and EA unchanged, but take for FB , DB, DC and EC the alter- native intersection of circle and side. These six points lie on the circle centered 1 2 − 2 at the A-excenter of DEF and having radius 2 ra +[(b + c a)/2] .(Isthere a reasonable version of Woo’s observation and its corollary in this case?) When we have the four circles, each perpendicular to three circles out of the set incircle and excircles, then in fact we have two twin sets of four circles: each circle is perpendicular to three circles of the other set. vanLamoenandYiu:Pre-HyacinthianGeometry 3 What would you think? Best regards. Sincerely, Floor van Lamoen. N.B. Please, call me by my first name. Paul Yiu, Monday, April 19, 1999. Dear Floor, Thanks for your comments on the excircles paper. When I wrote that little paper last summer, I intended it to be short and did not fill out all details, since I aimed at sending it to the Mathematics Magazine. I can find out the calculations for the radius of the orthogonal circles, and details of Woo’s statement. I learnt of the circle of Conway in early March this year, from one of the MAA Online articles by Bogomolny. If I remember correctly, I may have written a statement for the circle orthogonal to the incircle and two excircles. I am between classes now, and shall think more about your comments. By the way, the Mathematics Magazine did not want my article. I am still trying to find a home for it. Three weeks ago, I sent it out to Nieuw voor Archief Wiskunde. It is of course too early to hear anything. Best regards. Paul Floor van Lamoen, Tuesday, June 8, 1999. Ubiquitous Archimedean Circles Dear Paul, Every now and then I think about the arbelos article I received via Professor Kimberling. Somehow I think it is very attractive. I noticed the following: Let M be the midpoint of O1O2.Let(C1)bethe (semi-)circle with O1O2 as diameter, (C2) the circle with center O1 through O and (C3) the circle with center O2 through O.Letthepointswhere(C2)and (C3) meet (C1) be called Wt and Wu. Then the circles with these points as centers, tangent to the line through O perpendicular to AB, are archimedean. This is not really surprising, since these circles are the reflections about the line through O perpendicular to AB of the two circles I wrote you about in April. But then I noticed that these circles are in some way similar to (W13) and (W14). The consctruction on the points on (O) in figure 9 is similar to that of the points Wt and Wu above. And then I realized a baby-arbelos was born: <O2O1O>is an arbelos similar to ABC, but with opposite orientation, and lengths of half the size of ABC. Using this baby-arbelos it is possible to find some “new” archimedean circles. The circles (W4), (W5), (W9)and(W10) have children in the baby- arbelos, where the transforms of the points A, F , D and C serve as midpoints in stead of points on the circumference. There is also a very logical child of (W4), (W5), (W12) in the baby-arbelos. How do you like this idea? Best regards. Floor. vanLamoenandYiu:Pre-HyacinthianGeometry 4 Paul Yiu Wednesday, June 9, 1999. Ubiquitous Archimedean Circles Dear Floor, Thank you for your message yesterday on new Archimedean circles. From the explanation you gave, and the resemblance to W13 and W14, I recall the pictures of Thomas Schoch’s wonderful notes written twenty years ago. His very first picture confirms your conclusion. What appeals to me even more, however, is the fact that the centers of these two circles, and of the two you gave in April, are all on the semicircle (with O1O2 as diameter). Now this semicircle has quite a number of Archimedean circles associated with it. (1) This being orthogonal to both semicircles (AC)and(BC), its intersec- tions with these semicircle are the points of contact with the tangent from the center of the other semicircle. This can be seen from Figure 26. Your April message shows that the distance from each of these to the line CD is equal to the Archimedean radius. Hence, your two new circles in April. With the two yesterday, now there are four Archimedean circles with centers on this semicir- cle. (2) Associated with this semicircle also are the Archimedean circles W17, W18 and W19 which Thomas discovered. (3) After reading your message yesterday, I asked myself this question. There is a chain of circles tangent to the semicircle (O1O2) externally and to (AB) internally. How large is the one whose center is on the line CD? Let a and b be, as usual, the radii of the two semicircles (AC)and(BC). If the radius of this circle is x,then (a + b − x)2 − (a − b)2 =[(a + b)/2 − x]2 − [(a − b)/2]2. ab From this, x = a+b , Archimedean!!! Archimedean circles are really ubiquitous. How many Archimedean circles are known now? The Math. Mag. paper lists 29. Last July, Frank Power discovered two, and Thomas immediately pointed out their reflections, making four of them. Total = 33. In April, Floor gave two, and now two more, all with centers on the semicircle (O1O2). Total = 37. With the one in (3) above, we have now 38 Archimedean circles. Perhaps your idea of baby arbelos would lead to even more. Sincerely, Paul Paul Yiu to Peter Woo, Thomas Schoch, Clayton Dodge and Floor van Lamoen, Wednesday, June 9, 1999. Incircle of the arbelos Dear friends, Talking about the shoemaker’s knife, I have a question which always puzzles me. I hope you can enlighten me.
Recommended publications
  • The Stammler Circles
    Forum Geometricorum b Volume 2 (2002) 151–161. bbb FORUM GEOM ISSN 1534-1178 The Stammler Circles Jean-Pierre Ehrmann and Floor van Lamoen Abstract. We investigate circles intercepting chords of specified lengths on the sidelines of a triangle, a theme initiated by L. Stammler [6, 7]. We generalize his results, and concentrate specifically on the Stammler circles, for which the intercepts have lengths equal to the sidelengths of the given triangle. 1. Introduction Ludwig Stammler [6, 7] has investigated, for a triangle with sidelengths a, b, c, circles that intercept chords of lengths µa, µb, µc (µ>0) on the sidelines BC, CA and AB respectively. He called these circles proportionally cutting circles,1 and proved that their centers lie on the rectangular hyperbola through the circumcenter, the incenter, and the excenters. He also showed that, depending on µ, there are 2, 3 or 4 circles cutting chords of such lengths. B0 B A0 C A C0 Figure 1. The three Stammler circles with the circumtangential triangle As a special case Stammler investigated, for µ =1, the three proportionally cutting circles apart from the circumcircle. We call these the Stammler circles. Stammler proved that the centers of these circles form an equilateral triangle, cir- cumscribed to the circumcircle and homothetic to Morley’s (equilateral) trisector Publication Date: November 22, 2002. Communicating Editor: Bernard Gibert. 1Proportionalschnittkreise in [6]. 152 J.-P. Ehrmann and F. M. van Lamoen triangle. In fact this triangle is tangent to the circumcircle at the vertices of the circumtangential triangle. 2 See Figure 1. In this paper we investigate the circles that cut chords of specified lengths on the sidelines of ABC, and obtain generalizations of results in [6, 7], together with some further results on the Stammler circles.
    [Show full text]
  • A Note on the Miquel Points
    International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 c IJCDM September 2016, Volume 1, No.3, pp.45-49. Received 10 September 2016. Published on-line 20 September 2016 web: http://www.journal-1.eu/ c The Author(s) This article is published with open access1. Computer Discovered Mathematics: A Note on the Miquel Points Sava Grozdeva, Hiroshi Okumurab and Deko Dekovc 2 a VUZF University of Finance, Business and Entrepreneurship, Gusla Street 1, 1618 Sofia, Bulgaria e-mail: [email protected] b Department of Mathematics, Yamato University, Osaka, Japan e-mail: [email protected] cZahari Knjazheski 81, 6000 Stara Zagora, Bulgaria e-mail: [email protected] web: http://www.ddekov.eu/ Abstract. By using the computer program “Discoverer”, we give theorems about Miquel associate points. Abstract. Keywords. Miquel associate point, triangle geometry, remarkable point, computer-discovered mathematics, Euclidean geometry, Discoverer. Mathematics Subject Classification (2010). 51-04, 68T01, 68T99. 1. Introduction The computer program “Discoverer”, created by Grozdev and Dekov, with the collaboration by Professor Hiroshi Okumura, is the first computer program, able easily to discover new theorems in mathematics, and possibly, the first computer program, able easily to discover new knowledge in science. In this paper, by using the “Discoverer”, we investigate the Miquel points. The following theorem is known as the Miquel theorem: Theorem 1.1. If points A1;B1 and C1 are chosen on the sides BC; CA and AB of triangle ABC, then the circumcircles of triangles AB1C1; BC1A1 and CA1B1 have a point in common. 1This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
    [Show full text]
  • Volume 6 (2006) 1–16
    FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b bbb FORUM GEOM Volume 6 2006 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Steve Sigur Atlanta, Georgia, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Khoa Lu Nguyen and Juan Carlos Salazar, On the mixtilinear incircles and excircles,1 Juan Rodr´ıguez, Paula Manuel and Paulo Semi˜ao, A conic associated with the Euler line,17 Charles Thas, A note on the Droz-Farny theorem,25 Paris Pamfilos, The cyclic complex of a cyclic quadrilateral,29 Bernard Gibert, Isocubics with concurrent normals,47 Mowaffaq Hajja and Margarita Spirova, A characterization of the centroid using June Lester’s shape function,53 Christopher J.
    [Show full text]
  • Degree of Triangle Centers and a Generalization of the Euler Line
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 51 (2010), No. 1, 63-89. Degree of Triangle Centers and a Generalization of the Euler Line Yoshio Agaoka Department of Mathematics, Graduate School of Science Hiroshima University, Higashi-Hiroshima 739–8521, Japan e-mail: [email protected] Abstract. We introduce a concept “degree of triangle centers”, and give a formula expressing the degree of triangle centers on generalized Euler lines. This generalizes the well known 2 : 1 point configuration on the Euler line. We also introduce a natural family of triangle centers based on the Ceva conjugate and the isotomic conjugate. This family contains many famous triangle centers, and we conjecture that the de- gree of triangle centers in this family always takes the form (−2)k for some k ∈ Z. MSC 2000: 51M05 (primary), 51A20 (secondary) Keywords: triangle center, degree of triangle center, Euler line, Nagel line, Ceva conjugate, isotomic conjugate Introduction In this paper we present a new method to study triangle centers in a systematic way. Concerning triangle centers, there already exist tremendous amount of stud- ies and data, among others Kimberling’s excellent book and homepage [32], [36], and also various related problems from elementary geometry are discussed in the surveys and books [4], [7], [9], [12], [23], [26], [41], [50], [51], [52]. In this paper we introduce a concept “degree of triangle centers”, and by using it, we clarify the mutual relation of centers on generalized Euler lines (Proposition 1, Theorem 2). Here the term “generalized Euler line” means a line connecting the centroid G and a given triangle center P , and on this line an infinite number of centers lie in a fixed order, which are successively constructed from the initial center P 0138-4821/93 $ 2.50 c 2010 Heldermann Verlag 64 Y.
    [Show full text]
  • A New Way to Think About Triangles
    A New Way to Think About Triangles Adam Carr, Julia Fisher, Andrew Roberts, David Xu, and advisor Stephen Kennedy June 6, 2007 1 Background and Motivation Around 500-600 B.C., either Thales of Miletus or Pythagoras of Samos introduced the Western world to the forerunner of Western geometry. After a good deal of work had been devoted to the ¯eld, Euclid compiled and wrote The Elements circa 300 B.C. In this work, he gathered a fairly complete backbone of what we know today as Euclidean geometry. For most of the 2,500 years since, mathematicians have used the most basic tools to do geometry|a compass and straightedge. Point by point, line by line, drawing by drawing, mathematicians have hunted for visual and intuitive evidence in hopes of discovering new theorems; they did it all by hand. Judging from the complexity and depth from the geometric results we see today, it's safe to say that geometers were certainly not su®ering from a lack of technology. In today's technologically advanced world, a strenuous e®ort is not required to transfer the ca- pabilities of a standard compass and straightedge to user-friendly software. One powerful example of this is Geometer's Sketchpad. This program has allowed mathematicians to take an experimental approach to doing geometry. With the ability to create constructions quickly and cleanly, one is able to see a result ¯rst and work towards developing a proof for it afterwards. Although one cannot claim proof by empirical evidence, the task of ¯nding interesting things to prove became a lot easier with the help of this insightful and flexible visual tool.
    [Show full text]
  • Introduction to the Geometry of the Triangle
    Introduction to the Geometry of the Triangle Paul Yiu Department of Mathematics Florida Atlantic University Preliminary Version Summer 2001 Table of Contents Chapter 1 The circumcircle and the incircle 1.1 Preliminaries 1 1.2 The circumcircle and the incircle of a triangle 4 1.3 Euler’s formula and Steiner’s porism 9 1.4 Appendix: Constructions with the centers of similitude of the circumcircle and the incircle 11 Chapter 2 The Euler line and the nine-point circle 2.1 The Euler line 15 2.2 The nine-point circle 17 2.3 Simson lines and reflections 20 2.4 Appendix: Homothety 21 Chapter 3 Homogeneous barycentric coordinates 3.1 Barycentric coordinates with reference to a triangle 25 3.2 Cevians and traces 29 3.3 Isotomic conjugates 31 3.4 Conway’s formula 32 3.5 The Kiepert perspectors 34 Chapter 4 Straight lines 4.1 The equation of a line 39 4.2 Infinite points and parallel lines 42 4.3 Intersection of two lines 43 4.4 Pedal triangle 46 4.5 Perpendicular lines 48 4.6 Appendix: Excentral triangle and centroid of pedal triangle 53 Chapter 5 Circles I 5.1 Isogonal conjugates 55 5.2 The circumcircle as the isogonal conjugate of the line at infinity 57 5.3 Simson lines 59 5.4 Equation of the nine-point circle 61 5.5 Equation of a general circle 62 5.6 Appendix: Miquel theory 63 Chapter 6 Circles II 6.1 Equation of the incircle 67 6.2 Intersection of incircle and nine-point circle 68 6.3 The excircles 72 6.4 The Brocard points 74 6.5 Appendix: The circle triad (A(a),B(b),C(c)) 76 Chapter 7 Circles III 7.1 The distance formula 79 7.2 Circle equation
    [Show full text]
  • On Two Remarkable Pencils of Cubics of the Triangle Plane 1 the Cubics C(K)
    On two Remarkable Pencils of Cubics of the Triangle Plane Bernard Gibert created : June 13, 2003 last update : June 14, 2014 Abstract Let X be a center1 in the plane of the reference triangle ABC. For any point P , denote by Xa,Xb,Xc this same center in the triangles P BC, P CA, P AB re- spectively. We seek the locus (X) of point P such that the triangles ABC and E XaXbXc are perspective. The general case is a difficult problem and, in this paper, we only study the particular situation when X is a center on the Euler line. We shall meet several interesting cubics. 1 The cubics (k) C Let k be a real number or . Denote by X the point such that −−→OX = k −−→OH ∞ ′ (where O = circumcenter, H = orthocenter) and denote by X the point on the Euler ′ ′ line defined by OX−−→ = 1/k −−→OH. X is clearly the harmonic conjugate of X with respect to H and L = X20 (de Longchamps point). 1.1 A trivial case When X = G (centroid), the locus (G) is the entire plane. More precisely, for any E P , the lines joining the vertices of ABC to the centroids of the triangles PBC, P CA, P AB concur at the complement of the complement of P . Hence, from now on, we take X = G i.e. k = 1/3. 6 6 1.2 Theorem 1 For any center X which is not G, the locus (X) is the union of the line at infinity, E the circumcircle2 and a cubic curve denoted by (X).
    [Show full text]
  • Nagel Point of the Triangle by Paris Pamfilos
    Nagel point of the triangle by Paris Pamfilos The bottom line for mathematicians is that the architecture has to be right. In all the mathematics that I did, the essential point was to find the right architecture. It’s like building a bridge. Once the main lines of the structure are right, then the details miraculously fit. The problem is the overall design. C.L. Dodgson, College Math. J. 25(1994) Contents 1 Nagel point of the triangle1 2 Barycentric coordinates of the Nagel point2 3 The Nagel line of the triangle2 4 Alternative construction of the Nagel point3 5 Other Nagel-like points3 6 Connection with the de Longchamps point4 1 Nagel point of the triangle This is defined as the intersection point Na of the lines joining the vertices fA; B;Cg with the contact points fA00; B00;C00g of the opposite sides with the corresponding “excircles” of the triangle t = ABC: That this point exists can be easily proved by applying “Ceva’s theorem” (see file Ceva’s theorem) A N a B A'' C C' B' O A A00B s−c Figure 1: Nagel’s point characteristic ratios A00C = − s−b 2 Barycentric coordinates of the Nagel point 2 Theorem 1. The lines fAA00; BB00;CC00g intersect at a point. This follows by measuring the ratio and applying Ceva’s theorem A00B BB0 s − c A00B B00C C00 A ¹s − cº¹s − aº¹s − bº = − = − ) · · = − = −1; A00C CC0 s − b A00C B00 A C00B ¹s − bº¹s − cº¹s − aº where fa = jBCj; b = jCAj; c = jABjg the side-lengths and s = ¹a + b + c)/2 the half-perimeter of the triangle, s = jAB0j = jAC0j (See Figure 1).
    [Show full text]
  • Paul Yiu's Introduction to the Geometry of the Triangle
    Introduction to the Geometry of the Triangle Paul Yiu Summer 2001 Department of Mathematics Florida Atlantic University Version 12.1224 December 2012 Contents 1 The Circumcircle and the Incircle 1 1.1 Preliminaries.............................. 1 1.1.1 Coordinatizationofpointsonaline . 1 1.1.2 Centersofsimilitudeoftwocircles . 2 1.1.3 Harmonicdivision ....................... 2 1.1.4 MenelausandCevaTheorems . 3 1.1.5 Thepowerofapointwithrespecttoacircle . 4 1.2 Thecircumcircleandtheincircleofatriangle . .... 5 1.2.1 Thecircumcircle ........................ 5 1.2.2 Theincircle........................... 5 1.2.3 The centers of similitude of (O) and (I) ............ 6 1.2.4 TheHeronformula....................... 8 1.3 Euler’sformulaandSteiner’sporism . 10 1.3.1 Euler’sformula......................... 10 1.3.2 Steiner’sporism ........................ 10 1.4 Appendix:Mixtilinearincircles . 12 2 The Euler Line and the Nine-point Circle 15 2.1 TheEulerline ............................. 15 2.1.1 Homothety ........................... 15 2.1.2 Thecentroid .......................... 15 2.1.3 Theorthocenter......................... 16 2.2 Thenine-pointcircle... .... ... .... .... .... .... 17 2.2.1 TheEulertriangleasamidwaytriangle . 17 2.2.2 Theorthictriangleasapedaltriangle . 17 2.2.3 Thenine-pointcircle . 18 2.2.4 Triangles with nine-point center on the circumcircle ..... 19 2.3 Simsonlinesandreflections. 20 2.3.1 Simsonlines .......................... 20 2.3.2 Lineofreflections .... ... .... .... .... .... 20 2.3.3 Musselman’s Theorem: Point with
    [Show full text]
  • On Concurrence of Nine Euler Lines on the Morley's
    Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, Vol.9, (2020), Issue 2, pp.127-132 ON CONCURRENCE OF NINE EULER LINES ON THE MORLEY'S CONFIGURATION CHERNG-TIAO PERNG AND TRAN QUANG HUNG Abstract. We establish the concurrence of nine Euler lines on the configura- tion of Morley's trisector theorem with proof using computer algebra. Euler proved in 1765 that the centroid, orthocenter, and circumcenter of a given triangle are collinear [1]. There are a few directions that Euler line has been studied. For one, it is known that Euler line passes through other interesting triangle centers, such as the nine point center, the de Longchamps point, the Schiffler point, the Exeter point, and the Gosssard perspector [7]. For the direction that is most relevant to our work, it concerns system of triangles with concurrent Euler lines. It is known that for a triangle ABC and its two Fermat points F1 and F2, the Euler lines of the 10 triangles with vertices chosen from A, B, C, F1, and F2 are concurrent at the centroid of the triangle ABC [2]. Furthermore, the Euler lines of the four triangles formed by an orthocentric system are concurrent at the nine-point center common to all of the triangles [3]. On the other hand, Morley's trisector theorem was discovered by Anglo-American mathematician Frank Morley in 1899. Since its discovery, there are many proofs, some of which are very technical. Recent proofs include the algebraic proof by Alain Connes (1998, 2004, [4], [5]), John Conway's elementary geometry proof [6] and a very recent one by the second author [8].
    [Show full text]
  • Triangle Cubics and Conics
    Triangle Cubics and Conics Veronika Starodub (American Univesity in Bulgaria, Blagoevgrad, Bulgaria) E-mail: [email protected] Skuratovskii Ruslan (The National Technical University of Ukraine Igor Sikorsky Kiev Polytechnic Institute, Ukraine) E-mail: [email protected] This is a paper in classical geometry, namely about triangle conics and cubics. In recent years, N.J. Wildberger has actively dealt with this topic using an algebraic perspective. Triangle conics were also studied in detail by H.M. Cundy and C.F. Parry recently. The main task of the article was to develop an algorithm for creating curves, which pass through triangle centers. During the research, it was noticed that some dierent triangle centers in distinct triangles coincide. The simplest example: an incenter in a base triangle is an orthocenter in an excentral triangle. This was the key for creating an algorithm. Indeed, we can match points belonging to one curve (base curve) with other points of another triangle. Therefore, we get a new intersting geometrical object. We may observe the method through deriving one of the results: One can consider as a base conic Jarabek Hyperbola [3]. It passes through circumcenter, orthocenter, Lemoine point, isogonally conjugated to the de Longchamps point, and vertices of a triangle. We may study this hyperbola in the excentral triangle. One can notice that all of the above points have correspondence with points in the base triangle: Bevan point, incenter, mittenpunkt, de Longchamps point, and centers of the excircles, respectively. Therefore, we got a new cubic, which passes through the above points. All of the properties of the base hyperbola could be analogically converted in a new view perspective.
    [Show full text]
  • Four-Fold Symmetry in Universal Triangle Geometry
    SCIENTIA MANU E T MENTE Four-Fold Symmetry in Universal Triangle Geometry 10th August, 2015 A thesis presented to The School of Mathematics and Statistics The University of New South Wales in fulfilment of the thesis requirement for the degree of Doctor of Philosophy by NGUYEN HONG LE Supervisor: A/PROF. NORMAN WILDBERGER ORIGINALITY STATEMENT 'I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' ~ /-./1 n/J Signed ...... y.u. .r.w.~ .. ........................ Date .. .. 1.01. .~ /2..0 !.5. ............................... COPYRIGHT STATEMENT 'I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
    [Show full text]