Exe.Cut[Up]Able Statements Poetische Kalküle Und Phantasmen Des Selbstausführenden Texts

Total Page:16

File Type:pdf, Size:1020Kb

Exe.Cut[Up]Able Statements Poetische Kalküle Und Phantasmen Des Selbstausführenden Texts Florian Cramer Exe.cut[up]able statements Poetische Kalküle und Phantasmen des selbstausführenden Texts Umschlaggestaltung: Marc de Bruijn und Jorrit Sybesma, puntpixel, Rotterdam Gesetzt mit LaTeX in Stempel Garamond und Frutiger. Doktorarbeit im Fach Allgemeine und Vergleichende Literaturwissenschaft, einge- reicht am Peter Szondi-Institut der Freien Universität Berlin 2006, in die Gedan- ken und Analysen aus früher publizierten Vorträgen eingeflossen sind: Words Made Flesh, 2005, Literatur im Internet, 1999, sub merge my senses: ASCII Art, Rekur- sion und Lyrik in Programmiersprachen, 2001, Concepts, Notations, Software, Art, 2002, Kombinatorische Weisheitskunst: Quirinus Kuhlmanns XLI. Libes-kuß, 2003, Die Sprache, ein Virus?, 2002, Discordia concors: www.jodi.org, 2002, Auff man- che Art verkehrt“: Georg Philipp Harsdörffers Frauenzimmer Gesprächspiele, With perhaps the exception of rhythm: Sprechen, Stottern und Schleifen in Alvin Luciers „I am sitting in a room“, 2005, Entering the Machine and Leaving It Again: Poetics of Software in Contemporary Art, 2005. Der Autor dankt allen, die ihn dieser Zeit zu Vorträgen eingeladen und mit ihm – auch im Internet – diskutiert haben. Gedruckt mit Unterstützung durch den Media.Art.Research Award 2007 der ars electronica und des Ludwig Boltzmann Instituts Linz, Österreich, sowie des For- schungsprogramms Communication in a Digital Age des Piet Zwart Institute der Willem de Kooning Academy Rotterdam University, Niederlande. 2 Inhaltsverzeichnis 1 Von Kalkül und Phantastik 7 1.1 Einleitung ................................. 7 1.2 Techno-Wortpoetiken .......................... 13 2 Prototypen der Sprachalgorithmik 21 2.1 Sprachmagie ............................... 21 Lautpoesie ................................ 21 Cut-ups .................................. 25 2.2 Pythagoräisches Denken ........................ 28 Discordia concors ............................ 28 Acumen- / argutia-Rhetorik ...................... 31 Serialismus ................................ 34 Naturwissenschaftliche Ästhetik .................... 37 Pythagoräisches versus magisches Denken . 38 3 Kabbalistik und ars combinatoria 41 3.1 Kabbala .................................. 41 3.2 Ramón Llulls ars ............................. 47 3.3 Alphabetum, figurae und Orbis pictus als Benutzerinterfaces . 52 3.4 Kombinatorische Kreisscheibengedichte . 55 3.5 Wortwechseldichtung .......................... 59 Rhetorische Wortstellungsfiguren ................... 59 Permutationsdichtung von der Antike bis zur Frühneuzeit . 60 Proteusvers-Dichtung im 17. Jahrhundert . 66 Justus Georg Schottelius’ Stammwörter-Lehre . 73 Georg Philipp Harsdörffers Wortkombinatoriken . 74 Stanislaus Mink von Weinsheuns Proteus-Poetik . 78 Leibniz, Dissertatio de arte combinatoria . 79 4 Quirinus Kuhlmann, XLI. Libes-Kuß 83 4.1 Mathematische Permutation ...................... 86 4.2 Strophenbau ............................... 90 4.3 Stammwörter und ihre allerley Bindungen . 92 4.4 Lullische principia ............................ 97 Kuhlmanns Dichtung „nach Kircherus Wunderweise“ . 97 Antonymien und Metonymien . 100 3 Inhaltsverzeichnis Principia relativa .............................103 Exkurs: Georges Perec und Abraham Abulafia . 107 Sprengung der principia relativa . 110 Principia universalia . 111 Principia absoluta ............................113 4.5 Discordia concors: Der „Wechsel“ als Fügung von Gegensätzen . 114 4.6 Intertextualität des Gedichts . 115 Harsdörffers Wechselsatz . 115 Salomonisches reverse engineering . 116 4.7 Weisheitskunst und Wechselrad . 120 Di Menschen Weißheit fassen . 120 Rekonstruktion des Wechselrads . 123 Kreiskalküle: Zusammenfassung . 130 4.8 Rotæ Mundi ...............................131 Omnium rerum, heus! vicissitudo . 131 Glücksrad .................................138 4.9 Salomonische Fama . 140 4.10 Ekstatische Algorithmik . 144 5 Algorithmische Totalkunst 149 5.1 Partitur und Performance . 149 La Monte Young, Composition 1960 . 149 George Brecht, Lamp Events . 150 5.2 Totalkombinatorik der Schrift . 151 Daniel Georg Morhof, Jonathan Swift, Quirinus Kuhlmann . 151 Jorge Luis Borges, La Biblioteca de Babel . 155 John Barth, The Literature of Exhaustion . 158 Novalis, Das Allgemeine Brouillon . 160 Sade, Les 120 journées de Sodome . 164 Stéphane Mallarmé, Livre . 165 6 Sprachalgorithmik in Strukturalismus und Kunstavantgarden 167 6.1 Ferdinand de Saussures Anagramm-Studien . 167 6.2 Roman Jakobson und Velimir Chlebnikov . 168 6.3 Tristan Tzaras dadaistischer Poesie-Algorithmus . 169 6.4 Marcel Duchamp, Erratum musical . 171 6.5 Kurt Schwitters’ i-Kunst . 172 7 Stochastische Poetiken 177 7.1 Konkrete Poesie und Informationsästhetik . 177 Eugen Gomringers Konstellationen . 177 Max Benses Informationsästhetik und „künstliche Poesie“ . 179 4 Inhaltsverzeichnis 7.2 Markov-Ketten-Poesie . 183 7.3 Abraham M. Moles’ permutationelle kunst . 187 7.4 Stochastische Philologie in Italo Calvinos Se una notte d’inverno un viaggiatore ................................191 8 Algorithmik als Chaos und Restriktion 193 8.1 John Cages Indeterminismus . 193 8.2 Oulipo ..................................196 Pataphysik ................................196 Raymond Queneaus 100.000 Milliarden Gedichte . 197 Oulipotische Pataphysik und contraintes . 199 8.3 Erzählformeln: Italo Calvino, Vladimir Propp, Plots Unlimited . 201 8.4 Spekulatives Programmieren . 204 Psychogeographische Computer . 204 Adrian Wards Auto-Illustrator . 206 9 Rekursion 209 9.1 Gorgias’ Lob der Helena . 209 9.2 Rekursion als hack ............................210 9.3 Rekursive Texte .............................212 9.4 Exkurs: Rekursion des Spiels bei Harsdörffer . 213 9.5 Sprachrekursion in Alvin Luciers I am sitting in a room . 216 9.6 Rekursion von Schrift und Erzählung: John Barths Frame Tale . 225 10 Algorithmik als ästhetische Denkfigur 229 10.1 Quellcode und ASCII Art: jodi, Location . 229 10.2 Textkitschwelten: Jeffrey Shaws Legible City . 234 10.3 Quellcode-Ready Mades: jodi, soldier.c . 237 10.4 Programmiersprachen-Poesie . 243 ALGOL-Lyrik des Oulipo . 243 Software in der Konzeptkunst . 245 Perl Poetry ................................246 jabberwocky.pl ..............................247 jaromil, forkbomb ............................250 Graham Harwood, London.pl . 250 10.5 Codeworks ................................255 Alan Sondheim ..............................258 11 mez, _Viro.Logic Condition][ing][ 1.1_ 263 11.1 Textanalyse ................................263 11.2 Poetik der Ansteckung . 274 5 Inhaltsverzeichnis 12 Künstliche Intelligenz, Poesieautomaten und ihr Scheitern 279 12.1 Athanasius Kircher und Quirinus Kuhlmann . 280 12.2 John Searles chinesisches Zimmer . 283 12.3 Georges Perec, Die Maschine . 285 12.4 Hans-Magnus Enzensbergers Poesie-Automat . 287 12.5 Ferdinand Schmatz und Franz-Josef Czernin, POE . 290 13 Schlußfolgerungen 295 13.1 Medien? ..................................295 13.2 Sprache und Schrift . 297 13.3 Hypertext? ................................300 13.4 Systematisierung und texttheoretische Implikationen . 302 13.5 Algorithmik und Phantastik . 305 6 1 Von Kalkül und Phantastik 1.1 Einleitung :(){ :|:& };: jaromil, forkbomb1 Von Zaubersprüchen bis zu Computerprogrammcode2 ist Schrift, die sich selbst vollzieht, sowohl Technik, als auch Phantasma. Daß Schrift „nicht nur Zeichen, auch Technik“ und „auch als Kalkül verfaßt“ sei und daher formal operativ ge- braucht werde, stellt die Philosophin Sybille Krämer vor allem für die Geschichte der Mathematik fest.3 Dies gilt, wie diese Arbeit zeigen will, auch für eine Lite- ratur der kalkülisierten und algorithmischen Sprache. Krämer definiert Kalkül als „eine Herstellungsvorschrift, nach welcher aus einer begrenzten Menge von Zei- chen unbegrenzt viele Zeichenkonfigurationen hergestellt werden können“.4 Dies ist gleichfalls das teils implizierte, teils explizite Prinzip anagrammatischer und wortpermutativer Dichtungen. Die Verbindung zum Computer liegt auf der Hand, denn, so Krämer, „ein solches symbolisches System dient gleichsam als Maschine, die Zeichenkonfigurationen erzeugt. Eine Maschine, die kein Gerät ist, das eine be- stimme Stelle in Raum und Zeit einnimmt, vielmehr nur auf dem Papier steht. Eine ,symbolische Maschine‘ oder genauer: eine ,syntaktische Maschine“‘.5 Daß es nicht nur eine Mathematik- und Schrift-, sondern auch eine Literaturtradition symbo- lischer Maschinen gibt, ist These dieser Arbeit. Damit grenzt sich ihr Gegenstand einerseits von allgemeiner Regelpoetik ab und andererseits von phantastischer Er- zählprosa, die zwar metaphorisch von Zeichenmaschinen handelt, sie aber nicht technisch konzeptualisiert. Primär geht es dabei um Dichtungen, die sich selbst aus- 1Siehe Kapitel 10.4, S. 250 dieser Arbeit. 2Zur Literaturgeschichte der Sprachmagie siehe Robert Stockhammer, Zaubertexte. Berlin: Akademie-Verlag, 2000. 3Sybille Krämer, Operationsraum Schrift. In: Gernot Grube, Werner Kogge und Sybille Krämer (Hrsg.), Schrift. München: Fink, 2005, S. 29. Sybille Krämer, Berechenbare Vernunft. Berlin, New York: Walter de Gruyter, 1991, S. 90 spricht von der „operative[n] Verwendung mathematischer Symbole“. 4Sybille Krämer, Symbolische Maschinen. Wissenschaftliche Buchgesellschaft: Darmstadt, 1988, S. 99. 5Krämer, Vernunft, S. 92, Rest des Zitats: „Seit Turing sein Modell einer ,Turingmaschine‘ als ma- thematische Präzisierung des Algorithmenbegriffs entwickelte und seit wir Computer als Realisie- rungen von Turingmaschinen verstehen, wissen wir, daß jede syntaktische Maschine auch
Recommended publications
  • The Machine That Builds Itself: How the Strengths of Lisp Family
    Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology.
    [Show full text]
  • Paul Graham's Revenge of the Nerds
    Paul Graham’s Revenge of the Nerds What made Lisp different Symbols and S-Expression Trees 6. Programs composed of expressions. Lisp programs are trees of expressions, each of which returns a value. … 7. A symbol type. Symbols are effecBvely pointers to strings stored in a hash table. So you can test equality by comparing a pointer, instead of comparing each character. 8. A notation for code using trees of symbols and constants. CS251 Programming [Lyn adds: these trees are called symbolic expressions = s-expressions] Languages 9. The whole language there all the time. There is no real distinction Spring 2018, Lyn Turbak between read-time, compile-time, and runtime. … reading at runtime enables programs to communicate using s-expressions, an idea recently reinvented Department of Computer Science as XML. [Lyn adds: and JSON!] Wellesley College Symbols & S-expressions 2 Symbols TesBng Symbols for Equality: eq? Lisp was invented to do symbolic processing. (This was thought to be the core of ArBficial Intelligence, and disBnguished Lisp from Fortran (the other The key thing we do with symbols is test them for equality main language at the Bme), whose strength with numerical processing.) with eq? (pronounced “eek”). A symbol is eq? to itself and A key Racket value is the symbol. nothing else. The symbol cat is wriNen (quote cat) or 'cat. > (eq? 'cat 'cat) Symbols are values and so evaluate to themselves. #t > 'cat > (map (λ (s) (eq? s 'to)) 'cat (list 'to 'be 'or 'not 'to 'be)) '(#t #f #f #f #t #f) ; 'thing is just an abbreviation for (quote thing) > (quote cat) 'cat Symbols are similar to strings, except they’re atomic; we don’t do character manipulaBons on them.
    [Show full text]
  • Teach Yourself Scheme in Fixnum Days"
    http://xkcd.com/224/ CS 152: Programming Language Paradigms Prof. Tom Austin San José State University What are some programming languages? Taken from http://pypl.github.io/PYPL.html January 2016 Why are there so many? Different domains Different design choices • Flexibility • Type safety • Performance • Build time • Concurrency Which language is better? Good language features • Simplicity • Readability • Learn-ability • Safety • Machine independence • Efficiency These goals almost always conflict Conflict: Type Systems Stop "bad" programs … but ... restrict the programmer Why do we make you take a programming languages course? • You might use one of these languages. • Perhaps one of these languages is the language of the future (whatever that means). • You might see similar languages in your job. • Somebody made us take one, so now we want to make you suffer too. • But most of all… We want to warp your minds. Course goal: change the way that you think about programming. That will make you a better Java programmer. The "Blub" paradox Why do I need higher order functions? My language doesn't have them, and it works just fine!!! "As long as our hypothetical Blub programmer is looking down the power continuum, he knows he's looking down… [Blub programmers are] satisfied with whatever language they happen to use, because it dictates the way they think about programs." --Paul Graham http://www.paulgraham.com/avg.html Languages we will cover (subject to change) Administrative Details • Green sheet: http://www.cs.sjsu.edu/~austin/cs152- spring19/Greensheet.html. • Homework submitted through Canvas: https://sjsu.instructure.com/ • Academic integrity policy: http://info.sjsu.edu/static/catalog/integrity.html Schedule • The class schedule is available through Canvas.
    [Show full text]
  • Reading List
    EECS 101 Introduction to Computer Science Dinda, Spring, 2009 An Introduction to Computer Science For Everyone Reading List Note: You do not need to read or buy all of these. The syllabus and/or class web page describes the required readings and what books to buy. For readings that are not in the required books, I will either provide pointers to web documents or hand out copies in class. Books David Harel, Computers Ltd: What They Really Can’t Do, Oxford University Press, 2003. Fred Brooks, The Mythical Man-month: Essays on Software Engineering, 20th Anniversary Edition, Addison-Wesley, 1995. Joel Spolsky, Joel on Software: And on Diverse and Occasionally Related Matters That Will Prove of Interest to Software Developers, Designers, and Managers, and to Those Who, Whether by Good Fortune or Ill Luck, Work with Them in Some Capacity, APress, 2004. Most content is available for free from Spolsky’s Blog (see http://www.joelonsoftware.com) Paul Graham, Hackers and Painters, O’Reilly, 2004. See also Graham’s site: http://www.paulgraham.com/ Martin Davis, The Universal Computer: The Road from Leibniz to Turing, W.W. Norton and Company, 2000. Ted Nelson, Computer Lib/Dream Machines, 1974. This book is now very rare and very expensive, which is sad given how visionary it was. Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography, Anchor, 2000. Douglas Hofstadter, Goedel, Escher, Bach: The Eternal Golden Braid, 20th Anniversary Edition, Basic Books, 1999. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall, 2003.
    [Show full text]
  • Paul Graham Is an Essayist, Programmer, and Programming Language Designer
    Paul Graham is an essayist, programmer, and programming language designer. The article below is one that he wrote about getting ideas for startups. http://www.paulgraham.com/ideas.html Ideas for Startups October 2005 (This essay is derived from a talk at the 2005 Startup School.) How do you get good ideas for startups? That's probably the number one question people ask me. I'd like to reply with another question: why do people think it's hard to come up with ideas for startups? That might seem a stupid thing to ask. Why do they think it's hard? If people can't do it, then it is hard, at least for them. Right? Well, maybe not. What people usually say is not that they can't think of ideas, but that they don't have any. That's not quite the same thing. It could be the reason they don't have any is that they haven't tried to generate them. I think this is often the case. I think people believe that coming up with ideas for startups is very hard-- that it must be very hard-- and so they don't try do to it. They assume ideas are like miracles: they either pop into your head or they don't. I also have a theory about why people think this. They overvalue ideas. They think creating a startup is just a matter of implementing some fabulous initial idea. And since a successful startup is worth millions of dollars, a good idea is therefore a million dollar idea.
    [Show full text]
  • 1. with Examples of Different Programming Languages Show How Programming Languages Are Organized Along the Given Rubrics: I
    AGBOOLA ABIOLA CSC302 17/SCI01/007 COMPUTER SCIENCE ASSIGNMENT ​ 1. With examples of different programming languages show how programming languages are organized along the given rubrics: i. Unstructured, structured, modular, object oriented, aspect oriented, activity oriented and event oriented programming requirement. ii. Based on domain requirements. iii. Based on requirements i and ii above. 2. Give brief preview of the evolution of programming languages in a chronological order. 3. Vividly distinguish between modular programming paradigm and object oriented programming paradigm. Answer 1i). UNSTRUCTURED LANGUAGE DEVELOPER DATE Assembly Language 1949 FORTRAN John Backus 1957 COBOL CODASYL, ANSI, ISO 1959 JOSS Cliff Shaw, RAND 1963 BASIC John G. Kemeny, Thomas E. Kurtz 1964 TELCOMP BBN 1965 MUMPS Neil Pappalardo 1966 FOCAL Richard Merrill, DEC 1968 STRUCTURED LANGUAGE DEVELOPER DATE ALGOL 58 Friedrich L. Bauer, and co. 1958 ALGOL 60 Backus, Bauer and co. 1960 ABC CWI 1980 Ada United States Department of Defence 1980 Accent R NIS 1980 Action! Optimized Systems Software 1983 Alef Phil Winterbottom 1992 DASL Sun Micro-systems Laboratories 1999-2003 MODULAR LANGUAGE DEVELOPER DATE ALGOL W Niklaus Wirth, Tony Hoare 1966 APL Larry Breed, Dick Lathwell and co. 1966 ALGOL 68 A. Van Wijngaarden and co. 1968 AMOS BASIC FranÇois Lionet anConstantin Stiropoulos 1990 Alice ML Saarland University 2000 Agda Ulf Norell;Catarina coquand(1.0) 2007 Arc Paul Graham, Robert Morris and co. 2008 Bosque Mark Marron 2019 OBJECT-ORIENTED LANGUAGE DEVELOPER DATE C* Thinking Machine 1987 Actor Charles Duff 1988 Aldor Thomas J. Watson Research Center 1990 Amiga E Wouter van Oortmerssen 1993 Action Script Macromedia 1998 BeanShell JCP 1999 AngelScript Andreas Jönsson 2003 Boo Rodrigo B.
    [Show full text]
  • A History of Clojure
    A History of Clojure RICH HICKEY, Cognitect, Inc., USA Shepherd: Mira Mezini, Technische Universität Darmstadt, Germany Clojure was designed to be a general-purpose, practical functional language, suitable for use by professionals wherever its host language, e.g., Java, would be. Initially designed in 2005 and released in 2007, Clojure is a dialect of Lisp, but is not a direct descendant of any prior Lisp. It complements programming with pure functions of immutable data with concurrency-safe state management constructs that support writing correct multithreaded programs without the complexity of mutex locks. Clojure is intentionally hosted, in that it compiles to and runs on the runtime of another language, such as the JVM. This is more than an implementation strategy; numerous features ensure that programs written in Clojure can leverage and interoperate with the libraries of the host language directly and efficiently. In spite of combining two (at the time) rather unpopular ideas, functional programming and Lisp, Clojure has since seen adoption in industries as diverse as finance, climate science, retail, databases, analytics, publishing, healthcare, advertising and genomics, and by consultancies and startups worldwide, much to the career-altering surprise of its author. Most of the ideas in Clojure were not novel, but their combination puts Clojure in a unique spot in language design (functional, hosted, Lisp). This paper recounts the motivation behind the initial development of Clojure and the rationale for various design decisions and language constructs. It then covers its evolution subsequent to release and adoption. CCS Concepts: • Software and its engineering ! General programming languages; • Social and pro- fessional topics ! History of programming languages.
    [Show full text]
  • Free-True-Crime-Magazine-Sample.Pdf
    Prepare yourself for aN exclusive and fascinating journey through the criminal mind! What Goes Through the Mind of a Death Row Inmate? By Dr. Bill Kimberlin Death is inevitable. There is no escaping it. We are all going to die at some point; some will just die sooner than others. Death is one of those few “constants” that we all have to deal with throughout our life. Louise Bundy wipes away a tear as she tells her son Ted: ‘You will always be my precious son.’ He was executed minutes later. (Credit: Associated Press) Have you ever wondered For many, this is all they how you would die? Or ever really think about. even thought about how You see, the people that your life may end? The I talk to are all death row people that I interview inmates who have been on a regular basis think sent to a prison within about these very ques- a prison where they are tions day in and day out. condemned to die. For some, these thoughts become all consuming. Not too many people can say the exact manner of executing a person death they are going to changes from month experience or the exact to month and state to date of their eventual de- state. In reality, they may parture from this world never really know un- but for those who have til the time comes as to been sentenced to die for what drugs will be ad- their actions, they can. In ministered to them in fact, they will eventually order to end their life.
    [Show full text]
  • CS302 2007S : Paul Graham
    Programming Languages (CS302 2007S) Paul Graham - Revenge of the Nerds Comments on: Graham, Paul (2002). Revenge of the Nerds. Online resource available at http: //www.paulgraham.com/icad.html. Paul Graham talks about macros in LISP in his article. On trying to look for definition of macros I ran into the following quote at http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html: Lisp functions take Lisp values as input and return Lisp values. They are executed at run-time. Lisp macros take Lisp code as input, and return Lisp code. They are executed at compiler pre-processor time, just like in C. The resultant code gets executed at run-time. In other words, isn’t the concept of macros in LISP the core idea of the funtional programming paradigm although it generalizes the concept of higher order procedures? How is it different otherwise? Not quite. Macros work with the source code. Higher-order procedures cannot actually get into the internals of a procedures. This paper makes a great argument as to why scheme is so powerful. The constant Dilbert reference only drives his point. He also reiterates the point made in other readings that the language that is fashionable at a certain moment is not necessarily the most powerful one. Aside from shorter code, I don’t really understand what he means by power? You have mentioned in class that pretty much all modern languages have the same computational power. So what makes scheme more powerful that the fact that you will take less time typing your code? Does it perhaps excersise the brain in a different way that other languages? By power, I think he means the number of things that you can express easily.
    [Show full text]
  • Logo Tree Project
    LOGO TREE PROJECT Written by P. Boytchev e-mail: pavel2008-AT-elica-DOT-net Rev 1.82 July, 2011 We’d like to thank all the people all over the globe and all over the alphabet who helped us build the Logo Tree: A .........Daniel Ajoy, Eduardo de Antueno, Hal Abelson B .........Andrew Begel, Carl Bogardus, Dominique Bille, George Birbilis, Ian Bicking, Imre Bornemisza, Joshua Bell, Luis Belmonte, Vladimir Batagelj, Wayne Burnett C .........Charlie, David Costanzo, John St. Clair, Loïc Le Coq, Oliver Schmidt-Chevalier, Paul Cockshott D .........Andy Dent, Kent Paul Dolan, Marcelo Duschkin, Mike Doyle E..........G. A. Edgar, Mustafa Elsheikh, Randall Embry F..........Damien Ferey, G .........Bill Glass, Jim Goebel, H .........Brian Harvey, Jamie Hunter, Jim Howe, Markus Hunke, Rachel Hestilow I........... J..........Ken Johnson K .........Eric Klopfer, Leigh Klotz, Susumu Kanemune L..........Janny Looyenga, Jean-François Lucas, Lionel Laské, Timothy Lipetz M.........Andreas Micheler, Bakhtiar Mikhak, George Mills, Greg Michaelson, Lorenzo Masetti, Michael Malien, Sébastien Magdelyns, Silvano Malfatti N .........Chaker Nakhli ,Dani Novak, Takeshi Nishiki O ......... P..........Paliokas Ioannis, U. B. Pavanaja, Wendy Petti Q ......... R .........Clem Rutter, Emmanuel Roche S..........Bojidar Sendov, Brian Silverman, Cynthia Solomon, Daniel Sanderson, Gene Sullivan, T..........Austin Tate, Gary Teachout, Graham Toal, Marcin Truszel, Peter Tomcsanyi, Seth Tisue, Gene Thail U .........Peter Ulrich V .........Carlo Maria Vireca, Álvaro Valdes W.........Arnie Widdowson, Uri Wilensky X ......... Y .........Andy Yeh, Ben Yates Z.......... Introduction The main goal of the Logo Tree project is to build a genealogical tree of new and old Logo implementations. This tree is expected to clearly demonstrate the evolution, the diversity and the vitality of Logo as a programming language.
    [Show full text]
  • Graduate School 2000-2004 Bulletin
    LOMA LINDA UNIVERSITY GRADUATE SCHOOL 2000 ❦ 2004 The information in this BULLETIN is made as accurate as is possible at the time of publication. Students are responsible for informing themselves of and satisfactorily meeting all requirements pertinent to their relationship with the University. The University reserves the right to make such changes as circumstances demand with reference to admission, registration, tuition and fees, attendance, curriculum requirements, conduct, academic standing, candidacy, and graduation. BULLETIN OF LOMA LINDA UNIVERSITY Volume 90, Number 3, March 30, 2002 Published once a month July 15 and once a month December 15, 2001; once a month March 30, 2002; once a month April 15, 2002; and once a month August 30, 2002. Loma Linda, CA 92350 LLUPS 18495 printed on recycled paper Bulletin of the Graduate School 2000-2004 This is a four-year BULLETIN, effective beginning Summer Quarter 2000. Loma Linda University Loma Linda, CA 92350 a Seventh-day Adventist health-sciences university CONTENTS I 7 LOMA LINDA UNIVERSITY 8 University Foundations 9 Our Mission 11 Nondiscrimination Policy 12 Affirmative Action 14 The Calendar II 21 THE GRADUATE SCHOOL 22 Letter from the Dean 23 Philosophy and Objectives 24 Admissions Information 27 Programs and Degrees 32 Student Life 36 Policies and General Regulations 39 Financial Information III 41 THE PROGRAMS 43 Anatomy 48 Biochemistry 52 Biology 59 Biomedical and Clinical Ethics 62 Biomedical Sciences 63 Case Management 64 Clinical Mediation 65 Clinical Ministry 69 Dentistry 83
    [Show full text]
  • Zodiac.” Despite Four Decades of Intense Investigation, His Identity Still Remains Unknown Today
    Interested in Writing MysMtAeG rA ZieI NsE V O L . 3, #2, I SS U E #9 for P U B L I S H E R , E D I T O R , A R T D I R E C T O R MYSTERIES Kim Guarnaccia: [email protected] g MAGAZINE? A SS I S T A N T E D I T O R A N D E V E N T S E D I T O R Judith Kane: [email protected] We are f looking for: a C O L U M N I S T S • Game reviewer Charles Rammelkamp Ken Mondschein • UFO expert Tim Swartz • Science writer F E A T U R E W R I T E R S Kelly Bell Mary Franz If you are interested in Alexandra Diaz Michael Newton submitting an article or R E V I E W E R S becoming a regular Kevin Filan reviewer, email Jeff Belanger Robert Goerman Kim Guarnaccia at Derek Anderson Richard Mackenzie editormysteriesmagazine.com j P R OO F R E A D E R S Alma Dizon Feature length: 3,000-5,000 wds Jocelyn Comendul Column length: 1,200 wds Book Reviews: 200-500 wds I LL U S T R A T O R Pay:.05/word upon publ. Steven Cartwright Published and printed in the United States of America. Mysteries Magazine, Volume 3 #2, Issue #9 is a publication of Phantom Press Publications, ISSN #1537-2928, and published four times a year SUBMISSION GUIDELINES in the U.S.
    [Show full text]