On the Roles of Colour and Scent in a Specialized floral Mimicry System

Total Page:16

File Type:pdf, Size:1020Kb

On the Roles of Colour and Scent in a Specialized floral Mimicry System Annals of Botany 104: 1077–1084, 2009 doi:10.1093/aob/mcp208, available online at www.aob.oxfordjournals.org On the roles of colour and scent in a specialized floral mimicry system Nicolas J. Vereecken1,2,* and Florian P. Schiestl2 1Evolutionary Biology & Ecology, Free University of Brussels/Universite´ Libre de Bruxelles, Av. F.D. Roosevelt 50 CP 160/12, B-1050 Brussels, Belgium and 2Institute of Systematic Botany, University of Zu¨rich, Zollikerstrasse 107, CH-8008 Zu¨rich, Switzerland Received: 15 May 2009 Returned for revision: 29 June 2009 Accepted: 15 July 2009 Published electronically: 18 August 2009 † Background and Aims Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based pri- marily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait vari- ation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure. † Methods The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pol- linator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spec- trometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed. † Key Results The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis. † Conclusion Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations. Key words: Colletes cunicularius, floral odour, floral colour polymorphism, mimicry, Ophrys arachnitiformis, pollination by sexual deception, pollinator attraction. INTRODUCTION than more common coexisting morphs, a process known as negative frequency-dependent selection (nFDS; Gigord et al., It is often assumed that many flowering plants owe much of 2001). This might ultimately promote the persistence of their floral polymorphism in colour, shape and odour to the phenotypic variance in floral traits involved in pollinator combined effects of attracting different pollinator species attraction (Smithson and Macnair, 1997; Ferdy et al., 1998; and to the spatio-temporal variation in the selection regimes Gigord et al., 2001). To date, very few studies have combined they are subjected to (Galen and Kevan, 1980; Pettersson, the quantitative measurement of different floral traits and 1991; Eckhart, 1992; Ollerton et al., 2006). If these determi- examined how variation in these traits may be linked to the nants of floral polymorphism hold for most cases where the preferences and learning of the pollinators. Among these pollinators obtain a reward from their pollination visits, the studies, high levels of floral odour variation have been found selection pressures at play may somewhat differ for plants in several deceptive orchids, leading to the suggestion that that benefit from pollinator services without offering a floral odour polymorphism was probably the result of the reward of any kind to their pollen vectors. Such cases of absence of selection rather than nFDS mediated by the pollina- ‘deceptive’ pollination have evolved multiple times within tors (Ackerman et al., 1997; Aragon and Ackerman, 2004; the angiosperms (Renner, 2006) and they are particularly Salzmann et al., 2007). Evolutionary forces other than nFDS well represented in the orchid family, where approximately may therefore be important in shaping the floral traits of poly- one-third of all 30 000 species known to science bear only morphic orchids. rewardless flowers (Dafni, 1984; Nilsson, 1992; Cozzolino Among deceptive orchids, those species that achieve cross- and Widmer, 2005; Schiestl, 2005; Tremblay et al., 2005; pollination by mimicking the mating signals of female insects Jersakova et al., 2006, 2009). Recent studies have reported stand out with their intimate relationships with only one or that pollinators visiting deceptive orchids are likely to leave few pollinator taxa (Kullenberg, 1961; Dafni, 1984; Nilsson, each inflorescence rapidly visited as no reward is available 1992). The specificity in this orchid–pollinator system is (Smithson and Macnair, 1996; Smithson and Gigord, 2003). based primarily on the mimicry of mating signals of female Hence, several authors have suggested that rare morphs insects, especially the sex pheromones, by the flower as pollina- within populations could experience higher visitation rates tor attractant (reviewed by Schiestl, 2005; Ayasse, 2006; Vereecken and Schiestl, 2008). Pollination in these orchids is * Corresponding author. E-mail [email protected] # The Author 2009. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: [email protected] Downloaded from https://academic.oup.com/aob/article-abstract/104/6/1077/184726 by [email protected] user on 25 August 2018 1078 Vereecken & Schiestl — Floral colour and scent in mimicry F IG. 1. Perianth colour morphs of Ophrys arachnitiformis in the study area in southern France showing flowers with a green vs. a white perianth (photographs by N. J. Vereecken). effected as the male of the targeted insect species attempts copu- particularly suited for this study as a considerable body of lation with the female decoy of the flower, a phenomenon knowledge has accumulated over the past few years on its known as pseudocopulation (Kullenberg, 1961). Several sexu- floral scent and pollinator behaviour (Peakall and Schiestl, ally deceptive orchids show discrete intraspecific polymorph- 2004; Mant et al., 2005a; Vereecken et al., 2007; Vereecken ism in floral traits, yet contrary to their related food-deceptive and Schiestl, 2008). Furthermore, translocation experiments counterparts, a narrow range of insect taxa, sometimes of plants in pots and the monitoring of individual plants perhaps only a single species, ensures pollination (Schiestl, grown in different environments have shown that each colour 2005; Schiestl and Schlu¨ter, 2009; Vereecken, 2009). morph is stable, suggesting that the polymorphism observed Although a recent study on Ophrys heldreichii has reported on has a genetic basis. The frequency of each morph varies the synergistic effect of scent and floral perianth colour in pol- among populations, ranging from 100 % of green morphs in linator attraction (Spaethe et al., 2007), the extent to which these some sites of the Rhoˆne river basin to almost 100 % of results may be applicable to other species within the morpho- white morphs in some areas of south-east France and north- logically diverse genus Ophrys remains unknown. east Spain (N. J. Vereecken, pers. obs.). The present study investigated the adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in the sexually deceptive orchid Ophrys arachniti- Sample collection formis, a taxon for which the perianth colour is either completely The floral odour of each colour morph [green (g) vs. white green or translucent (white; Fig. 1). A combination of chemical (w)] of O. arachnitiformis was sampled in two populations in analyses of floral odours by gas chromatography and mass spec- southern France [Montbazin: n(g) ¼ 10, n(w) ¼ 10; trometry (GC, GC-MS) along with behavioural bioassays per- Montferrier-sur-lez: n(g) ¼ 12, n(w) ¼ 13]. The two orchid formed in situ was employed in an experimental design to populations investigated for their floral odour were located dissect the floral phenotype and address two major questions. approx. 20 km apart. Epicuticular waxes of orchids were (1) Is floral colour polymorphism associated with differences in sampled by extracting fresh and unpollinated flower labella floral scent, especially in the patterns of behaviourallyactive com- in 200 mL n-hexane (HPLC grade) for 1 min. All extracts pounds? (2) To what extent are visual signals of the flowers, com- were then stored at –20 8C. pared with floral odour, involved in pollinator attraction? Chemical analyses MATERIALS AND METHODS All samples were analysed by GC on an Agilent 6890N chromatograph equipped with a HP-5 capillary column Study species (30 m  0.32 mm  0.25 mm). The injector temperature was The study species, Ophrys arachnitiformis Gren. & kept at 300 8C. Prior to GC analysis, 100 ng n-octadecane M.Philippe, grows in calcareous grasslands, garrigues and was added as internal standard to all samples. Aliquots of open woodlands. Its flowering period extends from the extracts (1 mL) were injected splitless at 50 8C (1 min), mid-February until early April and its geographical range followed by a programmed increase of oven temperature to extends along the Mediterranean coast from north-eastern
Recommended publications
  • Pollinator Attraction in a Sexually Deceptive Orchid by Means of Unconventional Chemicals Manfred Ayasse1*, Florian P
    Received 19 August 2002 FirstCite Accepted 12 November 2002 e-publishing Published online Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals Manfred Ayasse1*, Florian P. Schiestl1†, Hannes F. Paulus1, Fernando Ibarra2 and Wittko Francke2 1Institute of Zoology, Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 2Department of Organic Chemistry, Universita¨t Hamburg, Martin Luther King Platz 6, D-20146 Hamburg, Germany Ophrys flowers mimic virgin females of their pollinators, and thereby attract males for pollination. Stimu- lated by scent, the males attempt to copulate with flower labella and thereby ensure pollination. Here, we show for the first time, to our knowledge, that pollinator attraction in sexually deceptive orchids may be based on a few specific chemical compounds. Ophrys speculum flowers produce many volatiles, including trace amounts of (ω-1)-hydroxy and (ω-1)-oxo acids, especially 9-hydroxydecanoic acid. These com- pounds, which are novel in plants, prove to be the major components of the female sex pheromone in the scoliid wasp Campsoscolia ciliata, and stimulate male copulatory behaviour in this pollinator species. The specificity of the signal depends primarily on the structure and enantiomeric composition of the oxygenated acids, which is the same in wasps and in the orchids. The overall composition of the blend differs significantly between the orchid and its pollinator and is of secondary importance. 9-Hydroxyde- canoic acid is a rarely occurring compound that until now has been identified only in honeybees. Contrary to the standard hypothesis that Ophrys flowers produce only ‘second-class attractivity compounds’ and are neglected once the pollinator females are present, we show that flowers are more attractive to the males than are their own females.
    [Show full text]
  • 166. Ophrys Scolopax × Ophrys Speculum (Orchidaceae), First Record for the Iberian Flora
    226 Acta Botanica Malacitana 37. 2012 166. OPHRYS SCOLOPAX × OPHRYS SPECULUM (ORCHIDACEAE), FIRST RECORD FOR THE IBERIAN FLORA. Juan PÉREZ-CONTRERAS1* & Mick RICHARDSON2 Recibido el 12 de abril de 2012, aceptado para su publicación el 13 de abril de 2012 Primera cita de Ophrys scolopax × Ophrys speculum (Orchidaceae) para la Flora Ibérica. Palabras clave. Orchidaceae, Ophrys, híbrido, Málaga, Península Ibérica, España. Key words. Orchidaceae, Ophrys, hybrid, Malaga, Iberian Peninsula, Spain. Natural hybridization is frequent within floral characters (mainly in petals, lateral Orchidaceae family, especially between labellum lobes and speculum) suggesting the members of the Ophrys L. genus (Delforge, interspecific hybridOphrys scolopax × Ophrys 2006). speculum was found in the wild in Malaga On the 19th of March 2011, a single province by the authors. The plant was growing specimen of a plant showing intermediate in the middle of a colony of its parent species, Ophrys scolopax Cav. & Ophrys speculum subsp. Link speculum, in a pine woodland area in the northwest face of Sierra de Mijas (Alhaurín el Grande). Photographs were taken (fig. 1) and the images sent to experts confirmed the correct identification (Delforge & Lowe, com. pers.). According to the literature, there is no mention of this taxon neither in the Flora Ibérica (Aedo & Herrero, 2005) nor in the Vascular Flora of Eastern Andalusia (Blanca et al., 2011). These new data represent the first record of this hybrid in the Iberian Peninsula. Ophrys scolopax × Ophrys speculum MÁLAGA: UTM 30S UF45, 340 m. Sierra de Mijas, Alhaurín el Grande, 19-III-2011. J. Pérez-Contreras & M. Richardson. REFERENCES AEDO, C. & A. HERRERO (eds.) -2005- Flora Figure 1.
    [Show full text]
  • Five Established Orchids Ophrys Apifera Var
    FIVE ESTABLISHED ORCHIDS OPHRYS APIFERA VAR. CHLORANTHA, AURITA, PURPUREA, PURPUREA. F. ALBA. AND FLAVESCENS (ORCHIDACEAE) IN LEBANON AS PART OF THE NATIVE FLORA. ADDAM K.*1, TAKKOUSH J.1, BOU-HAMDAN M.2 AND ITANI J.3 1Faculty of Business Administration, Research department, Arts, Sciences and Technology University in Lebanon, AUL 2Clinker Production Unit at Ciment De Sibline (LCF: Lebanese Cement Factory). 3Faculty of Sciences and Fine Arts, Arts, Sciences and Technology University in Lebanon, AUL *Corresponding Author: Email- [email protected] Received: November 11, 2015; Revised: November 16, 2015; Accepted: November 17, 2015 Citation: Addam K., et al., (2015) Five Established Orchids Ophrys apifera var. Chlorantha, Aurita, Purpurea, Purpurea. F. Alba. and Flavescens (Orchidaceae) in Lebanon as Part of the Native Flora. Journal of Ecology and Environmental Sciences, ISSN: 0976-9900 & E-ISSN: 0976-9919, Volume 6, Issue 2, pp.-163-169. Copyright: Copyright©2015 Addam K., et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Introduction species became a total of 130. [6] Six years later (2001), he raised the number to Among all the angiosperm plants, the family of the Orchidaceae is considered to 215 species. This was the last classification set and accepted by him [4]. be the largest. It includes more than 22,000 accepted species in 880 genera. The great conflict and main problem of Orchids classification is still a worldwide Two principal large groups divide the Orchids: debate among the scientists and botanists who have dissimilar points of view in this field and without finding a solution for it till now [7].
    [Show full text]
  • Mating Cluster Behaviour in the Solitary Bee Colletes Succinctus
    To confirm species identification a small sample was Mating cluster behaviour in the collected in 2006 when the population reappeared. The identity was established from a male specimen whose solitary bee Colletes succinctus morphological characters, including features in the (Linn.), Hymenoptera, Colletidae genitalia, match those of Colletes succinctus , the girdled Colletes (Saunders, 1896; Step, 1946). This is 1 1 a common species on heaths and commons and usually Pauline Lang , E. Geoffrey Hancock , Kevin forages on heather. 1 2 J. Murphy & Robert L. Watt 1Division of Environmental Biology and Evolutionary Biology, University of Glasgow, Glasgow, Scotland G12 8QQ 2Bogendreip Farm, Strachan, Banchory, Kincardineshire, Scotland AB31 6LP In August 2005, during a botanical freshwater survey of the Water of Dye, a tributary of the River Dee at the Bridge of Bogendreip, Kincardineshire (NGR: NO 662910), our attention was drawn to the behaviour of a population of solitary bees. These bees were occupying plots of soil in the garden of Bogendreip Farm (Fig 1). Only in the last few years had Mr. Watt Fig. 2. Mating cluster in Colletes succinctus. observed the bees and not previously, in his more than fifty years of farm occupancy. The bees were A related species, Colletes hederae (Schmidt & subsequently identified as Colletes succinctus (Linn.). Westrich), the ivy bee, has been observed to form small knots of males when competing for females. A The bees had colonized extensive areas of sandy soils coloured photograph of a small group is shown in adjacent to the farmhouse, in which hundreds of Moenen (2005). Other species of the genus also individual nests formed two main “villages” with exhibit mating clusters.
    [Show full text]
  • “Dynamic Speciation Processes in the Mediterranean Orchid Genus Ophrys L
    “DYNAMIC SPECIATION PROCESSES IN THE MEDITERRANEAN ORCHID GENUS OPHRYS L. (ORCHIDACEAE)” Tesi di Dottorato in Biologia Avanzata, XXIV ciclo (Indirizzo Sistematica Molecolare) Universitá degli Studi di Napoli Federico II Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Biologia Strutturale e Funzionale 1st supervisor: Prof. Salvatore Cozzolino 2nd supervisor: Prof. Serena Aceto PhD student: Dott. Hendrik Breitkopf 1 Cover picture: Pseudo-copulation of a Colletes cunicularius male on a flower of Ophrys exaltata ssp. archipelagi (Marina di Lesina, Italy. H. Breitkopf, 2011). 2 TABLE OF CONTENTS GENERAL INTRODUCTION CHAPTER 1: MULTI-LOCUS NUCLEAR GENE PHYLOGENY OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS L. (ORCHIDACEAE) CHAPTER 2: ANALYSIS OF VARIATION AND SPECIATION IN THE OPHRYS SPHEGODES SPECIES COMPLEX CHAPTER 3: FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS CHAPTER 4: SPECIATION BY DISTURBANCE: A POPULATION STUDY OF CENTRAL ITALIAN OPHRYS SPHEGODES LINEAGES CONTRIBUTION OF CO-AUTHORS ACKNOWLEDGEMENTS 3 GENERAL INTRODUCTION ORCHIDS With more than 22.000 accepted species in 880 genera (Pridgeon et al. 1999), the family of the Orchidaceae is the largest family of angiosperm plants. Recently discovered fossils document their existence for at least 15 Ma. The last common ancestor of all orchids has been estimated to exist about 80 Ma ago (Ramirez et al. 2007, Gustafsson et al. 2010). Orchids are cosmopolitan, distributed on all continents and a great variety of habitats, ranging from deserts and swamps to arctic regions. Two large groups can be distinguished: Epiphytic and epilithic orchids attach themselves with aerial roots to trees or stones, mostly halfway between the ground and the upper canopy where they absorb water through the velamen of their roots.
    [Show full text]
  • Evolution of the Pheromone Communication in the European Beewolf Philanthus Triangulum (Hymenoptera, Crabronidae)
    3 Evolution of the Pheromone Communication System in the European Beewolf Philanthus triangulum F. (Hymenoptera: Crabronidae) Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Gudrun Herzner aus Nürnberg Würzburg 2004 4 Evolution of the Pheromone Communication System in the European Beewolf Philanthus triangulum F. (Hymenoptera: Crabronidae) Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Gudrun Herzner aus Nürnberg Würzburg 2004 5 Eingereicht am………………………………………………………………………………….. Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Ulrich Scheer Gutachter: Prof. Dr. K. Eduard Linsenmair Gutachter: PD Dr. Jürgen Gadau Tag des Promotionskolloquiums:……………………………………………………………….. Doktorurkunde ausgehändigt am:………………………………………………………………. 6 CONTENTS PUBLIKATIONSLISTE.................................................................................................................. 6 CHAPTER 1: General Introduction ......................................................................................... 7 1.1 The asymmetry of sexual selection .................................................................................. 7 1.2 The classical sexual selection models .............................................................................. 8 1.3 Choice for genetic compatibility.....................................................................................
    [Show full text]
  • The Bees of the Genus Colletes (Hymenoptera: Apoidea: Colletidae) from China
    Zootaxa 3856 (4): 451–483 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3856.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:76364451-1292-4506-893D-90E626657578 The Bees of the Genus Colletes (Hymenoptera: Apoidea: Colletidae) from China ZE-QING NIU1, CHAO-DONG ZHU1,3 & MICHAEL KUHLMANN2,3 1Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, P. R. China. E-mail: [email protected]; [email protected] 2 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. E-mail: [email protected] 3Corresponding author Abstract Available information about the bees of the genus Colletes from China is summarized. Currently, 66 species are recorded from China, of which two species, Colletes linzhiensis sp. nov. and C. spinatus sp. nov., are described as new. Type spec- imens are deposited in the Insect Collection of the Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Thirteen species are recorded for China for the first time: C. edentuloides Kuhlmann, 2011, C. pauljohni Kuhlmann, 2002, C. tuberculatus Morawitz, 1894, C. annapurnensis Kuhlmann, 2002, C. laevigena Noskiewicz, 1936, C. annejohnae Kuhlmann, 2003, C. eous Morice, 1904, C. squamosus Morawitz, 1879, C. wollmanni Noskiewicz, 1936, C. bhutanicus Kuhlmann, 2003, C. kaszabi Kuhlmann, 2002, C. uralensis Noskiewicz, 1936, and C. dorni Kuhlmann, 2002. The male of C. edentuloides Kuhlmann, 2011 and the female of C.
    [Show full text]
  • Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys Apifera
    Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys apifera By Wazeera Rashid Abdullah April 2018 A Thesis submitted to the University of Liverpool in fulfilment of the requirement for the degree of Doctor in Philosophy Table of Contents Page No. Acknowledgements ............................................................................................................. xiv Abbreviations ............................................................................ Error! Bookmark not defined. Abstract ................................................................................................................................... 2 1 Chapter one: Literature review: ........................................................................................ 3 1.1 Mycorrhiza: .................................................................................................................... 3 1.1.1Arbuscular mycorrhiza (AM) or Vesicular-arbuscular mycorrhiza (VAM): ........... 5 1.1.2 Ectomycorrhiza: ...................................................................................................... 5 1.1.3 Ectendomycorrhiza: ................................................................................................ 6 1.1.4 Ericoid mycorrhiza, Arbutoid mycorrhiza, and Monotropoid mycorrhiza: ............ 6 1.1.5 Orchid mycorrhiza: ................................................................................................. 7 1.1.5.1 Orchid mycorrhizal interaction: ......................................................................
    [Show full text]
  • Ophrys Insectifera L
    Ophrys insectifera L. Fly Orchid A slender orchid of woodland edges, calcareous fens and other open habitats, Ophrys insectifera has distinctive flowers that lure pollinators by mimicry and the release of pheromones. Flowers have a velvety, purplish- brown labellum with an iridescent blue patch and a broad terminal lobe with two shining ‘pseudoeyes’, and very narrow petals resembling a pair of antennae. Its British strongholds are in the south and east of England. Elsewhere it is scattered across the Midlands, northern England and southern Ireland, rare in Wales, and absent from Scotland. Substantial declines throughout its range have led to an assessment of Vulnerable in Great Britain. ©Pete Stroh IDENTIFICATION 2011). The (2-5) unspotted elliptic-oblong leaves from which the flowering spike arises have a shiny, bluish-green Ophrys insectifera stems can reach 60 cm in height but are appearance. often difficult to spot amid the surrounding vegetation. Three yellow-green sepals contrast with the much smaller (less than half as long) vertical, slender purplish-brown labellum which SIMILAR SPECIES has a velvety texture (Stace 2010) due to short, fine, downy The distinctive lateral lobes, filiform petals, and slender hairs. appearance of the labellum should readily separate it from The labellum has two narrow side lobes spreading outwards other Ophrys species. In rare instances, individuals of O. and a broad terminal lobe which is notched at the tip and has insectifera lack normal pigmentation (e.g. white sepals; two shining ‘pseudoeyes’ (Harrap & Harrap 2009). Flowers greenish-yellow patterning on the labellum). Natural also have a distinctive iridescent blue patch on the speculum, hybridization between O.
    [Show full text]
  • Habitat Preference and Dispersal of a Sand Associated Beetle, Apalus Bimaculatus
    Självständigt arbete Institutionen för ekologi Habitat preference and dispersal of a sand associated beetle, Apalus bimaculatus Lina Ahlbäck MASTER ’S THESIS BIOLOGY E- LEVEL , 30 HP SUPERVISOR : ÅSA BERGGREN , DEPT OF ECOLOGY COSUPERVISOR : NIINA SALLMÉN , THE COUNTY ADMINISTRATION BOARD OF UPPSALA EXAMINER : GÖRAND NORDLANDER , DEPT OF ECOLOGY Självständigt arbete /Examensarbete 2010:01 Uppsala 2010 SLU, Institutionen för ekologi Box 7044, 750 07 Uppsala SLU, Swedish University of Agricultural Sciences NL-fakulteten, Faculty of Natural Resources and Agricultural Sciences Department of Ecology Author: Lina Ahlbäck Title of the project: Habitat preference and dispersal of a sand associated beetle, Apalus bimaculatus Title in Swedish: Habitatpreferens och spridning hos en sandlevande skalbagge, bibaggen ( Apalus bimaculatus ) Key words: Apalus bimaculatus , management, habitat quality, metapopulation, phoresy, dispersal, Colletes cunicularius Supervisor: Åsa Berggren Examiner: Göran Nordlander Title of the course: Independent project in Biology E Code: EX0565 Extension of course: 30 hp Level and depth of project: Advanced E Place of publishing: Uppsala Publication year: 2010 Photo front cover: Lina Ahlbäck Program: Master in Ecology Abstract Species that have a high degree of specialization and poor dispersal ability can be more prone to extinction than more generalist species and good dispersers. How these species traits affect the viability of populations is dependent on landscape factors, such as isolation and connectivity. Additionally, interactions between species (e.g. symbiosis), and how these interactions vary spatially and temporally can have a large impact on populations. When the range and habitat areas of a species continuously decrease, management strategies are often needed if the species shall be able to survive.
    [Show full text]
  • Greece (Orchids)
    Orchids Among the Thorns, or BY SPIRO KASOMENAKIS/PHOTOGRAPHS, UNLESS OTHERWISE CREDITED, BY THE AUTHOR A group of Orchis italica in typical phrygana habitat. The insert is a closeup of a single infl orescence. Orchids of Crete and Attica GREECE, A SMALL country on the southeast end of Europe, is well known for its spring fl ora, especially to orchid lovers, as it harbors about 227 species of orchids, of which 74 are endemic. Granted, for the general public that fl ocks to Greece and its islands for the wonderful beaches, orchids may not be the fi rst thing that comes to mind, but the devoti on these plants (especially the genus Ophrys) seem to inspire, in both botanical and hobbyist circles, is worth a closer look. Our trip was organized by the Orchid Conservati on Alliance (OCA), a nonprofi t conservati on organizati on that regularly takes members on orchid-related trips. We concentrated on western Crete, beginning our odyssey at Chania, and later moving our base to the seaside village of Plakias, with a few days at the end of the trip on the mainland to see some archaeological sites and more orchids! Crete is a microcosm in itself, being a large and self-sufficient island on the southernmost part of Greece. The landscape is dominated by the snow- capped White Mountains, visible from the city of Chania. Bound by the Aegean Sea on its northern shores, and the Libyan Sea on its southern, its flora shows the influences of both east and west, north and south! Fifteen of the 70 or so species of orchids on the island are found nowhere else.
    [Show full text]
  • The Evolutionary History of the Cellophane Bee Genus Colletes
    Molecular Phylogenetics and Evolution 146 (2020) 106750 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The evolutionary history of the cellophane bee genus Colletes Latreille T (Hymenoptera: Colletidae): Molecular phylogeny, biogeography and implications for a global infrageneric classification ⁎ Rafael R. Ferraria, , Thomas M. Onuferkoa,b, Spencer K. Moncktona, Laurence Packera a Department of Biology, Faculty of Science, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada b The Beaty Centre for Species Discovery, Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada ARTICLE INFO ABSTRACT Keywords: Colletes Latreille (Hymenoptera: Colletidae) is a diverse genus with 518 valid species distributed in all biogeo- Apoidea graphic realms, except Australasia and Antarctica. Here we provide a comprehensive dated phylogeny for Colletinae Colletes based on Bayesian and maximum likelihood-based analyses of DNA sequence data of six loci: 28S rDNA, Dated phylogeny cytochrome c oxidase subunit 1, elongation factor-1α copy F2, long-wavelength rhodopsin, RNA polymerase II Geodispersal and wingless. In total, our multilocus matrix consists of 4824 aligned base pairs for 143 species, including 112 Historical biogeography Colletes species plus 31 outgroups (one stenotritid and a diverse array of colletids representing all subfamilies). Systematics Overall, analyses of each of the six single-locus datasets resulted in poorly resolved consensus trees with con- flicting phylogenetic signal. However, our analyses of the multilocus matrix provided strong support forthe monophyly of Colletes and show that it can be subdivided into five major clades. The implications of our phy- logenetic results for future attempts at infrageneric classification for the Colletes of the world are discussed.
    [Show full text]