Evaluation of a Trio Toscana Virus Real-Time RT-PCR Assay Targeting Three Genomic Regions Within Nucleoprotein Gene

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of a Trio Toscana Virus Real-Time RT-PCR Assay Targeting Three Genomic Regions Within Nucleoprotein Gene pathogens Article Evaluation of a Trio Toscana Virus Real-Time RT-PCR Assay Targeting Three Genomic Regions within Nucleoprotein Gene Laurence Thirion 1 , Laura Pezzi 1,2 , Irene Pedrosa-Corral 3 , Sara Sanbonmatsu-Gamez 3, Xavier De Lamballerie 1, Alessandra Falchi 2, Mercedes Perez-Ruiz 3 and Remi N. Charrel 1,* 1 Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), 13005 Marseille, France; [email protected] (L.T.); [email protected] (L.P.); [email protected] (X.D.L.) 2 UR7310, Laboratoire de Virologie, Université de Corse-Inserm, 20250 Corte, France; [email protected] 3 Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.Granada, 18014 Granada, Spain; [email protected] (I.P.-C.); [email protected] (S.S.-G.); [email protected] (M.P.-R.) * Correspondence: [email protected] Abstract: Toscana virus (TOSV) can cause central nervous system infections in both residents of and travelers to Mediterranean countries. Data mining identified three real-time RT-qPCR assays for detecting TOSV RNA targeting non-overlapping regions in the nucleoprotein gene. Here, they were combined to create a multi-region assay named Trio TOSV RT-qPCR consisting of six primers Citation: Thirion, L.; Pezzi, L.; and three probes. In this study, (i) we evaluated in silico the three RT-qPCR assays available in the Pedrosa-Corral, I.; literature for TOSV detection, (ii) we combined the three systems to create the Trio TOSV RT-qPCR, Sanbonmatsu-Gamez, S.; (iii) we assessed the specificity and sensitivity of the three monoplex assays versus the Trio TOSV Lamballerie, X.D.; Falchi, A.; RT-qPCR assay, and (iv) we compared the performance of the Trio TOSV RT-qPCR assay with one Perez-Ruiz, M.; Charrel, R.N. of the reference monoplex assays on clinical samples. In conclusion, the Trio TOSV RT-qPCR assay Evaluation of a Trio Toscana Virus performs equally or better than the three monoplex assays; therefore, it provides a robust assay that Real-Time RT-PCR Assay Targeting can be used for both research and diagnostic purposes. Three Genomic Regions within Nucleoprotein Gene. Pathogens 2021, Keywords: Phlebovirus; Phenuiviridae; meningitis; sand fly; Phlebotomus; arbovirus; Mediterranean; 10, 254. https://doi.org/10.3390/ diagnostics pathogens10030254 Academic Editor: Anna Honko Received: 26 October 2020 1. Introduction Accepted: 16 February 2021 Toscana virus (TOSV) (species Sandfly fever Naples phlebovirus, genus Phlebovirus, family Published: 24 February 2021 Phenuiviridae) is a negative-stranded, tri-segmented enveloped RNA virus transmitted by sandflies in the Mediterranean Basin [1]. Three genetic lineages have been identified to Publisher’s Note: MDPI stays neutral date, known as A, B, and C [2]. Lineage A has been reported so far in Italy, France, Turkey, with regard to jurisdictional claims in Tunisia, and Algeria from both human cases and sandfly vectors [2,3]. Lineage B strains published maps and institutional affil- have been described in Portugal, Spain, France, Morocco, Croatia, and Turkey [2,3]. TOSV iations. strains belonging to lineage C have been reported in Croatia and in Greece; although, the existence of this new lineage has been recognized based on partial sequences only, since the virus has not been isolated so far, nor characterized through complete genome sequencing [4–6]. Copyright: © 2021 by the authors. TOSV is the etiological agent of central nervous system infections in both residents Licensee MDPI, Basel, Switzerland. of and travelers to Mediterranean countries [3,7]. TOSV is also among the three most This article is an open access article prevalent causes of acute aseptic meningitis in TOSV endemic areas [7,8]. The disease can distributed under the terms and be severe, with almost 50% of neurological forms including encephalitis manifestations; conditions of the Creative Commons furthermore, permanent sequelae and fatal cases are rare but have been reported [2,9–11]. Attribution (CC BY) license (https:// Despite the evidence of TOSV circulation in an expanding number of countries and its creativecommons.org/licenses/by/ implication in neurological infections, there is little interest for this virus in the scientific 4.0/). Pathogens 2021, 10, 254. https://doi.org/10.3390/pathogens10030254 https://www.mdpi.com/journal/pathogens Pathogens 2021, 10, 254 2 of 11 community, and scarce knowledge among physicians on its symptoms spectrum [2]. Due to the lack of specificity of the clinical manifestations, laboratory diagnosis is necessary to differentiate TOSV infections from those caused by other etiological agents, and real-time RT-PCR is now considered the test of reference for diagnostic purpose at the acute stage of the infection [2,3]. The aim of this study was to perform data mining in order to identify peer-reviewed articles describing monoplex real-time RT-qPCR assays for detecting TOSV RNA, and to combine them to create a multi-region assay. Multi-region assays consist of the combination of two or more monoplex assays in the same reaction. The advantages of targeting different regions within the same gene have been recently described for SARS-CoV-2 [12]. A similar approach, consisting of targeting several regions in different genes, has been implemented for several pathogens such as human immunodeficiency virus (HIV), hepatitis B and C viruses (HBV and HCV), chikungunya virus (CHIKV), and Zaire ebolavirus (EBOV) [13–20]. In this study, (i) we evaluated in silico the three RT-qPCR assays available in the literature for TOSV detection, (ii) we combined the three systems to create the Trio TOSV RT-qPCR assay, (iii) we assessed the specificity and sensitivity of the three monoplex assays versus the Trio TOSV RT-qPCR assay, and (iv) we compared the performance of the Trio TOSV RT-qPCR assay with one of the reference monoplex assays on clinical samples. 2. Materials and Methods 2.1. Inventory of Published TOSV RT-qPCR Assays and Design of the Trio TOSV RT-qPCR Test TOSV RT-qPCR assays were searched for in NCBI PubMED using the search terms “Toscana”, “TOSV”, “polymerase chain reaction”, and “PCR” until April 2020. The three retrieved assays [21–23] were evaluated by in silico analysis using complete and partial se- quences covering the S RNA region representative of the three TOSV lineages (6 sequences of lineage A, 8 of lineage B, and 2 of lineage C). Moreover, strains from phylogenetically close phleboviruses belonging to Sandfly Fever Naples virus, Salehabad virus, and Sandfly Fever Sicilian virus serocomplexes were added to the alignment. The list of sequences is available in Figure1. The aim of this in silico analysis was to evaluate the adequacy of avail- able TOSV assays for covering existing genetic variability among TOSV lineages, without detecting viruses other than TOSV. Sequence alignments were performed by using MEGA 7 software. Primers and probes of the systems were plotted against sequence alignment and evaluated for the number and position of mismatches as previously described [19,20,24]. Figure 1. Cont. Pathogens 2021, 10, 254 3 of 11 Figure 1. In silico analysis of the three RT-qPCR for TOSV detection included in the Trio TOSV RT-qPCR assay. In blue, TOSV strains; in yellow, viruses belonging to Sandfly Fever Naples virus serocomplex; in green, viruses belonging to Salehabad virus serocomplex; in orange, Sandfly Fever Sicilian virus serocomplex. TOSV genetic lineage (A–C) is indicated after the symbol “_” in the strain’s name. 2.2. RT-qPCR Assays RT-qPCR reactions for the three monoplex assays and the “designed in this study” Trio TOSV RT-qPCR assay were performed with a SuperScript® III Platinum® One-Step RT-qPCR Kit with ROX (#11732-088, Invitrogen—Thermo Fisher Scientific, Waltham, MA, USA) on a BioRad CFX96TM thermal cycler, software version 3.1 (Bio-Rad Laboratories, Hercules, CA, USA). A volume of 5 µL of RNA was added to 20 µL of mix containing 12.5 µL of 2× Reaction Mix, 0.5 µL of Superscript III RT/Platinum Taq Mix, and primers and probes at the concentrations described in Table1. Cycling conditions were: 50 ◦C for 15 min; 95 ◦C for 2 min; 45 cycles of 95 ◦C for 15 s; 60 ◦C for 45 s. All probes were labeled with the same dye (FAM). There were no modifications for neither the sequence nor the concentrations of the primers and probes of the three monoplex assays when combined in the same reaction tube. The only difference is that the quencher of the probe described Pathogens 2021, 10, 254 4 of 11 by Pérez-Ruiz et al. has been modified to TAMRA instead of Dabcyl that was used in the original article. The reason for this is the need to have the same quencher for the probes of the three assays included in the Trio test. Table 1. Primers and probes included in the Trio TOSV RT-qPCR assay. Amplicon Reference Primer/Probe 5’!3’ Sequence Target Position a Concentration [nM] Size (nts) STOS-F TGCTTTTCTTGATGAGTCTGCAG 1718–1736 1000 Pérez-Ruiz et al. [23] STOS-R CAATGCGCTTYGGRTCAAAS RNA, N gene 1785–180790 1000 STOS-P FAM-ATCAATGCATGGGTRAATGAGTTTGCTTACC-TAMRA 1742–1772 200 TOS F GGGTGCATCATGGCTCTT 1381–1398 500 Weidmann et al. [22] TOS R GCAGRGACACCATCACTCTGTCS RNA, N gene 1510–1531151 500 TOS P FAM-CAATGGCATCCATAGTGGTCCCAGA-TAMRA 1415–1439 200 TOS-IMT-F TCTCCCAGGAAATGACATCC 621–640 400 Brisbarre et al. [21] TOS-IMT-R AGATGGGWGTCTCTGGTCATS RNA, N gene 706–72585 400 TOS-IMT-P FAM-TGTGGTYCAAGCAGCACGGGTG-TAMRA 654–675 200 a Refers to the sequence of TOSV strain 181135-14 (GenBank accession number KU573066). 2.3. Generation of RNA Synthetic Transcript (standard RNA) An in-house synthetic standard RNA was used for the evaluation process of the Trio TOSV RT-qPCR assay, containing the three regions targeted by the three monoplex RT-qPCR assays included in the Trio assay.
Recommended publications
  • Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
    研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS.
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • A Look Into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins
    viruses Review A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins Shanna S. Leventhal, Drew Wilson, Heinz Feldmann and David W. Hawman * Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (S.S.L.); [email protected] (D.W.); [email protected] (H.F.) * Correspondence: [email protected]; Tel.: +1-406-802-6120 Abstract: In 2016, the Bunyavirales order was established by the International Committee on Taxon- omy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcrip- tional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these Citation: Leventhal, S.S.; Wilson, D.; human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral Feldmann, H.; Hawman, D.W.
    [Show full text]
  • Taxonomy of the Family Arenaviridae and the Order Bunyavirales: Update 2018
    Archives of Virology https://doi.org/10.1007/s00705-018-3843-5 VIROLOGY DIVISION NEWS Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018 Piet Maes1 · Sergey V. Alkhovsky2 · Yīmíng Bào3 · Martin Beer4 · Monica Birkhead5 · Thomas Briese6 · Michael J. Buchmeier7 · Charles H. Calisher8 · Rémi N. Charrel9 · Il Ryong Choi10 · Christopher S. Clegg11 · Juan Carlos de la Torre12 · Eric Delwart13,14 · Joseph L. DeRisi15 · Patrick L. Di Bello16 · Francesco Di Serio17 · Michele Digiaro18 · Valerian V. Dolja19 · Christian Drosten20,21,22 · Tobiasz Z. Druciarek16 · Jiang Du23 · Hideki Ebihara24 · Toufc Elbeaino18 · Rose C. Gergerich16 · Amethyst N. Gillis25 · Jean‑Paul J. Gonzalez26 · Anne‑Lise Haenni27 · Jussi Hepojoki28,29 · Udo Hetzel29,30 · Thiện Hồ16 · Ní Hóng31 · Rakesh K. Jain32 · Petrus Jansen van Vuren5,33 · Qi Jin34,35 · Miranda Gilda Jonson36 · Sandra Junglen20,22 · Karen E. Keller37 · Alan Kemp5 · Anja Kipar29,30 · Nikola O. Kondov13 · Eugene V. Koonin38 · Richard Kormelink39 · Yegor Korzyukov28 · Mart Krupovic40 · Amy J. Lambert41 · Alma G. Laney42 · Matthew LeBreton43 · Igor S. Lukashevich44 · Marco Marklewitz20,22 · Wanda Markotter5,33 · Giovanni P. Martelli45 · Robert R. Martin37 · Nicole Mielke‑Ehret46 · Hans‑Peter Mühlbach46 · Beatriz Navarro17 · Terry Fei Fan Ng14 · Márcio Roberto Teixeira Nunes47,48 · Gustavo Palacios49 · Janusz T. Pawęska5,33 · Clarence J. Peters50 · Alexander Plyusnin28 · Sheli R. Radoshitzky49 · Víctor Romanowski51 · Pertteli Salmenperä28,52 · Maria S. Salvato53 · Hélène Sanfaçon54 · Takahide Sasaya55 · Connie Schmaljohn49 · Bradley S. Schneider25 · Yukio Shirako56 · Stuart Siddell57 · Tarja A. Sironen28 · Mark D. Stenglein58 · Nadia Storm5 · Harikishan Sudini59 · Robert B. Tesh48 · Ioannis E. Tzanetakis16 · Mangala Uppala59 · Olli Vapalahti28,30,60 · Nikos Vasilakis48 · Peter J. Walker61 · Guópíng Wáng31 · Lìpíng Wáng31 · Yànxiăng Wáng31 · Tàiyún Wèi62 · Michael R.
    [Show full text]
  • Isolation of Three Novel Reassortant Phleboviruses, Ponticelli I, II, III, And
    Calzolari et al. Parasites & Vectors (2018) 11:84 DOI 10.1186/s13071-018-2668-0 RESEARCH Open Access Isolation of three novel reassortant phleboviruses, Ponticelli I, II, III, and of Toscana virus from field-collected sand flies in Italy Mattia Calzolari1*, Chiara Chiapponi1, Romeo Bellini2, Paolo Bonilauri1, Davide Lelli1, Ana Moreno1, Ilaria Barbieri1, Stefano Pongolini1, Antonio Lavazza1 and Michele Dottori1 Abstract Background: Different phleboviruses are important pathogens for humans; most of these viruses are transmitted by sand flies. An increasing number of new phleboviruses have been reported over the past decade, especially in Mediterranean countries, mainly via their detection in sand flies. Results: At least five different phleboviruses co-circulated in sand flies that were collected in three sites in Emilia- Romagna (Italy) in the summer of 2013. The well-known Toscana virus (TOSV) was isolated; three new, closely related phleboviruses differing in their M segments and tentatively named Ponticelli I, Ponticelli II and Ponticelli III virus, respectively, were isolated; a fifth putative phlebovirus, related to the sand fly fever Naples phlebovirus species, was also detected. The co-circulation, in a restricted area, of three viruses characterized by different M segments, likely resulted from reassortment events. According to the phylogenetic analysis of complete genome sequences, the TOSV belongs to clade A, together with other Italian isolates, while the Ponticelli viruses fall within the Salehabad phlebovirus species. Conclusions: Results highlight an unexpected diversity of phleboviruses that co-circulate in the same area, suggesting that interactions likely occur amongst them, that can present challenges for their correct identification. The co-circulation of different phleboviruses appears to be common, and the bionomics of sand fly populations seem to play a relevant role.
    [Show full text]
  • Commission Directive (Eu)
    L 279/54 EN Offi cial Jour nal of the European Union 31.10.2019 COMMISSION DIRECTIVE (EU) 2019/1833 of 24 October 2019 amending Annexes I, III, V and VI to Directive 2000/54/EC of the European Parliament and of the Council as regards purely technical adjustments THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union, Having regard to Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work (1), and in particular Article 19 thereof, Whereas: (1) Principle 10 of the European Pillar of Social Rights (2), proclaimed at Gothenburg on 17 November 2017, provides that every worker has the right to a healthy, safe and well-adapted working environment. The workers’ right to a high level of protection of their health and safety at work and to a working environment that is adapted to their professional needs and that enables them to prolong their participation in the labour market includes protection from exposure to biological agents at work. (2) The implementation of the directives related to the health and safety of workers at work, including Directive 2000/54/EC, was the subject of an ex-post evaluation, referred to as a REFIT evaluation. The evaluation looked at the directives’ relevance, at research and at new scientific knowledge in the various fields concerned. The REFIT evaluation, referred to in the Commission Staff Working Document (3), concludes, among other things, that the classified list of biological agents in Annex III to Directive 2000/54/EC needs to be amended in light of scientific and technical progress and that consistency with other relevant directives should be enhanced.
    [Show full text]
  • Diversity and Evolutionary Origin of the Virus Family Bunyaviridae
    Diversity and Evolutionary Origin of the Virus Family Bunyaviridae Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Marco Marklewitz aus Hannover Bonn, 2016 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Christian Drosten 2. Gutachter: Prof. Dr. Bernhard Misof Tag der Promotion: 21.12.2016 Erscheinungsjahr: 2017 Danksagung Zu Beginn möchte ich mich ganz herzlich bei meinem Doktorvater Prof. Christian Drosten bedanken, dass er mir ermöglicht hat, an einem solch vielfältigen und spannenden Thema zu arbeiten. Für Fragen hatte er jederzeit ein offenes Ohr und bei auftretenden Problemen war er immer sehr hilfsbereit. Des Weiteren möchte ich mich herzlich bei meiner Prüfungskommission, bestehend aus meinem 2. Gutachter Prof. Bernhard Misof sowie Prof. Clemens Simmer und PD Dr. Lars Podsiadlowski, für ihre Zeit und Bereitschaft danken mich zu prüfen. Mein ganz besonder Dank geht an PD Dr. Sandra Junglen für ihre hervorragende und kompetente Betreuung während der Jahre meiner Doktorarbeit. Ich habe es als eine Ehre empfunden, ein Teil ihrer zu Beginn noch sehr jungen Arbeitsgruppe zu sein, danke ihr sehr für ihr Vertrauen und hoffe, sie mit meiner (zukünftigen) Arbeit stolz zu machen. Die Atmosphäre in ihrer Arbeitsgruppe ist immer sehr positiv und ermöglicht, die Arbeit mit viel Spaß zu verbinden. Insbesondere möchte ich herausstellen, dass ich ihr für die Möglichkeit besonders dankbar bin, neben meiner Doktorarbeit Feldarbeiten in Panama durchzuführen. Diese Zeit hat mein Leben auf die positivste Art und Weise nachhaltig beeinflusst. Mein großer Dank gilt auch allen Kolleginnen und Kollegen in den Virologie-Laboratorien der Augenklinik für ihre ständige Hilfs- und Diskussionsbereitschaft, ihr Zuhören bei Problemen sowie für ihre Freundschaft über all die Jahre.
    [Show full text]
  • B Directive 2000/54/Ec of the European
    02000L0054 — EN — 24.06.2020 — 002.001 — 1 This text is meant purely as a documentation tool and has no legal effect. The Union's institutions do not assume any liability for its contents. The authentic versions of the relevant acts, including their preambles, are those published in the Official Journal of the European Union and available in EUR-Lex. Those official texts are directly accessible through the links embedded in this document ►B DIRECTIVE 2000/54/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work (seventh individual directive within the meaning of Article 16(1) of Directive 89/391/EEC) (OJ L 262, 17.10.2000, p. 21) Amended by: Official Journal No page date ►M1 Commission Directive (EU) 2019/1833 of 24 October 2019 L 279 54 31.10.2019 ►M2 Commission Directive (EU) 2020/739 of 3 June 2020 L 175 11 4.6.2020 02000L0054 — EN — 24.06.2020 — 002.001 — 2 ▼B DIRECTIVE 2000/54/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work (seventh individual directive within the meaning of Article 16(1) of Directive 89/391/EEC) CHAPTER I GENERAL PROVISIONS Article 1 Objective 1. This Directive has as its aim the protection of workers against risks to their health and safety, including the prevention of such risks, arising or likely to arise from exposure to biological agents at work.
    [Show full text]
  • First Experience of Clinical Application of Metagenomics in Viral Diagnostics
    Institute of Medical Virology First Experience of Clinical Application of Metagenomics in Viral Diagnostics Michael Huber Challenges in routine virus diagnostics Viral pathogens Routine virus diagnostics – more than 200 viruses pathogenic for – molecular methoDs humans – highly sensitive – rare, emerging, new viruses – rapiD (SARS-CoV-2) – cost effective – frequent co-infections – pathogen/sequence-specific – multiple tests necessary – limiteD number of tests available Infections with unknown etiology are frequent Up to 60% of cases – Meningitis/encephalitis Pathogen Detection among U.S. Adults with Community- – Respiratory infections Acquired Pneumonia Requiring Hospitalization, 2010–2012. – Acute gastroenteritis Jain et al, NEJM, 2015 Importance of diagnosis of viral pathogens – Antiviral treatment is often not available – Accurate anD rapiD Diagnosis is nevertheless important to – reDuce unnecessary Diagnostic steps – install appropriate therapy – avoiD unnecessary antibiotics treatment – reDuce healthcare costs – enforce or lift isolation – limit nosocomial spreaD Need for an open diagnostic approach – multiplex PCR panels proviDe the possibility to screen Dozens of pathogens – Development of high-throughput sequencing (NGS) proviDeD unpreceDenteD opportunities – metagenomic sequencing (mNGS) allows for open, unbiaseD genomic Detection of virtually any viral or other pathogen in clinical samples. Agenda – Metagenomic virus sequencing workflow – A case of rare virus infection resolveD by metagenomic sequencing – Two years of viral metagenomics
    [Show full text]
  • Bundesgesetzblatt Für Die Republik Österreich
    1 von 18 BUNDESGESETZBLATT FÜR DIE REPUBLIK ÖSTERREICH Jahrgang 2021 Ausgegeben am 9. April 2021 Teil II 156. Verordnung: Änderung der Grenzwerteverordnung 2020 und der Verordnung biologische Arbeitsstoffe 156. Verordnung, mit der die Grenzwerteverordnung 2020 und die Verordnung biologische Arbeitsstoffe geändert werden Artikel 1 Änderung der Grenzwerteverordnung 2020 Auf Grund der §§ 45 und 48 Abs. 1 Z 3 des ArbeitnehmerInnenschutzgesetz – ASchG, BGBl. Nr. 450/1994, zuletzt geändert durch das Bundesgesetz BGBl. I Nr. 100/2018, wird vom Bundesminister für Arbeit verordnet: Die Grenzwerteverordnung 2020 – GKV, BGBl. II Nr. 253/2001, zuletzt geändert durch die Verordnung BGBl. II Nr. 382/2020, wird wie folgt geändert: 1. Der Titel der Verordnung lautet: „Verordnung des Bundesministers für Arbeit über Grenzwerte für Arbeitsstoffe sowie über krebserzeugende und fortpflanzungsgefährdende (reproduktionstoxische) Arbeitsstoffe (Grenzwerteverordnung 2021 – GKV)“. 2. Im Inhaltsverzeichnis wird zu den Anhängen I, III, V und VI die Jahreszahl „2020“ durch „2021“ ersetzt. 3. Nach § 33 Abs. 5 werden folgende Abs. 6 bis Abs. 9 angefügt: „(6) Für die nachstehenden Arbeitsstoffe gelten bis 10. Juli 2021 abweichend von Anhang I/2021 in der Fassung BGBl. II Nr. 156/2021 folgende Grenzwerte: 1. Cadmium und seine anorganischen Verbindungen: a) Batterieherstellung, thermische Zink-, Blei- und Kupfergewinnung, Schweißen cadmiumhaltiger Legierungen: als Tagesmittelwert 0,03 E mg/m³, als Kurzzeitwert 0,12 E mg/m³, 15(Miw), 4x pro Schicht. b) im übrigen: als Tagesmittelwert 0,015 E mg/m³, als Kurzzeitwert 0,06 E mg/m³, 15(Miw), 4x pro Schicht. 2. Beryllium und anorganische Berylliumverbindungen: a) Schleifen von Be-Metall und -Legierungen: als Tagesmittelwert 0,005 E mg/m³, als Kurzzeitwert 0,02 E mg/m³, 15(Miw), 4x pro Schicht.
    [Show full text]
  • 2021 Organismenliste
    ORGANISMENLISTEN A: Bakterien Bakterien und ähnliche Organismen Risikogruppe Hinweis Actinomadura madurae 2 Actinomadura pelletieri 2 Actinomyces gerencseriae 2 Actinomyces israelii 2 Actinomyces spp. 2 Aggregatibacter actinomycetemcomitans 2 (Actinobacillus actinomycetemcomitans) Anaplasma spp. 2 Arcanobacterium haemolyticum (Corynebacterium haemolyticum) 2 Arcobacter butzleri 2 Bacillus anthracis 3 T Bacteroides fragilis 2 Bacteroides spp. 2 Bartonella bacilliformis 2 Bartonella quintana (Rochalimaea quintana) 2 Bartonella (Rochalimea) spp. 2 Bordetella bronchiseptica 2 Bordetella parapertussis 2 Bordetella pertussis 2 T, V Bordetella spp. 2 Borrelia burgdorferi 2 Borrelia duttonii 2 Borrelia recurrentis 2 Borrelia spp. 2 Brachyspira spp. 2 Brucella abortus 3 Brucella canis 3 Brucella inopinata 3 Brucella melitensis 3 Brucella suis 3 Burkholderia cepacia 2 Burkholderia mallei (Pseudomonas mallei) 3 Burkholderia pseudomallei (Pseudomonas pseudomallei) 3 Campylobacter fetus subsp. fetus 2 Campylobacter fetus subsp. venerealis 2 Campylobacter jejuni subsp. doylei 2 Campylobacter jejuni subsp. jejuni 2 Campylobacter spp. 2 Cardiobacterium hominis 2 Cardiobacterium valvarum 2 Chlamydia abortus (Chlamydophila abortus) 2 Chlamydia caviae (Chlamydophila caviae) 2 Chlamydia felis (Chlamydophila felis) 2 Chlamydia pneumoniae (Chlamydophila pneumoniae) 2 Chlamydia psittaci (Chlamydophila psittaci) (aviäre Stämme) 3 Chlamydia psittaci (Chlamydophila psittaci) (sonstige Stämme) 2 Chlamydia trachomatis (Chlamydophila trachomatis) 2 Clostridium botulinum
    [Show full text]
  • Taxonomy of the Family Arenaviridae and the Order
    TAXONOMY OF THE FAMILY ARENAVIRIDAE AND THE ORDER BUNYAVIRALES: UPDATE 2018 Piet Maes1,$, Sergey V. Alkhovsky (Альховский Сергей Владимирович)2,$, Yīmíng Bào ( 鲍一明)3, Martin Beer4,$, Monica Birkhead5, Thomas Briese6,$, Michael J. Buchmeier,7%, Charles H. Calisher8,$, Rémi N. Charrel9,%,$, Il Ryong Choi10,⁑, Christopher S. Clegg11,%, Juan Carlos de la Torre12,%, Eric Delwart13,14, Joseph L. DeRisi15,%, Patrick L. Di Bello16, Francesco Di Serio17, Michele Digiaro18,#, Valerian V. Dolja19, Christian Drosten20,21,22, Tobiasz Z. Druciarek16, Jiang Du23, Hideki Ebihara (海老原秀喜)24,$, Toufic Elbeaino18,#, Rose C. Gergerich16, Amethyst N. Gillis25, Jean-Paul J. Gonzalez26,%, Anne-Lise Haenni27,⁑, Jussi Hepojoki28,29, Udo Hetzel29,30, Thiện Hồ16, Ní Hóng (洪霓)31, Rakesh K. Jain32,$, Petrus Jansen van Vuren5,33, Qi Jin34,35, Miranda Gilda Jonson36⁑, Sandra Junglen20,22, Karen E. Keller37, Alan Kemp5, Anja Kipar29,30, Nikola O. Kondov13, Eugene V. Koonin38, Richard Kormelink39, Yegor Korzyukov28, Mart Krupovic40, Amy J. Lambert41,$, Alma G. Laney42, Matthew LeBreton43, Igor S. Lukashevich44,%, Marco Marklewitz20,22, Wanda Markotter5,33, Giovanni P. Martelli45,#, Robert R. Martin37, Nicole Mielke-Ehret46,#, Hans- Peter Mühlbach46,#, Beatriz Navarro17, Terry Fei Fan Ng14, Márcio Roberto Teixeira Nunes47,48,$, Gustavo Palacios49, Janusz T. Pawęska5,33, Clarence J. Peters50,%, Alexander Plyusnin28,$, Sheli R. Radoshitzky49,%, Víctor Romanowski51,%, Pertteli Salmenperä28,52, Maria S. Salvato53,%, Hélène Sanfaçon54,‡, Takahide Sasaya (笹谷孝英)55,⁑, Connie Schmaljohn49,$, Bradley S. Schneider25, Yukio Shirako56,⁑, Stuart Siddell57,@, Tarja A. Sironen28, Mark D. Stenglein58, Nadia Storm5, Harikishan Sudini59, Robert B. Tesh48,$, Ioannis E. Tzanetakis16, Mangala Uppala59, Olli Vapalahti28,30,60, Nikos Vasilakis48, Peter J. 1 Maes et al. Walker61, Guópíng Wáng (王国平)31, Lìpíng Wáng (王利平)31, Yànxiăng Wáng (王雁翔)31, Tàiyún Wèi (魏太云)62,⁑, Michael R.
    [Show full text]