October 22Nd Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title the Intertidal Biota of Volcanic Yankich Island (Middle
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository The Intertidal Biota of Volcanic Yankich Island (Middle Kuril Title Islands) Author(s) Kussakin, Oleg G.; Kostina, Elena E. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1996), 37(3-6): 201-225 Issue Date 1996-12-25 URL http://hdl.handle.net/2433/176267 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Pub!. Seto Mar. Bioi. Lab., 37(3/6): 201-225, 1996 201 The Intertidal Biota of Volcanic Y ankich Island (Middle Kuril Islands) 0LEG G. KUSSAKIN and ELENA E. KOSTINA Institute of Marine Biology, Academy of Sciences of Russia, Vladivostok 690041, Russia Abstract A description of the intertidal biota of volcanic Yankich Island (Ushishir Islands, Kuril Islands) is given. The species composition and vertical distribution pattern of the intertidal communities at various localities are described in relation to environmental factors, such as nature of the substrate, surf conditions and volcanic vent water. The macrobenthos is poor in the areas directly influenced by high tempera ture (20-40°C) and high sulphur content. There are no marked changes in the intertidal communities in the areas of volcanic springs that are characterised by temperature below 10°C and by the absence of sulphur compounds. In general, the species composi tion and distribution of the intertidal biota are ordinary for the intertidal zone of the middle Kuril Islands. But there are departures from the typical zonation of the intertidal biota. Also, mass populations of Balanus crenatus appear. -
Status and Occurrence of Parakeet Auklet (Aethia Psittacula) in British Columbia
Status and Occurrence of Parakeet Auklet (Aethia psittacula) in British Columbia. By Rick Toochin and Louis Haviland. Introduction and Distribution The Parakeet Auklet (Aethia psittacula) is a small species of auklet found breeding in the Beringia region of Alaska and Russia (Gaston and Jones 1998). This species has an Alaskan population estimated at 1 million birds (Gaston and Jones 1998). There is also a Russian population, but the exact population total is not known, due to a lack of population inventory work, but it is estimated to number about 400,000 birds with the vast majority, about 300,000 birds, found in the Sea of Okhotsk (Gaston and Jones 1998). The Parakeet Auklet has breeding colonies that are found on rocky mainland points and islands in the Gulf of Alaska (Jones et al. 2001). These sites include: Shumagin Island, Semidi Isand, Chirikof Island near Kodiak, locally in Kenai Peninsula and southeastern Alaska with small numbers south to St. Lazaria, Hazy and Forrester Island; and in the Aleutian Islands west to Buldir and Agattu Island; and in the Bering Sea at Little Diomede, St. Lawrence Island, King Island, St. Matthew Island, Pribilof Island and Nunivak Island (Sowls et al. 1978). The Parakeet Auklet also breeds in Russia in the Kurile Island chain with colonies on Chirinkontan, Lovushki, Raikoke, Matua, Yankicha, Simushir, Brat Chirpoev, Urup, and Iturup Island (Jones et al. 2001, Brazil 2009). They are also breeding on islands in the Sea of Okhotsk with colonies on Sakhalin, Tyuleniy, Iona, Talan, and Yamskyie Island (Jones et al. 2001, Brazil 2009). The Parakeet Auklet is also found breeding on Commander Island, and northwards locally along coast of the Kamchatka Peninsula, on Karaginski Island, Cape Navarin, and on Chukotka Peninsula (Konyukhov 1989, Kondratyev et al. -
191652225.Pdf
Journal of Volcanology and Geothermal Research 296 (2015) 40–54 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Geochemistry and solute fluxes of volcano-hydrothermal systems of Shiashkotan, Kuril Islands Elena Kalacheva a,YuriTaranb,⁎, Tatiana Kotenko a a Institute of Volcanology and Seismology, Russian Academy of Sciences, Petropavlovsk-Kamchatsky 683006, Russia b Institute of Geophysics, Universidad Nacional Autónoma de México, Coyoacán, México D.F., 04510, Mexico article info abstract Article history: Shiashkotan Island belongs to the Northern Kuril island arc and consists of two joined volcanoes, Sinarka and Received 7 December 2014 Kuntomintar, with about 18 km of distance between the summits. Both volcanoes are active, with historic Accepted 13 March 2015 eruptions, and both emit fumarolic gases. Sinarka volcano is degassing through the extrusive dome with inacces- Available online 24 March 2015 sible strong and hot (N400 °C) fumaroles. A large fumarolic field of the Kuntomintar volcano situated in a wide eroded caldera-like crater hosts many fumarolic vents with temperatures from boiling point to 480 °C. Both Keywords: Volcano-hydrothermal systems volcanoes are characterized by intense hydrothermal activity discharging acid SO4-Cl waters, which are drained Shiashkotan, Kuril Islands to the Sea of Okhotsk by streams. At least 4 groups of near-neutral Na-Mg-Ca-Cl-SO4 springs with temperatures in He-C-H-O isotopes the range of 50–80 °C are located at the sea level, within tide zones and discharge slightly altered diluted seawa- Gas and water chemistry ter. Volcanic gas of Kuntomintar as well as all types of hydrothermal manifestations of both volcanoes were col- Solute fluxes, chemical erosion lected and analyzed for major and trace elements and water isotopes. -
Number 237: 1-12 ISSN 1026-051X December 2011 NEW RECORDS of the CHALCID WASPS of the FAMILY PTEROMALIDAE (HYMENOPTERA
Number 237: 1-12 ISSN 1026-051X December 2011 NEW RECORDS OF THE CHALCID WASPS OF THE FAMILY PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) FROM THE RUSSIAN FAR EAST E. V. Tselikh Zoological Institute, Russian Academy of Sciences, St. Petersburg, 199034, Russia. E-mail: [email protected] An annotated list of fifty two species in seven subfamilies of Pteromalidae is given. Twenty eight species are recorded for the first time for the fauna of Russia, and twenty species are new for the fauna of the Russian Far East. A new data on the distribution of four species (Dipara belokobylskii, Diconocara petiolata, Golo- vissima emeljanovi, Paracarotomus cephalotes) in the Russian Far East are given. KEY WORDS: Pteromalidae, Hymenoptera, Chalcidoidea, first record, Russian Far East. Е. В. Целих. Новые находки хальцид семейства Pteromalidae (Hyme- noptera: Chalcidoidea) на Дальнем Востоке России // Дальневосточный энтомолог. 2011. N 237. С. 1-12. Приведен аннотированный список 52 видов хальцид из семи подсемейств семейства Pteromalidae. Для фауны России впервые указываются 28 видов, для Дальнего Востока России – 20 видов. Для четырех видов (Dipara beloko- bylskii, Diconocara petiolata, Golovissima emeljanovi, Paracarotomus cephalotes) приводятся новые сведения об их распространении на Дальнем Востоке России. Зоологический институт РАН, Университетская наб. 1, Санкт-Петербург 199034, Россия. 1 INTRODUCTION Parasitic wasps of the family Pteromalidae are one of the numerous and economically important groups of parasitoids, but our knowledge of this group in the fauna of the Russian Far East is reduced. Hitherto only 42 species of 29 genera belonging to eight subfamilies were recorded from this region (Swederus, 1795; Walker, 1874; Nikolskaya, 1952; Chumakova, 1956; Graham, 1969; Pilipyuk, 1971; Arefin, 1974; Herting, 1976; Kamijo, 1981a, 1981b, 1982a, 1982b, 1983; Dzhanokmen, 1978, 1982, 1984, 1986, 1993; Gibson, Vikberg, 1998; Tselikh, 2010; Noyes, 2011). -
Stratospheric Aerosol Layer Perturbation Caused by the 2019
Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jegou, Jean-Baptiste Renard, et al. To cite this version: Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, et al.. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing. Atmospheric Chemistry and Physics, European Geosciences Union, 2021, 21 (1), pp.535-560. 10.5194/acp-21-535-2021. hal-03142907 HAL Id: hal-03142907 https://hal.archives-ouvertes.fr/hal-03142907 Submitted on 18 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Atmos. Chem. Phys., 21, 535–560, 2021 https://doi.org/10.5194/acp-21-535-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Stratospheric aerosol layer -
Notes on the Kuril Islands
895 Memni. NOTES ON THE KUKIL ISLANDS. BY CAPTAIN H. J. SNOW, F.R.G.S. LONDON: JOHN MURRAY, ALBEMARLE STREET. 1897. J'l ^"^c^^^n^,^^ ^)4^ ^'<-..^-^yz.rz. J^<=^ ^<^^~?' ; J)3 " NOTES ON THE KUKIL ISLANDS^ BY CAPTAIN H. J. SNOW, F.R.G.S. LONDOK JOHN MUEEAY, ALBEMARLE STREET. 1897. NOTE. By PROFESSOR JOHN MILNE, P.R.S. The only maps in which very many of the places mentioned in the following notes can be found are the Admiralty Charts, numbered 2128 and 240o.* Any one wlio compares these notes and charts, tlie originals of which were drawn by Captain H. J. Snow, with the scanty literature and imperfect maps previously existing, will at once recognize how very much has been accom- plished by the patience and perseverance of an individual. New rocks and shoals have been indicated, whilst supposed dangers of a like character have been removed. The position of islands have been corrected relatively and in longitude, whilst anchorages* tide rips, watering-places, sea-lion and seal rookeries, have been located and described. The shortest route between Vancouver and certain ports on the Asiatic coast has been freed from un- certainties and dangers, while Canadian-Pacific steamers, whalers, and a large fleet of pelagic hunters have now harbours of refuge opened which may be approached with comparative safety. In short, after shipwrecks, risks, and dangers, the escapes from which have often seemed incredible, independently of the geological, natural history, and general scientific notes which have been collected, Captain H. J. Snow, whilst sacrificing by his publica- tions his own professional interests as a hunter, has entitled himself to recognition from all who navigate and patrol the fog-bound shores of the rocky Kurils. -
Russian Expansion on the Pacific, 1641-1850; An
I BOUGHT WITH THE rNCOME OF THE SAGE ENDOWMENT FUND THE GIFT OF Henrs W. Sage 1891 i3AMS^. 3.0J/777/.7-- 086 365 388 Cornell University Library The original of tiiis bool< is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924086365388 RUSSIAN EXPANSION ON THE PACIFIC 1641-1850 y" 'J. iKftlft 9ue Ion eh , '^, -fiosierpariii ^Ixe) jept&nirion /aroo/eAB Z'okhota a oo/charareAa ef/ environ ne acetfue liad/t Je Copliaine Beer/nqs /eferme Seja rouff ianS la cjuellei/ a Toujcuri/wvi la qcte ^ e/f le point C/ous 'j la laf/lude de ^7 "/a el a ^ j2l.ds^rB6 alk,Jtc/umendiendii.1ihohk "^"'^ e/, i//,e fio/nfe ^11 ^"J"'*^ ^ers E vis c v,5 de /a relle,/ya^/o,if / des g/c,o»S Cfu, empec/,o,enf /e phs Joo.ent dehdouikr qulapres cela laterre foutnoH vers F ou /e dechc^rqeoient les rivters 'he Jio/ima ef /c, Lena p-Q, Sketch illustrating Bering's first voyage Made by J. N. Delisle and based on his conversation with Bering [Delisle Manuscripts, xxv, 6\ RUSSIAN EXPANSION ON THE PACIFIC 1641-1850 AN ACCOUNT OF THE EARLIEST AND LATER EXPEDITIONS MADE BY THE RUSSIANS ALONG THE PACIFIC COAST OF ASIA AND NORTH AMERICA; INCLUDING SOME RELATED EXPEDITIONS TO THE ARCTIC REGIONS BY F. A. COLDER THE ARTHUR H. CLARK COMPANY CLEVELAND: 1914 j\.3(<i.S5 5H COPYRIGHT, I9I4, BY F. A. -
©Copyright 2011 Stephen Colby Phillips
©Copyright 2011 Stephen Colby Phillips Networked Glass: Lithic Raw Material Consumption and Social Networks in the Kuril Islands, Far Eastern Russia Stephen Colby Phillips A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2011 Program Authorized to Offer Degree: Anthropology University of Washington Abstract Networked Glass: Lithic Raw Material Consumption and Social Networks in the Kuril Islands, Far Eastern Russia Stephen Colby Phillips Chair of the Supervisory Committee: Associate Professor J. Benjamin Fitzhugh Anthropology This research assesses the effects of environmental conditions on the strategic decisions of low-density foragers in regards to their stone tool raw material procurement and consumption behavior. Social as well as technological adaptations allow human groups to meet the challenges of environments that are circumscribed due to geographic isolation, low biodiversity, and the potential impacts of natural events. Efficient resource management and participation in social networks can be viewed within the framework of human behavioral ecology as optimal forms of behavior aimed at increasing the chances of successful adaptations to dynamic island environments. A lithic resource consumption behavioral model is constructed and predictions derived from the model are tested through the analysis of lithic flake debitage from artifact assemblages representing 2,100 years of human occupation in the Kuril Islands of Far Eastern Russia in the North Pacific Ocean. The relative proportions of debitage across lithic reduction sequence stages provides a measure of lithic reduction intensity, which is compared with the model predictions based on the environmental conditions and local availability of lithic resources in six archaeological sites. -
LA-ICP-MS Analysis of Obsidian Artefacts from the Kurile Islands of the Russian Far East
CHAPTER 7 BRIDGING THE GAP BETWEEN TWO OBSIDIAN SOURCE AREAS IN NORTHEAST ASIA: LA-ICP-MS ANALYSIS OF OBSIDIAN ARTEFACTS FROM THE KURILE ISLANDS OF THE RUSSIAN FAR EAST S. Colby Phillips Abstract: Recent archaeological excavations in the Kurile Islands of the Russian Far East have recovered almost 2000 obsidian artefacts in the form of finished stone tools and flake debitage. While artefacts made of obsidian are present throughout the island chain, obsidian native to the Kurile Islands is not known to have been used prehistorically. An initial source provenance study of Kurile Island artefacts indicated that obsidian raw material was brought into the islands at least 2500 years ago from sources located on the Japanese island of Hokkaido and from the Kamchatka Peninsula (Russian Far East). This chapter reports on a larger provenance study using Laser Ablation Inductively-Coupled-Plasma Mass Spectrometry (LA-ICP-MS) that expands the initial research and provides the largest sample to date of obsidian artefacts from the Kurile Islands that can be assigned to obsidian source groups located in Northeast Asia. Identifying the sources used to produce obsidian artefacts is a key element necessary for reconstructing prehistoric Kurile Island migrations, colonisation events, and social network structures. Keywords: Obsidian, Sourcing, Archaeology, Kurile Islands, Russian Far East, Kamchatka Peninsula, Hokkaido Island Introduction bridge between northern Japan and the northern Russian Far East. The distribution of obsidian from these areas Imported items found in archaeological sites are often seen across the Kuriles has great potential to inform us about as evidence for transport of materials via the movement/ the migration movements and exchange relationships, migration of people or through trade/exchange networks and in turn the larger social organisational structure of the (Pires-Ferreira 1978). -
Transformation of the Coastline of Raikoke Island After the Explosive Eruption on June 21–25, 2019 (Central Kuril Islands)
Geosystems of Transition Zones, 2020, vol. 4, N 3, p. 351–358 Full text RUS PDF Геосистемы переходных зон, 2020, т. 4, № 3, с. 351–358 https://elibrary.ru/title_about.asp?id=64191 https://doi.org/10.30730/gtrz.2020.4.3.351-358 The Journal’s materials are available under the Creative Commons Attribution 4.0 International License (CC BY 4.0) Transformation of the coastline of Raikoke Island after the explosive eruption on June 21–25, 2019 (Central Kuril Islands) Fedor A. Romanyuk* Institute of Marine Geology and Geophysics, FEB RAS, Artem V. Degterev Yuzhno-Sakhalinsk, Russia *E-mail: [email protected] Abstract Резюме RUS The report based on the analysis of satellite images considers the features of the changes in the configuration of the coastline of Raikoke island volcano (Middle Kuril Islands) caused by a strong explosive eruption on June 21–25, 2019. As a result of the accumulation of a significant amount of material from pyroclastic flows and tephra along the periphery of the volcanic edifice ejected during the active phase of the eruption, the area of Raikoke Island has sharply increased by 0.53 km2 (12.7 % of the original area). Immediately after the end of the eruption, under the influence of wave processes and alongshore currents, the destruction process of newly formed land areas has begun. Such cyclic processes are shown to be typical for the volcanic islands of the region and determine the coastline development and the appearance of the coastal zone as a whole. Keywords Kuril Islands, eruption, Raikoke, volcano, pyroclastic material, coastal zone, coastline For citation: Romanyuk F.A., Degterev A.V. -
Surviving Sudden Environmental Change: Answers from Archaeology
ONE Hazards, Impacts, and Resilience among Hunter-Gatherers of the Kuril Islands Ben Fitzhugh ARCHAEOLOGICAL APPROACHES TO CATASTROPHIC EvEnts in thE huntEr-GathErEr ContExt This chapter explores hunter-gatherer vulnerability in the context of relative isolation and a highly dynamic natural environment. The setting is the Kuril Islands of the Northwest Pacific, and the data set is a 4,000-year record of human settlement and environmental history generated by the Kuril Biocomplexity Project, a large, interdisciplinary, and international research effort fielded from 2006 to 2008. The presupposition entering this project was that this relatively isolated, volcanic, earthquake- and tsunami-prone subarctic region should be among the more difficult habitats for hunter-gatherer populations to occupy consistently and, as a result, that the archaeological record should reflect peri- odic abandonments, at least in the most isolated (and smallest) central islands. The results of this study speak less to this heuristic presupposition than to the idea of resilience in the face of ecological impoverishment, catastrophic events, and climate changes. The history we are uncovering highlights the importance of linked social, economic, and demographic processes in conditioning vulner- ability and shaping people’s resilience in the environment. Hazards and disasters are the focus of increasing interest in natural and social science, stimulated by growing media attention to disasters around the world. Calls for improved prediction of catastrophic events have generated 19 BEN FITZHUGH enhanced support for retrospective studies of historical pattern and periodicity in earthquakes, tsunamis, volcanic eruptions, floods, drought, climate change, and other natural hazards. Social science has entered this arena to better under- stand human responses to hazardous events and environmental change, most recently calling for more integrated research into the socio-natural dynamics of disasters (Blaikie et al. -
Kuril Islands Expedition
KURIL ISLANDS EXPEDITION Draped across the north Pacific Ocean from Hokkaido, Japan, to Russia’s Kamchatka Peninsula, the 22 islands and 30 islets of the Kuril Islands form a necklace of active volcanoes and sea-sculpted coastlines waiting to be explored. Nutrient-rich waters washing this ‘Pacific Rim of Fire’ teem with marine life, from sea otters to harbour seals, Steller sea lions to orca, Dall’s porpoise to beaked and sperm whales. The islands form a natural ‘flyway’ for migratory birds including both horned and tufted puffins, whiskered and rhinoceros auklets and exquisite little murrelets. You’ll Zodiac into flooded calderas, beneath soaring bird cliffs, to landings where brown bears fish for salmon. The fittest may even attempt to attempt to climb a volcano. Every day brings new adventure. ITINERARY Day 1 Tokyo Upon check-in at Hotel Nikko Narita Airport, reception staff will provide you with Aurora Expeditions cabin tags. Please fill out the luggage tags clearly, showing your name and cabin number to allow us to deliver your luggage to your cabin ahead. At our voyage briefing, enjoy a welcome drink and meet fellow expeditioners, before spending the night in preparation for your charter flight to Petropavlovsk-Kamchatskiy. Accommodation: Hotel Nikko Narita Airport Day 2 Petropavlovsk-Kamchatskiy 0800 945 3327 (within New Zealand) | +64 (0) 3 365 1355 | 1800 107 715 (within Australia) [email protected] | wildearth-travel.com Board our charter flight to Petropavlovsk-Kamchatskiy to embark the Sylvia Day 9 Yankicha Island Earle. After boarding, there is time to settle into your cabin before our important safety briefings.