Atmos. Chem. Phys., 21, 12207–12226, 2021 https://doi.org/10.5194/acp-21-12207-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies Ákos Horváth1, Olga A. Girina2, James L. Carr3, Dong L. Wu4, Alexey A. Bril5, Alexey A. Mazurov5, Dmitry V. Melnikov2, Gholam Ali Hoshyaripour6, and Stefan A. Buehler1 1Meteorological Institute, Universität Hamburg, Hamburg, Germany 2Institute of Volcanology and Seismology, Far East Branch of the Russian Academy of Sciences (IVS FEB RAS), Petropavlovsk-Kamchatsky, Russia 3Carr Astronautics, Greenbelt, MD, USA 4NASA Goddard Space Flight Center, Greenbelt, MD, USA 5Space Research Institute of the Russian Academy of Sciences (SRI RAS), Moscow, Russia 6Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Correspondence: Ákos Horváth (
[email protected],
[email protected]) Received: 21 February 2021 – Discussion started: 23 March 2021 Revised: 2 July 2021 – Accepted: 6 July 2021 – Published: 16 August 2021 Abstract. In a companion paper (Horváth et al., 2021), we side views of vertical columns protruding from the Earth introduced a new technique to estimate volcanic eruption col- ellipsoid and thereby facilitate a simple height-by-angle umn height from extremely oblique near-limb geostationary technique. In principle, the method can be applied to data views. The current paper demonstrates and validates the tech- from any geostationary instrument, but in practice it is best nique in a number of recent eruptions, ranging from ones suited to the latest-generation Advanced Baseline Imager with weak columnar plumes to subplinian events with mas- (ABI) aboard the Geostationary Operational Environmental sive umbrella clouds and overshooting tops that penetrate Satellite-R (GOES-R) series and the almost identical Ad- the stratosphere.