Phylogenetic Analysis of the Metastrongyloidea (Nematoda: Strongylida) Inferred from Ribosomal Rna Gene Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strongyloides Myopotami (Secernentea: Strongyloididae) from the Intestine of Feral Nutrias (Myocastor Coypus) in Korea
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 52, No. 5: 531-535, October 2014 ▣ CASE REPORT http://dx.doi.org/10.3347/kjp.2014.52.5.531 Strongyloides myopotami (Secernentea: Strongyloididae) from the Intestine of Feral Nutrias (Myocastor coypus) in Korea Seongjun Choe, Dongmin Lee, Hansol Park, Mihyeon Oh, Hyeong-Kyu Jeon, Keeseon S. Eom* Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 361-763, Korea Abstract: Surveys on helminthic fauna of the nutria, Myocastor coypus, have seldom been performed in the Republic of Korea. In the present study, we describe Strongyloides myopotami (Secernentea: Strongyloididae) recovered from the small intestine of feral nutrias. Total 10 adult nutrias were captured in a wetland area in Gimhae-si (City), Gyeongsangnam- do (Province) in April 2013. They were transported to our laboratory, euthanized with ether, and necropsied. About 1,300 nematode specimens were recovered from 10 nutrias, and some of them were morphologically observed by light and scanning electron microscopies. They were 3.7-4.7 (4.0± 0.36) mm in length, 0.03-0.04 (0.033) mm in width. The worm dimension and other morphological characters, including prominent lips of the vulva, blunted conical tail, straight type of the ovary, and 8-chambered stoma, were all consistent with S. myopotami. This nematode fauna is reported for the first time in Korea. Key words: Strongyloides myopotami, nutria, Myocastor coypus The nutria (Myocastor coypus) or coypu rat is a large rodent notic diseases caused by viruses, bacteria, and parasites [1]. -
Effects of Parasites on Marine Maniacs
EFFECTS OF PARASITES ON MARINE MANIACS JOSEPH R. GERACI and DAVID J. ST.AUBIN Department of Pathology Ontario Veterinary College University of Guefph Guelph, Ontario Canada INTRODUCTION Parasites of marine mammals have been the focus of numerous reports dealing with taxonomy, distribution and ecology (Defyamure, 1955). Descriptions of associated tissue damage are also available, with attempts to link severity of disease with morbidity and mortality of individuals and populations. This paper is not intended to duplicate that Iiterature. Instead we focus on those organisms which we perceive to be pathogenic, while tempering some of the more exaggerated int~~retations. We deal with life cycles by emphasizing unusual adap~t~ons of selected organisms, and have neces- sarily limited our selection of the literature to highlight that theme. For this discussion we address the parasites of cetaceans---baleen whales (mysticetes), and toothed whales, dolphins and porpoises (odon- tocetes): pinnipeds-true seals (phocidsf, fur seals and sea Iions (otariidsf and walruses (adobenids); sirenians~anatees and dugongs, and the djminutive sea otter. ECTOPARASITES We use the term “ectoparasite’” loosely, when referring to organisms ranging from algae to fish which somehow cling to the surface of a marine mammal, and whose mode of attachment, feeding behavior, and relationship with the host or transport animal are sufficiently obscure that the term parasite cannot be excluded. What is clear is that these organisms damage the integument in some way. For example: a whale entering the coid waters of the Antarctic can acquire a yelIow film over its body. Blue whales so discoiored are known as “sulfur bottoms”. -
Proceedings of the Helminthological Society of Washington 51(2) 1984
Volume 51 July 1984 PROCEEDINGS ^ of of Washington '- f, V-i -: ;fx A semiannual journal of research devoted to Helminthohgy and all branches of Parasitology Supported in part by the -•>"""- v, H. Ransom Memorial 'Tryst Fund : CONTENTS -j<:'.:,! •</••• VV V,:'I,,--.. Y~v MEASURES, LENA N., AND Roy C. ANDERSON. Hybridization of Obeliscoides cuniculi r\ XGraybill, 1923) Graybill, ,1924 jand Obeliscoides,cuniculi multistriatus Measures and Anderson, 1983 .........:....... .., :....„......!"......... _ x. iXJ-v- 179 YATES, JON A., AND ROBERT C. LOWRIE, JR. Development of Yatesia hydrochoerus "•! (Nematoda: Filarioidea) to the Infective Stage in-Ixqdid Ticks r... 187 HUIZINGA, HARRY W., AND WILLARD O. GRANATH, JR. -Seasonal ^prevalence of. Chandlerellaquiscali (Onehocercidae: Filarioidea) in Braih, of the Common Grackle " '~. (Quiscdlus quisculd versicolor) '.'.. ;:,„..;.......„.;....• :..: „'.:„.'.J_^.4-~-~-~-<-.ii -, **-. 191 ^PLATT, THOMAS R. Evolution of the Elaphostrongylinae (Nematoda: Metastrongy- X. lojdfea: Protostrongylidae) Parasites of Cervids,(Mammalia) ...,., v.. 196 PLATT, THOMAS R., AND W. JM. SAMUEL. Modex of Entry of First-Stage Larvae ofr _^ ^ Parelaphostrongylus odocoilei^Nematoda: vMefastrongyloidea) into Four Species of Terrestrial Gastropods .....:;.. ....^:...... ./:... .; _.... ..,.....;. .-: 205 THRELFALL, WILLIAM, AND JUAN CARVAJAL. Heliconema pjammobatidus sp. n. (Nematoda: Physalbpteridae) from a Skate,> Psammobatis lima (Chondrichthyes: ; ''•• \^ Rajidae), Taken in Chile _... .„ ;,.....„.......„..,.......;. ,...^.J::...^..,....:.....~L.:....., -
Classification of Parasites BLY 459 First Lab Test (October 10, 2010)
Classification of Parasites BLY 459 First Lab Test (October 10, 2010) If a taxonomic name is not in bold type, you will not be held responsible for it on the lab exam. Terms and common names that may be asked are also listed. I have attempted to be consistent with the taxonomic schemes in your text as well as to list all slides and live specimens that were displayed. In addition to highlighted taxa, be familiar with, material in lab handouts (especially proper nomenclature), lab display sheets, as well as material presented in lecture. Questions about vectors and locations within hosts will be asked. Be able to recognize healthy from infected tissue. Phylum Platyhelminthes (Flatworms) Class Turbellaria Dugesia (=Planaria ) Free-living, anatomy, X-section Bdelloura horseshoe crab gills Class Monogenea Gyrodactylus , Neobenedenis, Ergocotyle gills of freshwater fish Neopolystoma urinary bladder of turtles Class Trematoda ( Flukes ) Subclass Digenea Life-cycle stages: Recognize miracidia, sporocyst, redia, cercaria , metacercaria, adults & anatomy, model Order ?? Hirudinella ventricosa wahoo stomach Nasitrema nasal cavity of bottlenose dolphin Order Strigeiformes Family Schistosomatidae Schistosoma japonicum adults, male & female, liver granuloma & healthy liver, ova, cercariae, no metacercariae, adults in mesenteric intestinal veins Order Echinostomatiformes Family Fasciolidae Fasciola hepatica sheep & human liver, liver fluke Order Plagiorchiformes Family Dicrocoeliidae Dicrocoelium & Eurytrema Cure for All Diseases by Hulda Clark, Paragonimus -
Angiostrongylus Cantonensis: a Review of Its Distribution, Molecular Biology and Clinical Significance As a Human
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303551798 Angiostrongylus cantonensis: A review of its distribution, molecular biology and clinical significance as a human... Article in Parasitology · May 2016 DOI: 10.1017/S0031182016000652 CITATIONS READS 4 360 10 authors, including: Indy Sandaradura Richard Malik Centre for Infectious Diseases and Microbiolo… University of Sydney 10 PUBLICATIONS 27 CITATIONS 522 PUBLICATIONS 6,546 CITATIONS SEE PROFILE SEE PROFILE Derek Spielman Rogan Lee University of Sydney The New South Wales Department of Health 34 PUBLICATIONS 892 CITATIONS 60 PUBLICATIONS 669 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Create new project "The protective rate of the feline immunodeficiency virus vaccine: An Australian field study" View project Comparison of three feline leukaemia virus (FeLV) point-of-care antigen test kits using blood and saliva View project All content following this page was uploaded by Indy Sandaradura on 30 May 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen JOEL BARRATT1,2*†, DOUGLAS CHAN1,2,3†, INDY SANDARADURA3,4, RICHARD MALIK5, DEREK SPIELMAN6,ROGANLEE7, DEBORAH MARRIOTT3, JOHN HARKNESS3, JOHN ELLIS2 and DAMIEN STARK3 1 i3 Institute, University of Technology Sydney, Ultimo, NSW, Australia 2 School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia 3 Department of Microbiology, SydPath, St. -
Hymenoptera: Eulophidae)
November - December 2008 633 ECOLOGY, BEHAVIOR AND BIONOMICS Wolbachia in Two Populations of Melittobia digitata Dahms (Hymenoptera: Eulophidae) CLAUDIA S. COPELAND1, ROBERT W. M ATTHEWS2, JORGE M. GONZÁLEZ 3, MARTIN ALUJA4 AND JOHN SIVINSKI1 1USDA/ARS/CMAVE, 1700 SW 23rd Dr., Gainesville, FL 32608, USA; [email protected], [email protected] 2Dept. Entomology, The University of Georgia, Athens, GA 30602, USA; [email protected] 3Dept. Entomology, Texas A & M University, College Station, TX 77843-2475, USA; [email protected] 4Instituto de Ecología, A.C., Ap. postal 63, 91000 Xalapa, Veracruz, Mexico; [email protected] Neotropical Entomology 37(6):633-640 (2008) Wolbachia en Dos Poblaciones de Melittobia digitata Dahms (Hymenoptera: Eulophidae) RESUMEN - Se investigaron dos poblaciones de Melittobia digitata Dahms, un parasitoide gregario (principalmente sobre un rango amplio de abejas solitarias, avispas y moscas), en busca de infección por Wolbachia. La primera población, provenía de Xalapa, México, y fue originalmente colectada y criada sobre pupas de la Mosca Mexicana de la Fruta, Anastrepha ludens Loew (Diptera: Tephritidae). La segunda población, originaria de Athens, Georgia, fue colectada y criada sobre prepupas de avispas de barro, Trypoxylon politum Say (Hymenoptera: Crabronidae). Estudios de PCR de la región ITS2 confi rmaron que ambas poblaciones del parasitoide pertenecen a la misma especie; lo que nos provee de un perfi l molecular taxonómico muy útil debído a que las hembras de las diversas especies de Melittobia son superfi cialmente similares. La amplifi cación del gen de superfi cie de proteina (wsp) de Wolbachia confi rmó la presencia de este endosimbionte en ambas poblaciones. -
Angiostrongylus Cantonensis in Recife, Pernambuco, Brazil
Letter Arq Neuropsiquiatr 2009;67(4):1093-1096 AlicAtA DiSEASE Neuroinfestation by Angiostrongylus cantonensis in Recife, Pernambuco, Brazil Ana Rosa Melo Correa Lima1, Solange Dornelas Mesquita2, Silvana Sobreira Santos1, Eduardo Raniere Pessoa de Aquino1, Luana da Rocha Samico Rosa3, Fábio Souza Duarte3, Alessandra Oliveira Teixeira1, Zenize Rocha da Silva Costa4, Maria Lúcia Brito Ferreira5 Angiostrongylus cantonensis, is a nematode in the panying the patient reported that she had presented a rash as- Secernentea class, Strongylidae order, Metastrongylidæ sociated with joint pain, followed by progressive difficulty in superfamily and Angiostrongylidæ family1, and is the walking for 30 days, which was associated with sleepiness over most common cause of human eosinophilic meningi- the last 15 days. tis worldwide. This parasite has rats and other mammals In the patient’s past history, there were references to mental as definitive hosts and snails, freshwater shrimp, fish, retardation and lack of ability to understanding simple orders. frogs and monitor lizards as intermediate hosts1. Mam- She presented independent gait and had frequently run away mals are infected by ingestion of intermediate hosts from home into the surrounding area. There was mention of in- and raw/undercooked snails or vegetables, contain- voluntary movements, predominantly of the upper limbs, which ing third-stage larvae2. Once infested, the larvae pen- intensified after the change of health status that motivated the etrate the vasculature of the intestinal tract and pro- current search for medical assistance. In November 2007, the pa- mote an inflammatory reaction with eosinophilia and tient presented with generalized tonic-clonic seizures and was lymphocytosis. This produces rupture of the blood- medicated with carbamazepine, 200 mg/twice a day. -
Worms, Nematoda
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2001 Worms, Nematoda Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Gardner, Scott Lyell, "Worms, Nematoda" (2001). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 78. https://digitalcommons.unl.edu/parasitologyfacpubs/78 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Biodiversity, Volume 5 (2001): 843-862. Copyright 2001, Academic Press. Used by permission. Worms, Nematoda Scott L. Gardner University of Nebraska, Lincoln I. What Is a Nematode? Diversity in Morphology pods (see epidermis), and various other inverte- II. The Ubiquitous Nature of Nematodes brates. III. Diversity of Habitats and Distribution stichosome A longitudinal series of cells (sticho- IV. How Do Nematodes Affect the Biosphere? cytes) that form the anterior esophageal glands Tri- V. How Many Species of Nemata? churis. VI. Molecular Diversity in the Nemata VII. Relationships to Other Animal Groups stoma The buccal cavity, just posterior to the oval VIII. Future Knowledge of Nematodes opening or mouth; usually includes the anterior end of the esophagus (pharynx). GLOSSARY pseudocoelom A body cavity not lined with a me- anhydrobiosis A state of dormancy in various in- sodermal epithelium. -
Fibre Couplings in the Placenta of Sperm Whales, Grows to A
news and views Most (but not all) nematodes are small Daedalus and nondescript. For example, Placento- T STUDIOS nema gigantissima, which lives as a parasite Fibre couplings in the placenta of sperm whales, grows to a CS./HOL length of 8 m, with a diameter of 2.5 cm. The The nail, says Daedalus, is a brilliant and free-living, marine Draconema has elongate versatile fastener, but with a fundamental O ASSO T adhesive organs on the head and along the contradiction. While being hammered in, HO tail, and moves like a caterpillar. But the gen- it is a strut, loaded in compression. It must BIOP eral uniformity of most nematode species be thick enough to resist buckling. Yet has hampered the establishment of a classifi- once in place it is a tie, loaded in tension, 8 cation that includes both free-living and par- and should be thin and flexible to bear its asitic species. Two classes have been recog- load efficiently. He is now resolving this nized (the Secernentea and Adenophorea), contradiction. based on the presence or absence of a caudal An ideal nail, he says, should be driven sense organ, respectively. But Blaxter et al.1 Figure 2 The bad — eelworm (root knot in by a force applied, not to its head, but to have concluded from the DNA sequences nematode), which forms characteristic nodules its point. Its shaft would then be drawn in that the Secernentea is a natural group within on the roots of sugar beet and rice. under tension; it could not buckle, and the Adenophorea. -
Review Articles Current Knowledge About Aelurostrongylus Abstrusus Biology and Diagnostic
Annals of Parasitology 2018, 64(1), 3–11 Copyright© 2018 Polish Parasitological Society doi: 10.17420/ap6401.126 Review articles Current knowledge about Aelurostrongylus abstrusus biology and diagnostic Tatyana V. Moskvina Chair of Biodiversity and Marine Bioresources, School of Natural Sciences, Far Eastern Federal University, Ayaks 1, Vladivostok 690091, Russia; e-mail: [email protected] ABSTRACT. Feline aelurostrongylosis, caused by the lungworm Aelurostrongylus abstrusus , is a parasitic disease with veterinary importance. The female hatches her eggs in the bronchioles and alveolar ducts, where the larva develop into adult worms. L1 larvae and adult nematodes cause pathological changes, typically inflammatory cell infiltrates in the bronchi and the lung parenchyma. The level of infection can range from asymptomatic to the presence of severe symptoms and may be fatal for cats. Although coprological and molecular diagnostic methods are useful for A. abstrusus detection, both techniques can give false negative results due to the presence of low concentrations of larvae in faeces and the use of inadequate diagnostic procedures. The present study describes the biology of A. abstrusus, particularly the factors influencing its infection and spread in intermediate and paratenic hosts, and the parasitic interactions between A. abstrusus and other pathogens. Key words: Aelurostrongylus abstrusus , cat, lungworm, feline aelurostrongylosis Introduction [1–3]. Another problem is a lack of data on host- parasite and parasite-parasite interactions between Aelurostrongilus abstrusus (Angiostrongylidae) A. abstrusus and its definitive and intermediate is the most widespread feline lungworm, and one hosts, and between A. abstrusus and other with a worldwide distribution [1]. Adult worms are pathogens. The aim of this review is to summarise localized in the alveolar ducts and the bronchioles. -
Epidemiology of Angiostrongylus Cantonensis and Eosinophilic Meningitis
Epidemiology of Angiostrongylus cantonensis and eosinophilic meningitis in the People’s Republic of China INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Shan Lv aus Xinyang, der Volksrepublik China Basel, 2011 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakult¨at auf Antrag von Prof. Dr. Jürg Utzinger, Prof. Dr. Peter Deplazes, Prof. Dr. Xiao-Nong Zhou, und Dr. Peter Steinmann Basel, den 21. Juni 2011 Prof. Dr. Martin Spiess Dekan der Philosophisch- Naturwissenschaftlichen Fakultät To my family Table of contents Table of contents Acknowledgements 1 Summary 5 Zusammenfassung 9 Figure index 13 Table index 15 1. Introduction 17 1.1. Life cycle of Angiostrongylus cantonensis 17 1.2. Angiostrongyliasis and eosinophilic meningitis 19 1.2.1. Clinical manifestation 19 1.2.2. Diagnosis 20 1.2.3. Treatment and clinical management 22 1.3. Global distribution and epidemiology 22 1.3.1. The origin 22 1.3.2. Global spread with emphasis on human activities 23 1.3.3. The epidemiology of angiostrongyliasis 26 1.4. Epidemiology of angiostrongyliasis in P.R. China 28 1.4.1. Emerging angiostrongyliasis with particular consideration to outbreaks and exotic snail species 28 1.4.2. Known endemic areas and host species 29 1.4.3. Risk factors associated with culture and socioeconomics 33 1.4.4. Research and control priorities 35 1.5. References 37 2. Goal and objectives 47 2.1. Goal 47 2.2. Objectives 47 I Table of contents 3. Human angiostrongyliasis outbreak in Dali, China 49 3.1. Abstract 50 3.2. -
Metacommunity Structure of the Helminths of the Black-Eared
Journal of Helminthology Metacommunity structure of the helminths of the black-eared opossum Didelphis aurita in cambridge.org/jhl peri-urban, sylvatic and rural environments in south-eastern Brazil Research Paper 1,2 1,3 1,2 1 Cite this article: Costa-Neto SF, Cardoso TS, S.F. Costa-Neto , T.S. Cardoso , R.G. Boullosa , A. Maldonado Jr Boullosa RG, Maldonado Jr A, Gentile R (2019). and R. Gentile1 Metacommunity structure of the helminths of the black-eared opossum Didelphis aurita in 1 peri-urban, sylvatic and rural environments in Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação 2 south-eastern Brazil. Journal of Helminthology Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil; Programa de Pós-Graduação em 93,720–731. https://doi.org/10.1017/ Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ, S0022149X18000780 21040-360, Brasil and 3Programa de Pós-Graduação em Ciências Veterinárias, Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), km 7, BR 465, CEP Received: 25 May 2018 23.890-000 Seropédica, RJ, Brasil Accepted: 30 July 2018 First published online: 17 September 2018 Abstract Key words: Among the Brazilian marsupials, the species of the genus Didelphis are the most parasitized by community ecology; marsupials; Nematoda; Trematoda helminths. This study aimed to describe the species composition and to analyse the helminth communities of the Atlantic Forest common opossum Didelphis aurita at infracommunity Author for correspondence: and component community levels using the Elements of Metacommunity Structure R.