An Introductory Tour of Interactive Rendering by Eric Haines,
[email protected] [near-final draft, 9/23/05, for IEEE CG&A January/February 2006, p. 76-87] Abstract: The past decade has seen major improvements, in both speed and quality, in the area of interactive rendering. The focus of this article is on the evolution of the consumer-level personal graphics processor, since this is now the standard platform for most researchers developing new algorithms in the field. Instead of a survey approach covering all topics, this article covers the basics and then provides a tour of some parts the field. The goals are a firm understanding of what newer graphics processors provide and a sense of how different algorithms are developed in response to these capabilities. Keywords: graphics processors, GPU, interactive, real-time, shading, texturing In the past decade 3D graphics accelerators for personal computers have transformed from an expensive curiosity to a basic requirement. Along the way the traditional interactive rendering pipeline has undergone a major transformation, from a fixed- function architecture to a programmable stream processor. With faster speeds and new functionality have come new ways of thinking about how graphics hardware can be used for rendering and other tasks. While expanded capabilities have in some cases simply meant that old algorithms could now be run at interactive rates, the performance characteristics of the new hardware has also meant that novel approaches to traditional problems often yield superior results. The term “interactive rendering” can have a number of different meanings. Certainly the user interfaces for operating systems, photo manipulation capabilities of paint programs, and line and text display attributes of CAD drafting programs are all graphical in nature.