<<

2/12/20

Spacecraft Guidance Space System Design, MAE 342, Princeton University Robert Stengel • Oberth’s “Synergy Curve” • Explicit ascent guidance • Impulsive ΔV maneuvers • Hohmann transfer between circular • Sphere of gravitational influence • Synodic periods and launch windows • Hyperbolic orbits and escape • Battin’s universal formulas • Lambert’s -of-flight theorem (hyperbolic ) • Fly-by (swingby) trajectories for assist

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. 1 http://www.princeton.edu/~stengel/MAE342.html

1

Guidance, Navigation, and Control

• Navigation: Where are we? • Guidance: How do we get to our destination? • Control: What do we tell our vehicle to do?

2

2

1 2/12/20

Energy Gained from = energy per unit weight

Hermann Oberth V 2 E = h + 2g h :height; V :

Rate of change of specific energy per unit of expended propellant d dh V dV 1 ⎛ dh V dV ⎞ E = + = + dm dm g dm (dm dt) ⎝⎜ dt g dt ⎠⎟ 1 ⎛ dh 1 dv ⎞ 1 ⎛ 1 ⎞ = + vT = V sinγ + vT (T − mg) (dm dt) ⎝⎜ dt g dt ⎠⎟ (dm dt) ⎝⎜ g ⎠⎟ 1 ⎛ VT ⎞ = V sinγ + cosα −V sinγ (dm dt) ⎝⎜ mg ⎠⎟ 3

3

Oberth’s Synergy Curve γ : Flight Path Angle θ: Pitch Angle α: Angle of Attack dE/dm maximized when α = 0, or θ = γ, i.e., along the velocity vector

Approximate round- equations of motion dV T = cosα − − gsinγ dt m m dγ T ⎛ V g ⎞ = sinα + ⎜ − ⎟ cosγ dt mV ⎝ r V ⎠ 4

4

2 2/12/20

Gravity-Turn Pitch Program With angle of attack, α = 0

dγ dθ ⎛ V g ⎞ = = − cosγ dt dt ⎝⎜ r V ⎠⎟

Locally optimal flight path Minimizes aerodynamic loads Feedback controller minimizes α or load factor

5

5

Gravity-Turn Flight Path

• Gravity-turn flight path is function of 3 variables – Initial pitchover angle (from vertical launch) – Velocity at pitchover – profile, T(t)/m(t)

Gravity-turn program closely approximated by tangent steering laws (see Supplemental Material)

6

6

3 2/12/20

Feedback Control Law Errors due to disturbances and modeling errors corrected by feedback control

Motor Gimbal Angle(t) ! δ G (t) = cθ [θdes (t) −θ(t)]− cqq(t) dθ θ = Desired pitch angle; q = = pitch rate des dt c ,c :Feedback control law gains θ q

7

7

Thrust Vector Control During Launch Through Profile

• Attitude control – Attitude and rate feedback • Drift-minimum control – Attitude and accelerometer feedback – Increased loads • Load relief control – Rate and accelerometer feedback – Increased drift

8

8

4 2/12/20

Effect of Launch Latitude on Orbital Parameters

Typical launch inclinations from Wallops Island Centers

• Launch latitude establishes minimum (without “dogleg” maneuver) • Time of launch establishes line of nodes • Argument of perigee established by – Launch – On-orbit adjustment 9

9

Guidance Law for Launch to Orbit (Brand, Brown, Higgins, and Pu, CSDL, 1972) • Initial conditions – End of pitch program, outside • Final condition – Insertion in desired orbit • Initial inputs – Desired radius – Desired velocity magnitude – Desired flight path angle – Desired inclination angle – Desired longitude of the ascending/descending node • Continuing outputs – Unit vector describing desired thrust direction – Throttle setting, % of maximum thrust

10

10

5 2/12/20

Guidance Program Initialization

• Thrust acceleration estimate • Mass/mass flow rate • Acceleration limit (~ 3g) • Effective exhaust velocity • Various coefficients • Unit vector normal to desired orbital plane, iq

⎡ sini sinΩ ⎤ ⎢ d d ⎥ iq = ⎢ sinid cosΩd ⎥ ⎢ cosi ⎥ i :Desired inclination angle of final orbit ⎣ d ⎦ d Ωd :Desired longitude of descending node

11

11

Guidance Program Operation: Position and Velocity

• Obtain thrust acceleration estimate, aT, from • Compute corresponding mass, mass flow rate, and throttle setting, δT r i = :Unit vector aligned with local vertical r r

iz = ir × iq :Downrange direction Position ⎡ r ⎤ ⎡ r ⎤ ⎢ ⎥ ⎢ ⎥ −1 y = ⎢ rsin i • i ⎥ ⎢ ⎥ ⎢ ( r q ) ⎥ ⎢ z ⎥ ⎢ open ⎥ ⎣ ⎦ ⎣ ⎦ Velocity ⎡ ⎤ ⎡ r! ⎤ v IMU • ir ⎢ ⎥ ⎢ y ⎥ v i v :Velocity estimate in IMU frame ⎢ ! ⎥ = ⎢ IMU • q ⎥ IMU ⎢ z! ⎥ ⎢ ⎥ ⎣ ⎦ v IMU • iz 12 ⎣⎢ ⎦⎥

12

6 2/12/20

Guidance Program: Velocity and Time to Go Effective gravitational acceleration

2 µ r × v g = − + eff r2 r 3 Time to go (to motor burnout) t t t gonew = goold − Δ Δt :Guidance command interval Velocity to be gained

⎡ r! − r! − g t / 2 ⎤ ⎢ ( d ) eff go ⎥ v go = ⎢ −y! ⎥ ⎢ ⎥ ⎢ z!d − z! ⎥ ⎣ ⎦ Time to go prediction (prior to acceleration limiting)

m −v /c t 1 e go eff c :Effective exhaust velocity go = ( − ) eff m! 13

13

Guidance Program Commands Guidance law: required radial and cross-range

a = a ⎡A + B t − t ⎤ − g Tr T ⎣ ( o )⎦ eff a = Net available acceleration a = a ⎡C + D t − t ⎤ T Ty T ⎣ ( o )⎦ Guidance coefficients, A, B, C, and D are functions of

rd ,r,r!, tgo ( ) plus c , m m! , Acceleration limit eff y, y!,t ( go ) Required thrust direction, iT (i.e., vehicle orientation in (ir, iq, iz) frame

⎡ a ⎤ Tr ⎢ ⎥ a a T aT = ⎢ Ty ⎥; iT = ⎢ ⎥ aT what's left over ⎣⎢ ⎦⎥

Throttle command is a function of aT (i.e., acceleration magnitude) and acceleration limit 14

14

7 2/12/20

Impulsive ΔV

• If burn time is short compared to (e.g., seconds compared to hours), impulsive ΔV approximation can be made – Change in position during burn is ~ zero – Change in velocity is ~ instantaneous Velocity impulse at apogee Vector diagram of velocity change

15

15

Orbit Change due to Impulsive ΔV

• Maximum energy change accrues when ΔV is aligned with the instantaneous orbital velocity vector – Energy change -> Semi-major axis change – Maneuver at perigee raises or lowers apogee – Maneuver at apogee raises or lowers perigee • Optimal transfer from one to another involves two impulses [Hohmann transfer] • Other maneuvers – In-plane parameter change – Orbital plane change

16

16

8 2/12/20

Assumptions for Impulsive Maneuver

Instantaneous change in velocity vector

v2 = v1 + Δvrocket Negligible change in radius vector

r2 = r1 Therefore, new orbit intersects old orbit different at the intersection 17

17

Geometry of Impulsive Maneuver Change in velocity magnitude, |v|, vertical flight path angle, γ, and horizontal flight path angle, ξ

⎡ ⎤ ⎡ ⎤ ⎡ x! ⎤ vx V cosγ cosξ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ v y v 1 = ⎢ ! ⎥ = ⎢ y ⎥ = ⎢ V cosγ sinξ ⎥ ⎢ z! ⎥ ⎢ v ⎥ ⎢ −V sinγ ⎥ ⎣ ⎦1 ⎢ z ⎥ ⎣ ⎦1 ⎣ ⎦1 ⎡ ⎤ ⎡ ⎤ ⎡ x! ⎤ vx V cosγ cosξ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ v y v 2 = ⎢ ! ⎥ = ⎢ y ⎥ = ⎢ V cosγ sinξ ⎥ ⎢ z! ⎥ ⎢ v ⎥ ⎢ −V sinγ ⎥ ⎣ ⎦2 ⎢ z ⎥ ⎣ ⎦2 ⎣ ⎦2

⎡ v v ⎤ ⎡ ⎤ x2 − x1 Δvx ⎢ ( ) ⎥ ⎢ ⎥ ⎢ ⎥ Δv = Δvy = v − v ⎢ ⎥ ⎢ ( y2 y1 ) ⎥ ⎢ v ⎥ ⎢ ⎥ ⎢ Δ z ⎥ v − v ⎣ ⎦ ⎢ z2 z1 ⎥ ⎣ ( ) ⎦ 18

18

9 2/12/20

Required Δv for Impulsive Maneuver

⎡ v v ⎤ ⎡ ⎤ x2 − x1 Δvx ⎢ ( ) ⎥ ⎢ ⎥ ⎢ ⎥ Δv = Δvy = v − v ⎢ ⎥ ⎢ ( y2 y1 ) ⎥ ⎢ v ⎥ ⎢ ⎥ ⎢ Δ z ⎥ v − v ⎣ ⎦ ⎢ z2 z1 ⎥ ⎣ ( ) ⎦

⎡ 1/2 ⎤ Δv2 + Δv2 + Δv2 ⎢ ( x y z )rocket ⎥ ⎡ ⎤ ⎢ ⎥ ΔVrocket ⎢ ⎛ v ⎞ ⎥ ⎢ ⎥ −1 Δ y ⎢ sin ⎜ 1/2 ⎟ ⎥ Δvrocket = ⎢ ξrocket ⎥ = ⎜ 2 2 ⎟ ⎢ ⎝ (Δvx + Δvy ) ⎠ ⎥ ⎢ γ ⎥ rocket ⎣⎢ rocket ⎦⎥ ⎢ ⎥ ⎢ −1 ⎛ Δvz ⎞ ⎥ sin ⎜ ⎟ ⎢ ⎝ ΔV ⎠ ⎥ ⎣⎢ rocket ⎦⎥ 19

19

Single Impulse Orbit Adjustment Coplanar (i.e., in-plane) maneuvers

1 2 2 2 2 E = v − µ r = e −1 µ h • Change energy 2 ( ) • Change angular 2 2 2 2 µ (e −1) µ (e −1) h = = 2 • Change eccentricity E v 2 − µ r 2 2 e = 1+ 2Eh µ

vnew ! vold + Δvrocket = 2(E new + µ r) • Required velocity increment 2 ⎡ e2 1 2 h2 r⎤ = ⎣( new − )µ new + µ ⎦ Δv = v − v rocket new old 20

20

10 2/12/20

Single Impulse Orbit Adjustment Coplanar (i.e., in-plane) maneuvers • Change semi-major axis – magnitude 2 hnew µ – orientation (i.e., argument anew = 2 of perigee); in-plane 1− enew isosceles triangle

rperigee = a(1− e)

rapogee = a(1+ e) µ ⎛ 1+ e⎞ vperigee = ⎜ ⎟ a ⎝ 1− e⎠ • Change apogee or perigee 1 e – radius µ ⎛ − ⎞ vapogee = ⎜ ⎟ – velocity a ⎝ 1+ e⎠ 21

21

In-Plane Orbit Circularization Initial orbit is elliptical, with apogee radius equal to desired circular orbit radius Initial Orbit

a = (rcir(target) + rinsertion ) 2

e = (rcir(target) − rinsertion ) 2a µ ⎛ 1− e⎞ vapogee = ⎜ ⎟ a ⎝ 1+ e⎠ Velocity in circular orbit is a function of the radius “Vis viva” equation:

⎛ 2 1 ⎞ ⎛ 2 1 ⎞ µ vcir = µ⎜ − ⎟ = µ⎜ − ⎟ = ⎝ rcir acir ⎠ ⎝ rcir rcir ⎠ rcir

Rocket must provide the difference Δv = v − v rocket cir apogee 22

22

11 2/12/20

Single Impulse Orbit Adjustment Out-of-plane maneuvers • Change orbital inclination • Change longitude of the ascending node • v1, Δv, and v2 form isosceles triangle perpendicular to the orbital plane to leave in-plane parameters unchanged

23

23

Change in Inclination and Longitude of Ascending Node Longitude of Inclination Ascending Node

Sellers, 2005 24

24

12 2/12/20

Two Impulse Maneuvers

Transfer to Non- Phasing Orbit Intersecting Orbit

st Rendezvous with trailing 1 Δv produces target orbit in same orbit intersection nd At perigee, increase to 2 Δv matches target orbit increase orbital period Minimize (|Δv1| + |Δv2|) to At future perigee, decrease minimize propellant use speed to resume original orbit 25

25

Hohmann Transfer between Coplanar Circular Orbits (Outward transfer example) Thrust in direction of motion at transfer perigee and apogee µ a = r + r 2 v = ( cir1 cir2 ) cir1 r cir1 e = r − r 2a ( cir2 cir1 ) µ ⎛ 1+ e⎞ v = µ ptransfer ⎜ ⎟ v a ⎝ 1− e⎠ cir2 = rcir 2 µ ⎛ 1− e⎞ v = atransfer ⎜ ⎟ a ⎝ 1+ e⎠ 26

26

13 2/12/20

Outward Transfer Orbit Velocity Requirements Δv at 1st Burn Δv at 2nd Burn v v v v v v Δ 1 = ptransfer − cir1 Δ 2 = cir1 − atransfer ⎛ 2r ⎞ ⎛ 2r ⎞ cir2 cir1 = vcir ⎜ −1⎟ = vcir ⎜1− ⎟ 1 r + r 2 r + r ⎝ cir1 cir2 ⎠ ⎝ cir1 cir2 ⎠

r v = v cir1 cir2 cir1 r cir2 Hohmann Transfer is energy-optimal for 2-impulse transfer between circular orbits and r2/r1 < 11.94 ⎡ 2r ⎛ r ⎞ r ⎤ Δv = v cir2 1− cir1 + cir1 −1 total cir1 ⎢ ⎜ ⎟ ⎥ rcir + rcir rcir rcir ⎣⎢ 1 2 ⎝ 2 ⎠ 2 ⎦⎥ 27

27

Rendezvous Requires Phasing of the Maneuver Transfer orbit time equals target’s time to reach rendezvous point

Sellers, 2005 28 28

14 2/12/20

Solar Orbits

• Same equations used for Earth-referenced orbits – Dimensions of the orbit – Position and velocity of the spacecraft – Period of elliptical orbits – Different

11 3 2 µSun = 1.3327 ×10 km /s 29

29

Escape from a Circular Orbit Minimum escape trajectory shape is a

30

30

15 2/12/20

In-plane Parameters of Earth Escape Trajectories

Dimensions of the orbit

2 p h "The parameter"or semi-latus rectum = µ = h = about

e 1 2E p Eccentricity 1 = + µ = ≥ E = Specific energy, ≥ 0 p a = = Semi-major axis, < 0 1− e2

rperigee = a(1− e) = Perigee radius 31

31

In-plane Parameters of Earth Escape Trajectories Position and velocity of the spacecraft p r = = Radius of the spacecraft 1+ ecosθ θ = ⎛ 1 1 ⎞ V = 2µ − = Velocity of the spacecraft ⎝⎜ r 2a⎠⎟ 2µ Vperigee ≥ rperigee

32

32

16 2/12/20

Escape from Circular Orbit Velocity in circular orbit

⎛ 2 1 ⎞ µ Vc = µ⎜ − ⎟ = ⎝ rc rc ⎠ rc Velocity at perigee of parabolic orbit

⎛ 2 1 ⎞ 2µ Vperigee = µ⎜ − ⎟ = ⎝ rc (a → ∞)⎠ rc Velocity increment required for escape

2µ µ V V V 0.414V Δ escape = perigeeparabola − c == − ≈ c rc rc 33

33

Earth Escape Trajectory

Δv1 to increase speed to Velocity required for transfer at sphere of influence

34

34

17 2/12/20

Transfer Orbits and Spheres of Influence

• Sphere of Influence (Laplace): – Radius within which gravitational effects of are more significant than those of the • Patched-conic section approximation – Sequence of 2-body orbits – Outside of planet’s sphere of influence, Sun is the center of attraction – Within planet’s sphere of influence, planet is the center of attraction • Fly-by (swingby) trajectories dip into intermediate object’s sphere of influence for 35

35

Solar System Spheres of Influence

2 5 m ⎛ m ⎞ for Planet << 1, r ! r Planet m SI Planet−Sun ⎜ m ⎟ Sun ⎝ Sun ⎠ Planet Sphere of Influence, km 112,000 616,000 Earth 929,000 578,000 48,200,000 54,500,000 51,800,000 86,800,000 27,000,000-45,000,000 36

36

18 2/12/20

Interplanetary Mission Planning

• Example: Direct Hohmann Transfer from Earth Orbit to Mars Orbit (No fly-bys) 1) Calculate required perigee velocity for transfer orbit - Sun as center of attraction: Elliptical orbit 2) Calculate Δv required to reach Earth’s sphere of influence with velocity required for transfer – Earth as center of attraction: Hyperbolic orbit 3) Calculate Δv required to enter circular orbit about Mars, given transfer apogee velocity – Mars as center of attraction: Hyperbolic orbit 37

37

Launch Opportunities for Fixed Transit Time: The Synodic Period

• Synodic Period, Sn: The time between conjunctions

– PA: Period of Planet A – PB: Period of Planet B • Conjunction: Two , A and B, in a line or at some fixed angle

PA PB Sn = PA − PB

38

38

19 2/12/20

Launch Opportunities for Fixed Transit Time: The Synodic Period Synodic Period with Planet respect to Earth, days Period Mercury 116 88 days Venus 584 225 days Earth - 365 days Mars 780 687 days Jupiter 399 11.9 yr Saturn 378 29.5 yr Uranus 370 84 yr Neptune 367 165 yr Pluto 367 248 yr 39

39

Hyperbolic Orbits

Orbit Shape Eccentricity, e Energy, E Circle 0 <0 Ellipse 0 < e <1 <0 Parabola 1 0 Hyperbola >1 >0

v2 µ µ E = − = − , ∴a < 0 2 r 2a Velocity remains positive as radius approaches ∞

v ⎯r⎯→∞⎯→v∞ 2 v∞ µ µ ∴E ∞ = , and v∞ = − or a = − 2 2 a v ∞ 40

40

20 2/12/20

Hyperbolic Encounter with a Planet • Trajectory is deflected by target planet’s gravitational field – In-plane – Out-of-plane • Velocity w.r.t. Sun is increased or decreased

Δ : Miss , km δ : Deflection Angle, deg or rad

Kaplan 41

41

Hyperbolic Orbits Asymptotic Value of True Anomaly

Polar Equation for a Conic Section p a(1− e2 ) r = = 1+ ecosθ 1+ ecosθ 1 ⎡a(1− e2 ) ⎤ cosθ = ⎢ −1⎥ e r ⎣⎢ ⎦⎥

θ ⎯r⎯↔∞⎯→θ∞

−1 ⎛ 1⎞ θ = cos − ∞ ⎝⎜ e⎠⎟

42

42

21 2/12/20

Hyperbolic Orbits Angular Momentum

h = Constant = v∞Δ 2 e2 1 2 µ ( − ) = µp = µa(1− e ) = 2 v∞ Eccentricity

2h2 v4 Δ2 e = 1+ E = 1+ ∞ µ2 µ2

Perigee Radius µ rp = a(1− e) = 2 (e −1) v∞ Eccentricity

2 ⎡ rpv∞ ⎤ e = ⎢1+ ⎥ µ ⎣ ⎦ 43

43

Hyperbolic Mean and Eccentric Anomalies H : Hyperbolic M = esinh H − H Newton’s method of successive approximation to find H from M, similar to solution for E (Lecture 2)

−1 ⎡ e +1 H (t)⎤ θ (t) = 2 tan ⎢ tanh ⎥ ⎣ e −1 2 ⎦ r = a(1− ecosh H )

see Ch. 7, Kaplan, 1976 44

44

22 2/12/20

Battin’s Universal Formulas for Conic Section Position and Velocity as Functions of Time

⎡ χ 2 ⎛ χ 2 ⎞ ⎤ ⎡ χ 3 ⎛ χ 2 ⎞ ⎤ r(t2 ) = ⎢1− C ⎜ ⎟ ⎥r(t1 ) + ⎢t2 − S⎜ ⎟ ⎥v(t1 ) ⎣ r(t1 ) ⎝ a ⎠ ⎦ ⎣ µ ⎝ a ⎠ ⎦

µ ⎡ χ 3 ⎛ χ 2 ⎞ ⎤ ⎡ χ 2 ⎛ χ 2 ⎞ ⎤ v(t2 ) = ⎢ S⎜ ⎟ − χ ⎥r(t1 ) + ⎢1− C ⎜ ⎟ ⎥v(t1 ) r(t1 )r(t2 ) ⎣ a ⎝ a ⎠ ⎦ ⎣ r(t2 ) ⎝ a ⎠ ⎦

⎧ a ⎡E t − E t ⎤, C(.) and S(.) ⎪ ⎣ ( 2 ) ( 1 )⎦ ⎪ ⎪ −a ⎣⎡H (t2 ) − H (t1 )⎦⎤, χ = ⎨ ⎪ ⎡ θ (t2 ) θ (t1 )⎤ ⎪ p tan − tan , Parabola ⎢ 2 2 ⎥ ⎩⎪ ⎣ ⎦

see Ch. 7, Kaplan, 1976; also Battin, 1964 45

45

Lambert’s Time-of-Flight Theorem (Hyperbolic Orbit)

−a3 (t2 − t1 ) = ⎡(sinhγ −γ ) + (sinhδ −δ )⎤ µ ⎣ ⎦

where r + r + c r + r − c γ ! 2sinh−1 1 2 ; δ ! 2sinh−1 1 2 −4a −4a

see Ch. 7, Kaplan, 1976; also Battin, 1964

http://www.mathworks.com/matlabcentral/fileexchange/39530-lambert-s-problem

http://www.mathworks.com/matlabcentral/fileexchange/26348-robust-solver- 46 for-lambert-s-orbital-boundary-value-problem

46

23 2/12/20

Asteroid Encounter

Hyperbolic trajectory ΔV to establish trajectory ΔV for rendezvous or impact 47

47

Swing-By/Fly-By Trajectories • Hyperbolic encounters with planets and the provide gravity assist – Shape, energy, and duration of transfer orbit altered – Potentially large reduction in rocket ΔV required to accomplish mission

Why does gravity assist work? 48

48

24 2/12/20

Effect of Target Planet’s Gravity on Probe’s Sun-Relative Velocity Deflection – Velocity Reduction

49

49

Effect of Target Planet’s Gravity on Probe’s Sun-Relative Velocity Deflection – Velocity Addition

50

50

25 2/12/20

Planet Capture Trajectory Hyperbolic approach to planet’s sphere of influence Δv to decrease speed to circular velocity

51

51

Effect of Target Planet’s Gravity on Probe’s Velocity

Probe Approach Velocity (wrt Sun) Probe Departure Velocity (wrt Sun) Probe Approach Velocity (wrt Planet)

Probe A Departure Velocity (wrt Planet) Kaplan

Target Planet Velocity

52

52

26 2/12/20

Next Time: Spacecraft Environment

53

53

Supplemental Material

54

54

27 2/12/20

Phases of Ascent Guidance

• Vertical liftoff • Roll to launch • Pitch program to atmospheric “exit” – Jet stream penetration – Booster cutoff and staging • Explicit guidance to desired orbit – Booster separation – Acceleration limiting – Orbital insertion

55

55

Tangent Steering Laws

• Neglecting surface curvature ⎛ t ⎞ tanθ(t) = tanθo ⎜1− ⎟ ⎝ tBO ⎠

• “Open-loop” command, i.e., no feedback of vehicle state

• Accounting for effect of Earth surface curvature on burnout flight path angle ⎡ t ⎛ t ⎞ ⎤ tanθ(t) = tanθo ⎢1− − tanβ ⎥ t ⎜ t ⎟ ⎣ BO ⎝ BO ⎠ ⎦ 56

56

28 2/12/20

Longitudinal (2-D) Equations of Motion for Re-Entry

Differential equations for velocity (x1 = V), flight path angle (x2 = γ), altitude (x3 = h), and range (x4) Angle of attack (α) is optimization control variable

x˙ 1 = −D(x1,x3,α)/m − gcos x2

x˙ 2 = [g/ x1 − x1 /(R + x3 )]sin x2 − L(x1,x3,α)/mx1 x˙ = x cos x D = drag 3 1 2 L = lift x˙ x sin x / 1 x /R M = pitch moment 4 = 1 2 ( + 3 ) R = Earth radius Equations of motion define the dynamic constraint x˙ (t) = f[x(t),α(t)] 57

57

A Different Approach to Guidance: Optimizing a Cost Function • Minimize a scalar function, J, of terminal and integral costs

t f J x(t ) L x(t), u(t) dt L[.]: Lagrangian = φ[ f ]+ ∫ [ ] to

with respect to the control, u(t), in (to,tf), subject to a dynamic constraint

dim(x) = n x 1 x˙ (t) = f[x(t),u(t)], x(t ) given dim(f) = n x 1 o dim(u) = m x 1 58

58

29 2/12/20

Guidance Cost Function

⎡x(t )⎤ • Terminal cost, e.g., in final position φ ⎣ f ⎦ and velocity • Integral cost, e.g., tradeoff between L[x(t),u(t)] control usage and trajectory error

• Minimization of cost function determines the optimal state and control, x* and u*, over the flight path duration

t ⎪⎧ f ⎪⎫ min J = min ⎨φ ⎡x(t f )⎤ + L x(t),u(t) dt ⎬ u u ⎣ ⎦ ∫ [ ] ⎩⎪ to ⎭⎪

t f = φ ⎡x*(t )⎤ + L x*(t),u*(t) dt → x*(t),u*(t) ⎣ f ⎦ ∫ [ ] [ ] to

59

59

Example of Re-Entry Flight Path Cost Function

t f 2 2 2 J = a[V(t f ) −Vd ] + b[r(t f ) − rd ] + ∫ c[α(t)] dt to

• Cost function includes – Terminal range and velocity – Penalty on control use – a, b, and c tradeoff importance of each factor • Minimization of this cost function

– Defines the optimal path, x*(t), from to to tf

– Defines the optimal control, α*(t), from to to tf 60

60

30 2/12/20

Extension to Three Dimensions • Add roll angle as a control; add crossrange as a state • For the guidance law, replace range and crossrange from the starting point by distance to go and azimuth to go to the destination

61

61

Optimal Trajectories for Transition

Range vs. Cross-Range Altitude vs. Velocity (“footprint”)

62

62

31 2/12/20

Angle of Attack and Roll Angle vs. Specific Energy

Optimal Controls for Space Shuttle Transition

63

63

Optimal Guidance System Derived from Optimal Trajectories

Angle of Attack and Roll Diagram of Angle vs. Specific Energy Energy-Guidance Law

64

64

32 2/12/20

Guidance Functions for Space Shuttle Transition

Angle of Attack Guidance Roll Angle Guidance Function Function

65

65

Lunar Module Navigation, Guidance, and Control Configuration

66

66

33 2/12/20

Lunar Module Transfer Ellipse to Powered Descent Initiation

67

67

Lunar Module Powered Descent

68

68

34 2/12/20

Lunar Module Descent Events

69

69

Lunar Module Descent Targeting Sequence

Braking Phase (P63) Approach Phase (P64)

Terminal Descent Phase (P66) 70

70

35 2/12/20

Characterize Braking Phase By Five Points

71

71

Lunar Module Descent Guidance Logic (Klumpp, Automatica, 1974)

• Reference (nominal) trajectory, rr(t), from target position back to starting point (Braking Phase example) – Three 4th-degree polynomials in time – 5 points needed to specify each polynomial

2 3 4 ⎡ x(t)⎤ ⎢ ⎥ t t t r(t) = y(t) rr (t) = rt + vtt + at + jt + st ⎢ ⎥ 2 6 24 ⎣⎢ z(t)⎦⎥

72

72

36 2/12/20

Coefficients of the Polynomials

t 2 t 3 t 4 r (t) = r + v t + a + j + s r t t t 2 t 6 t 24 ⎡ x⎤ ⎡ ˙ ⎤ ⎡ ⎤ • r = position vector x vx ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ r = y v y˙ v • v = velocity vector ⎢ ⎥ = ⎢ ⎥ = ⎢ y⎥ • a = acceleration vector ⎢ ⎥ ⎣ z⎦ ⎣⎢ z˙ ⎦⎥ ⎣⎢v z ⎦⎥ • j = jerk vector (time derivative of acceleration) ⎡a x⎤ ⎡ jx⎤ ⎡s x⎤ • s = snap vector (time ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ a = a j = j s = s derivative of jerk) ⎢ y⎥ ⎢ y⎥ ⎢ y⎥ ⎣⎢ az ⎦⎥ ⎣⎢ jz⎦⎥ ⎣⎢ sz ⎦⎥

73

73

Corresponding Reference Velocity and Acceleration Vectors t 2 t 3 v (t) = v + a t + j + s r t t t 2 t 6 t 2 a (t) = a + j t + s r t t t 2

• ar(t) is the reference control vector – Descent engine thrust / mass = total acceleration – Vector components controlled by orienting yaw and pitch angles of the Lunar Module 74

74

37 2/12/20

Guidance Logic Defines Desired Acceleration Vector

• If initial conditions, dynamic model, and thrust control were perfect, ar(t) would produce rr(t) t 2 t 2 t 3 t 4 a (t) = a + j t + s ⇒ r (t) = r + v t + a + j + s r t t t 2 r t t t 2 t 6 t 24

• ... but they are not • Therefore, feedback control is required to follow the reference trajectory

75

75

Guidance Law for the Lunar Module Descent

Linear feedback guidance law

acommand (t) = ar (t) + KV [v measured (t) − vr (t)]+ KR [rmeasured (t) − rr (t)]

KV :velocity error gain

KR :position error gain Nominal acceleration profile is corrected for measured differences between actual and reference flight paths Considerable modifications made in actual LM implementation (see Klumpp’s original paper on Blackboard) 76

76

38