The Nutritional Ecology of Adult Female Blue Monkeys, Cercopithecus Mitis, in the Kakamega Forest, Kenya Maressa Q. Takahashi S

Total Page:16

File Type:pdf, Size:1020Kb

The Nutritional Ecology of Adult Female Blue Monkeys, Cercopithecus Mitis, in the Kakamega Forest, Kenya Maressa Q. Takahashi S The Nutritional Ecology of Adult Female Blue Monkeys, Cercopithecus mitis, in the Kakamega Forest, Kenya Maressa Q. Takahashi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Maressa Q. Takahashi All rights reserved ABSTRACT The Nutritional Ecology of Adult Female Blue Monkeys, Cercopithecus mitis, in the Kakamega Forest, Kenya Maressa Q. Takahashi The search for food and adequate nutrition determines much of an animal’s behavior, as it must ingest the macronutrients, micronutrients, and water needed for growth, reproduction and body maintenance. These macro- and micronutrients are found in varying proportions and concentrations in different foods. A generalist consumer, such as many primates, faces the challenge of choosing the right combination of foods that confers adequate and balanced nutrition. Diet selection is further complicated and constrained by antifeedants, as well as digestive morphology and physiological limitations. Nutritional ecology is the study of the connected relationships between an organism, its nutrient needs (determined by physiological state), its diet selection, and the foraging behavior it uses within a specific food environment. Additionally, these relationships are complex and changeable since the nutrient needs of a consumer change over time and food resources (including the nutritional composition) vary spatiotemporally. Published data on primate nutritional ecology are limited, with most investigations of nutritional needs stemming from captive populations and few field studies. To contribute to the body of knowledge of nutritional ecology in natural populations, I examined the nutritional ecology of wild adult female blue monkeys, Cercopithecus mitis. I used the geometric framework (GF) to quantify nutritional patterns, as it allows simultaneous examination of multiple nutrients that may be driving foraging behavior and patterns of food intake. Blue monkeys are known to be generalist feeders, with flexible feeding behavior. The population I studied inhabits the Kakamega Forest, western Kenya. This forest has a history of variable human modification on a small scale, and offered a unique opportunity to examine environmental factors (e.g. degree of human-modification of forest type, food availability), social factors (dominance rank), and physiological factors (reproductive demand) that may alter blue monkey nutritional strategies. From January and September 2015, a team of field assistants and I collected behavioral data from 3 study groups, intensively sampling 24 adult females that varied in dominance rank and reproductive condition. I used all-day focal follows to quantify feeding behavior, which allowed me to assess diet selection and nutrient intake on a daily basis. I also monitored subjects’ daily movement. To assess food availability, I quantified vegetative differences among major habitat types within each group’s home range and monitored biweekly changes in plant production of fruits and young leaves, which were major constituents of the plant-based diet. I collected >300 food samples, as well as fecal samples, and analyzed them for macro-nutritional content using wet chemistry and near-infrared spectroscopy techniques. I combined data to examine patterns in diet and nutritional strategy on different scales: patterns across subjects, between groups and within the population as a whole, patterns in the diet on the food composition level versus nutrient intake level, and patterns in nutrient intake on a daily basis versus a long term basis (i.e. over the course of the study period). Additionally, I evaluated factors that might affect variation in nutritional strategies, including a female’s reproductive condition, dominance rank, habitat use, and degree of frugivory or folivory in daily intake, as well as food availability in the environment. Kakamega blue monkeys ate a broad diet of over 445 food items (species-specific plant parts and insect morphotypes). Fruit was preferred food, and particular species-specific fruits constituted the majority of important food items (i.e., those contributing >1% of total caloric intake by group); many fruits were highly selected (i.e. eaten more than expected based on availability). Many species-specific young leaves also were important food items, though they were eaten in proportion to their availability, or even less often. Regardless of whether group diet was characterized by time spent feeding or by calories, fruit remained the largest constituent and young leaves the second largest. A subject’s daily path length was negatively related to proportion of fruit in the diet (by kcal) because females focused feeding in particular trees when important fruits ripened and thus traveled less. Daily path length was not related to group size, probably because females spread out when foraging to avoid within-group scramble competition over food. Group differences in the food composition of diets likely reflected habitat differences in food distribution. Comparison of the population’s diet to data from previous studies showed that as study groups moved into new areas and habitats, they capitalized on new food resources, reinforcing the idea that blue monkey are flexible feeders. During this study, subjects adjusted their diet in response to food availability in the environment, consuming more fruit (by percentage of diet and absolute kcal) when fruit was more available. In contrast, subjects ate fewer young leaves (by absolute kcal) when either fruit or young leaves were more available, suggesting that young leaves served as fallback food. At the level of nutrient intake, it was also true that females consumed significantly more structural carbohydrates when fruit availability was low. Despite their diverse diets and changes related to food availability, females actively regulated food intake to converge daily on a similar nutrient intake (grand mean of 637 kcal, with 108 kcal from protein, 149 kcal from lipid, 88 kcal from structural carbohydrates, and 293 kcal from non-structural carbohydrates, N=24). Thus, considering a multidimensional nutritional niche, I characterized their feeding behavior at two levels: they were both food composition generalists and nutrient intake specialists. Blue monkeys showed a nutritional strategy on two different temporal scales: 1) daily protein prioritization and 2) long term non-protein energy (NPE; i.e. lipid + carbohydrate energy) to available protein (P) balancing. On a daily basis, protein intake (by kcal) showed the least amount of variation (by coefficient of variation) and subjects consumed similar amounts of protein, regardless of potential influences from environmental, social or physiological factors. Females allowed more variation in daily ratio of non-protein energy to protein (NPE:P), taking advantage of high NPE foods like fruit. They allowed higher NPE:P ratios when fruit was a larger proportion of their diet and when they spent less time in near-natural forest. There was no evidence that reproductive demand or dominance rank affected protein intake or NPE:P balance. Dominance rank also did not predict deviation (absolute or directional) from mean protein intake or mean NPE:P ratio. On a long term basis (i.e. over the 8 months of data collection), all subjects tightly balanced cumulative NPE:P intake, regardless of dominance rank. This long-term pattern in all 24 subjects suggests that it a species-typical strategy. However, lower ranking females ate more unique food items per day than higher ranking females. Varying daily dietary breadth may allow females to cope with social constraints while feeding, such that dominance rank had no effect on nutritional strategies. Further, the prevalence of NPE:P balancing in most nutritional ecology studies of primates suggests that the diversity of feeding strategies within this order of mammals may have evolved to allow them to adhere to that particular nutrient balance, though the rule of compromise (e.g. protein versus NPE prioritization) and the exact ratio balanced may differ by population or species. Blue monkeys regularly used human-modified habitats and ate considerable amounts of the non-natural foods found there (and elsewhere in the forest). Non-natural foods were directly derived from humans or human activity (e.g. via scavenging from trash) and exotic (non-native) plants, generally introduced inadvertently or for silviculture. Subjects incorporated a substantial amount of non-natural foods into their diets, with approximately a third of their daily calories derived from non-natural foods. Subjects in the group with the most access to human-modified habitat used non-natural foods the most extensively. Further, subjects in two groups showed clear preference for human-modified habitat while members of the third group used habitat types in proportion to their occurrence in the home range. Human-modified habitat, and the non- natural foods found within, may have been readily used because many non-natural foods provided similar access to nutritional space as natural foods. Some non-natural foods, like oil palm fruit and ugali (cooked maize flour), represented energetically dense food resources, which also proved attractive. Regardless of whether subjects fed primarily on natural or non-natural foods, they consumed similar amounts of daily protein. This prioritization of protein, coupled with the fact that females had higher NPE:P ratios
Recommended publications
  • Anthesis Volume 10: 2014 -2015 Botany: an Interdisciplinary Science
    Anthesis Volume 10: 2014 -2015 Botany: An Interdisciplinary Science Annual Publication of Gargi College Botanical Society Department of Botany Gargi College, Siri Fort Road New Delhi-110049 1 Anthesis Volume 10: 2014-2015 Special Focus: Botany: An Interdisciplinary Science Department of Botany Gargi College, Siri Fort Road New Delhi-110049 Cover Page Design: Leena Arora 2 Anthesis Volume 10: 2014-2015 Special Focus: Botany: An Interdisciplinary Science Contents All the topics listed below have been hyper-linked to the corresponding articles. Click on the topics to read the article. You can come back to the contents page by clicking on the link at the end of every article. Page S.No. Topic No. 1. From the Principal’s Desk 5 2. From the Editor’s Desk 6 Articles 3. Diamonds in My Backyard 8 4. Chemistry of Plant Life: At a Glance 11 5. Flashlight on Facts: Plant Nomenclature 15 6. What’s in a Name? 20 7. Wonders of Nature: Look alikes 23 8. Forensic Botany: Plant Detectives 28 9. Virus Induced Gene Silencing 32 Some Interesting Trees 10. 41 Dendrology: The Wood Science 11. 44 12. Gymnosperms: Treasure Trove of Medicines 48 13. Ayurveda: As Relevant Now 51 The Mushroom Story 14. 53 15. Agriculture Redefined 56 16. The Ficus Siblings 58 17. Student Research Projects 61 18. My Introduction to Floral World 64 3 19. Flamboyant Miracles: Blooms 69 20. Career Options in Horticulture 73 Students’ Opinion 21. Will I Be Educated? 76 22. Being A Botanist 78 23. Go Break Those Boundaries!!! 81 24. Famous Plant: Lavender 82 25.
    [Show full text]
  • Hunting Behavior of Wild Chimpanzees in the Taï National Park
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 78547-573 (1989) Hunting Behavior of Wild Chimpanzees in the Tai’ National Park CHRISTOPHE BOESCH AND HEDWIGE BOESCH Department of Ethology and Wildlife Research, University of Zurich, CH-8057 Zurich, Switzerland KEY WORDS Cooperation, Sharing, Traditions ABSTRACT Hunting is often considered one of the major behaviors that shaped early hominids’ evolution, along with the shift toward a drier and more open habitat. We suggest that a precise comparison of the hunting behavior of a species closely related to man might help us understand which aspects of hunting could be affected by environmental conditions. The hunting behavior of wild chimpanzees is discussed, and new observations on a population living in the tropical rain forest of the TaY National Park, Ivory Coast, are presented. Some of the forest chimpanzees’ hunting performances are similar to those of savanna-woodlands populations; others are different. Forest chimpanzees have a more specialized prey image, intentionally search for more adult prey, and hunt in larger groups and with a more elaborate cooperative level than sa- vanna-woodlands chimpanzees. In addition, forest chimpanzees tend to share meat more actively and more frequently. These findings are related to some theories on aspects of hunting behavior in early hominids and discussed in order to understand some factors influencing the hunting behavior of wild chimpanzees. Finally, the hunting behavior of primates is compared with that of social carnivores. Hunting is generally
    [Show full text]
  • Crop Raiding by Wild Vertebrates in the Illubabor Zone, Ethiopia
    C rop Raiding by Wild Vertebrates in the Illubabor Zone, Ethiopia Courtney Quirin A report submitted in partial fulfilment of the Post-graduate Diploma in Wildlife Management University of Otago 2005 University of Otago Department of Zoology P.O. Box 56, Dunedin New Zealand WLM Report Number: 206 C rop Raiding by Wild Vertebrates in the Illubabor Zone, Ethiopia By Courtney Quirin May 4, 2005 2 Table of Contents Executive Summary . iii Acknowledgements . vii Table of Contents . i List of Tables . viii List of Figures. ix 1. Introduction. 1 2. Methods . 3 3. Results . 5 3.1 Farm Composition and Crop Loss . 6 3.2 Pest Profiles . .. 6 3.3 Dominant Foragers by Crop . 12 3.4 Dominant Foragers by Area . 15 3.5 Analysis of the Likelihood of Crop Loss. 16 3.6 Seasonal Calendars: Raiding Intensity, Animal Activity, and Human Cultivation Activity . 17 3.7 Guarding Strategies . .. 22 3.8 Predictions and Future Management Solutions . 26 4. Summary of Results . 27 4.1 Total crop loss by daytime and nighttime foragers . 27 4.2 Summary of Sites . 27 5. Discussion . 29 5.1 Research and Site Overview . 29 5.2 Top Four Pests and Ranking . 29 5.3 Habitat Restrictions and Social Behaviour of Pests . 31 3 5.4 Impact of Top Four Pests in Wetland and Upland Areas . 32 5.5 Dominant Foragers by Crop Type . 33 5.6 Guarding Strategies . 35 5.7 Raiding Intensity, Seasonal Animal Activity and Cultivation Activity. 39 5.8 Predictions and Future Management Solutions . 40 6. Conclusion . 42 7. References . 44 4 Executive Summary Investigation Title Crop Raiding by Wild Vertebrates in the Illubabor Zone, Ethiopia Study Sites Upland and wetland farming communities in the Wichi wetland catchment, Metu Wereda, Illubabor Zone, Ethiopia.
    [Show full text]
  • Los Lagos Pre-Approved Plant Palette
    2012 Los Lagos Pre-Approved Plant Palette TABLE OF CONTENTS Explanation of “Pre-Approved” and Homeowner Procedures 4 Ground Covers 5 Lantana 5 Dalea greggil – Trailing Indigo bush 5 Arctotheca calendula – Cape weed 5 Santolina 6 Angellina stonecrop 6 Erigeron karvinskianus (Mexican Daisy, Santa Barbara Daisy) 6 Ice Plant 7 Gazania 7 Juniper Blue Rug 8 Jasminum laurifolium nitidum 8 Ajuga reptans (Common blue bugleweed) 9 Cotoneaster Dammeri (Cotoneaster humifusus) 9 Ornamental Grasses 10 Festuca glauca – Common blue fescue 10 Eragrostis spectabilis – Purple Love Grass 10 Pink Mugley / Regal Mist 11 Japanese Blood grass 11 Mexican Grass Tree 11 Shrubs 12 Cordyline stricta 12 Maahonia nevinii 12 Pink Fairy Duster 12 Euphorbia characias 13 Tecoma Stans 13 Hawaiian Blue Eyes 13 Desert Lavender 14 Brittle Bush 14 Carissa Boxwood 15 Mexican Bird of Paradise 15 Mexican Honeysuckle 16 Mexican Heather 16 1 Little John 17 Hibiscus 17 Mandevilla 17 Jasmine 18 Pittosporum 18 Photinia 18 Desert Cassia 19 Ruella Peninsularis 19 Ixora 19 Calliandria - eriodhylla 20 Chrysactinia Mexican Damianita 20 Chamelaudium 20 Cape Honeysuckle 21 Barberry Crimson 21 Leonotis 21 Dasylirion wheeleri 22 Hesperaloe 22 Leucophyllum 22 Coral Fountain 23 Scarlet Sage 23 Desert Marigold 24 Gaillardia 24 Bluebell Creeper 24 Anelita Daisy 25 Grevillea rosmarinfolia – Rosemay grevillea 25 Justicia candicans 25 Rhahphiolepsis indica (“Indian Hawthorne”) 26 Alyogyne huegelii (“Blue hibiscus”) 26 Brunfelsia pauciflora (“Yesterday, Today and Tomorrow”) 27 Cresote Bush 27 Upright
    [Show full text]
  • A Rapid Assessment of Hunting and Bushmeat Trade Along the Roadside Between Five Angolan Major Towns
    A peer-reviewed open-access journal Nature Conservation 37: 151–160Bushmeat (2019) trade assessment in five Angolan povinces 151 doi: 10.3897/natureconservation.37.37590 SHORT COMMUNICATION http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation A rapid assessment of hunting and bushmeat trade along the roadside between five Angolan major towns Francisco M. P. Gonçalves1,2, José C. Luís1,3, José J. Tchamba1, Manuel J. Cachissapa1, António Valter Chisingui1 1 Herbário do Lubango, ISCED-Huíla, Rua Sarmento Rodrigues No. 2, C.P. 230 Lubango, Angola 2 Institute for Plant Science and Microbiology (BEE), University of Hamburg, Ohnhorststr. 22609 Hamburg, Germany 3 Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Rua Branca Edmée Marques 1600-276 Lisboa, Portugal Corresponding author: Francisco M. P. Gonçalves ([email protected]) Academic editor: Mark Auliya | Received 21 June 2019 | Accepted 8 November 2019 | Published 16 December 2019 http://zoobank.org/E82010C2-5D52-4BA4-8605-36D453D78C51 Citation: Gonçalves FMP, Luís JC, Tchamba JJ, Cachissapa MJ, Chisingui AV (2019) A rapid assessment of hunting and bushmeat trade along the roadside between five Angolan major towns. Nature Conservation 37: 151–160.https://doi. org/10.3897/natureconservation.37.37590 Abstract Hunting and related bushmeat trade are activities which negatively impact wildlife worldwide, with serious implications for biodiversity conservation. Angola’s fauna was severely decimated during the long-lasting civil war following the country’s independence. During a round trip from Lubango (Huíla province), pass- ing through the provinces of Benguela, Cuanza sul, Luanda, Bengo and finally to Uíge, we documented a variety of bushmeat trade, mainly along the roadside.
    [Show full text]
  • Brunfelsia Pauciflora (Rain Tree, Yesterday Today and Tomorrow ) Brunfelsia Pauciflora Is a Dense Evergreen Shrub Originally from Brazil Grows to up to 3 Meters Tall
    Brunfelsia pauciflora (Rain tree, Yesterday today and tomorrow ) Brunfelsia pauciflora is a dense evergreen shrub originally from Brazil grows to up to 3 meters tall. It has sweet- smelling flowers in shades of purple, lilac and pale white. These shades that changes on daily bases led to the common name: yesterday today and tomorrow. The plant is toxic especially the fruits. Landscape Information French Name: Francicéa Pronounciation: brun-FELZ-ee-uh PAW-ki-flor- uh Plant Type: Shrub Origin: Brazil Heat Zones: Hardiness Zones: 9, 10, 11 Uses: Screen, Specimen, Border Plant, Mass Planting, Container Size/Shape Growth Rate: Moderate Tree Shape: Upright Canopy Density: Dense Canopy Texture: Medium Height at Maturity: 1 to 1.5 m, 1.5 to 3 m Spread at Maturity: 0.5 to 1 meter Plant Image Brunfelsia pauciflora (Rain tree, Yesterday today and tomorrow ) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Evergreen Leaf Type: Simple Leaf Blade: 20 - 30 Leaf Shape: Ovate Leaf Margins: Entire Leaf Textures: Glossy, Medium Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green Flower Image Flower Flower Size Range: 7 - 10 Flower Type: Cyme Flower Sexuality: Monoecious (Bisexual) Flower Scent: Pleasant Flower Color: Purple, Blue, White Seasons: Spring, Summer, Fall Trunk Number of Trunks: Multi-Trunked Trunk Esthetic Values: Not Showy Fruit Fruit Type: Berry Fruit Showiness: False Fruit Colors: Orange, Brown Seasons: Spring, Summer, Fall Brunfelsia pauciflora (Rain tree, Yesterday today and tomorrow ) Horticulture Management Tolerance Heat Tolerant: Yes Drought Tolerant: Yes Salt Tolerance: Moderate Requirements Soil Requirements: Loam Soil Ph Requirements: Acidic, Neutral Water Requirements: Moderate Light Requirements: Part, Shade Management Toxity: Yes Invasive Potential: No Surface Rooting: No Edible Parts: Pests: Mites, Thrips, Whitefly, Mealy-Bug Plant Propagations: Leaf Image MORE IMAGES Fruit Image Bark Image Other Image.
    [Show full text]
  • WRA Species Report
    Designation = Low Risk WRA Score = -3 Family: Solanaceae Taxon: Brunfelsia latifolia Synonym: Franciscea latifolia Pohl (basionym) Common Name: Yesterday, Today and Tomorrow Brunfelsia bonodora (Vell.) J.F. Macbr. Kiss Me Quick Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -3 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic
    [Show full text]
  • Acteoside and Related Phenylethanoid Glycosides in Byblis Liniflora Salisb
    Vol. 73, No. 1: 9-15, 2004 ACTA SOCIETATIS BOTANICORUM POLONIAE 9 ACTEOSIDE AND RELATED PHENYLETHANOID GLYCOSIDES IN BYBLIS LINIFLORA SALISB. PLANTS PROPAGATED IN VITRO AND ITS SYSTEMATIC SIGNIFICANCE JAN SCHLAUER1, JAROMIR BUDZIANOWSKI2, KRYSTYNA KUKU£CZANKA3, LIDIA RATAJCZAK2 1 Institute of Plant Biochemistry, University of Tübingen Corrensstr. 41, 72076 Tübingen, Germany 2 Department of Pharmaceutical Botany, University of Medical Sciences in Poznañ w. Marii Magdaleny 14, 61-861 Poznañ, Poland 3 Botanical Garden, University of Wroc³aw Sienkiewicza 23, 50-335 Wroc³aw, Poland (Received: May 30, 2003. Accepted: February 4, 2004) ABSTRACT From plantlets of Byblis liniflora Salisb. (Byblidaceae), propagated by in vitro culture, four phenylethanoid glycosides acteoside, isoacteoside, desrhamnosylacteoside and desrhamnosylisoacteoside were isolated. The presence of acteoside substantially supports a placement of the family Byblidaceae in order Scrophulariales and subclass Asteridae. Moreover, the genera containing acteoside are listed; almost all of them appear to belong to the order Scrophulariales. KEY WORDS: Byblis liniflora, Byblidaceae, Scrophulariales, chemotaxonomy, phenylethanoid gly- cosides, acteoside, in vitro propagation. INTRODUCTION et Conran, B. filifolia Planch, B. rorida Lowrie et Conran, and B. lamellata Conran et Lowrie. Byblidaceae are a small family of essentially Western Byblis liniflora Salisb. grows erect to 15-20 cm. Its lea- and Northern Australian (extending to Papuasia) herbs ves are alternate, involute in vernation, simple, linear with with exstipulate, linear sticky leaves spirally arranged a clavate apical swelling, and with stipitate, adhesive and along a more or less upright or sprawling stem and solita- sessile, digestive glands on the lamina (Huxley et al. 1992; ry, ebracteolate, pentamerous, weakly sympetalous, very Lowrie 1998).
    [Show full text]
  • (Mandrillus Leucophaeus) CAPTIUS Mireia De Martín Marty
    COMUNICACIÓ VOCAL EN DRILS (Mandrillus leucophaeus) CAPTIUS Mireia de Martín Marty Tesi presentada per a l’obtenció del grau de Doctor (Juny 2004) Dibuix: Dr. J. Sabater Pi Codirigida pel Dr. J. Sabater Pi i el Dr. C. Riba Departament de Psiquiatria i Psicobiologia Clínica Facultat de Psicologia. Universitat de Barcelona REFLEXIONS FINALS I CONCLUSIONS 7.1 ASPECTES DE COMUNICACIÓ UNIVERSAL L’alçada de la freqüència dins d’un repertori correlaciona amb el context o missatge que es vol emetre. Es podria pensar que és un universal en la comunicació. Davant de situacions de disconfort o en contextos anagonístics, la freqüència d’emissió s’eleva. A més tensió articulatòria, augmenta el to cap a l’agut. La intensitat és un recurs que augmenta la capacitat d’impressionar l’atenció del que escolta. A la natura trobem diferents exemplificacions d’aquest fet, fins i tot en espècies molt allunyades filogenèticament com el gos o l’abellot que en emetre el zum-zum, si se sent amenaçat, eleva la freqüència d’emissió. En les vocalitzacions de les diferents espècies de primats hi ha trets acústics homòlegs, que s’emeten en similars circumstàncies socials. Els senyals d’amenaça acostumen a ser de to baix en els primats i, en canvi, els anagonístics estridents i molt aguts; alguns senyals d’alarma tenen patrons comuns en els dibuixos espectrogràfics i, fins i tot, altres espècies diferents a l’espècie emissora en reconeixen el significat. Podríem deduir una funció comunicativa derivada de l’estructura acústica. En crides de cohesió, les de reclam d’atenció o amistoses, l’estructura acústica és tonal; quan informa d’una ubicació, tenen diferents bandes de freqüència; les agressives i d’alarma tenen denses bandes freqüencials; i les agonístiques o més emotives – que expressen un elevat estat emocional (‘desesperat’)- són noisy o molt compactes.
    [Show full text]
  • Salt Tolerant Plants Info Sheet for East Central Florida * Asterisk Indicates Native Plant
    Salt Tolerant Plants Info Sheet for east central Florida * asterisk indicates native plant TREES Tabebuia Tabebuia spp. High Salt Tolerance Texas Wild Olive Cordia boissieri Common Name Botanical Name Weeping Podocarpus Podocarpus gracilior Acacia, Sweet Acacia farnesiana Yaupon Holly Ilex vomitoria Autograph Tree/Pitch Apple Clusia rosa Yellow Elder Tecoma stans Black Olive Bucida buceras Yellow Jacaranda/Poinciana Peltophorum dubium Buttonwood Conocarpus erectus Wax Myrtle* Myrica cerifera Cassia Cassia spp. Gumbo Limbo Bursera simaurubra BAMBOO Jerusalem Thorn Parkinsonia aculeata Moderate Salt Tolerance Lignum Vitae Guaiacum sanctum Common Name Botanical Name Live Oak* Quercus virginiana Arrow Bamboo Pseudosasa japonica Magnolia* Magnolia grandiflora Common Timber Bambusa vulgaris Mahoe Thespesia populnea Hawaiian Stripe Bambusa vulgaris Mahogany Swietenia mahagoni Wamin Bambusa vulgaris Norfolk Island Pine Araucari heterophylla Oleander Nerium oleander Orange Geiger Tree Cordia sebestena PALMS Paradise Tree Simaruba glauca High Salt Tolerance Plumeria/Frangipani Plumeria spp. Common Name Botanical Name Red Bay* Persea borbonia Australian Fan Pam Livistonia australis Screw Pine/Pandanus Pandanus utilis (and spp.) Bismarkia Bismarkia nobilis Sea Grape** Coccoloba uvifera Bottle Palm Hyophorbe lafenicaulis Sea Hibiscus Hibiscus tiliaceus Buccaneer Palm* Pseudophoenix sargentii Silk Floss Chorisia speciosa Cabbage Palm/Sabal* Sabal palmetto Silver Buttonwood Conocarpus sericeus Cardboard Palm Zamia furfuracea Sweet Acacia Acacia farnesiana Canary Island Date Palm Phoenix canariensis Tropical Almond Terminalia catappa Chinese Fan Palm Livistonia chinensis Thornless Acacia Acacia choriophylla Christmas Palm Adonidia merrillii Cliff Date Palm Phoenix rupicola TREES Coconut Palm Cocos nucifera Moderate Salt Tolerance Dwarf Royal Palm Veitchia spp. African Tulip Tree Spathodea campanulata Dwarf Sabal Palm Sabal minor Bald Cypress* Taxodium distichum European Fan Palm Chamaerops humilis Bottlebrush Callistemon spp.
    [Show full text]
  • Cercopithecus
    Edinburgh Research Explorer New simian immunodeficiency virus infecting De Brazza's monkeys (Cercopithecus neglectus) Citation for published version: Bibollet-Ruche, F, Bailes, E, Gao, F, Pourrut, X, Barlow, KL, Clewley, JP, Mwenda, JM, Langat, DK, Chege, GK, McClure, HM, Mpoudi-Ngole, E, Delaporte, E, Peeters, M, Shaw, GM, Sharp, PM & Hahn, BH 2004, 'New simian immunodeficiency virus infecting De Brazza's monkeys (Cercopithecus neglectus): Evidence for a Cercopithecus monkey virus clade', Journal of Virology, vol. 78, no. 14, pp. 7748-7762. https://doi.org/10.1128/JVI.78.14.7748-7762.2004 Digital Object Identifier (DOI): 10.1128/JVI.78.14.7748-7762.2004 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Virology Publisher Rights Statement: Free in PMC. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 JOURNAL OF VIROLOGY, July 2004, p. 7748–7762 Vol. 78, No. 14 0022-538X/04/$08.00ϩ0 DOI: 10.1128/JVI.78.14.7748–7762.2004 Copyright © 2004, American Society for Microbiology.
    [Show full text]
  • Liberty Landscape Supply Yesterday Today and Tomorrow
    Yesterday Today And Tomorrow Brunfelsia pauciflora Height: 10 feet Spread: 10 feet Sunlight: Hardiness Zone: 8b Other Names: Brazil Raintree, Morning Noon And Night Description: This variety is spectacular in bloom; pansy-like flowers open deep purple, progress to lavender and then finally white, showing all three colors on the plant; perfect for the shrub border or containers; can be maintained as a small tree with pruning Yesterday Today And Tomorrow flowers Ornamental Features Photo courtesy of NetPS Plant Finder Yesterday Today And Tomorrow is covered in stunning clusters of purple round flowers with lavender overtones and white streaks at the ends of the branches from mid spring to early fall. It has dark green foliage with light green undersides. The glossy pointy leaves remain dark green throughout the winter. The fruit is not ornamentally significant. Landscape Attributes Yesterday Today And Tomorrow is a multi-stemmed evergreen shrub with an upright spreading habit of growth. Its average texture blends into the landscape, but can be balanced by one or two finer or coarser trees or shrubs for an effective composition. This is a relatively low maintenance shrub, and should only be pruned after flowering to avoid removing any of the current season's flowers. It is a good choice for attracting bees and butterflies to your yard. It has no significant negative characteristics. Yesterday Today And Tomorrow is recommended for the following landscape applications; - Accent - Mass Planting - General Garden Use - Container Planting 474389 FL-200 Fernandina Bea , FL phone: (904) 261-7177 e-mail: [email protected] Planting & Growing Yesterday Today And Tomorrow will grow to be about 10 feet tall at maturity, with a spread of 10 feet.
    [Show full text]