Radiation Protection of the Public S15 Oral Presentations

Total Page:16

File Type:pdf, Size:1020Kb

Radiation Protection of the Public S15 Oral Presentations Contents Session 15: Radiation protection of the public S15 Oral presentations S15-01 The main directions of the Russian efforts in radiation safety and health protection . 2180 Kiselev, Mikhail; Shandala, Nataliya S15-02 Spanish national campaign for the search and recovery of orphan radioactive sources . 2189 Carboneras, Pedro; Ortiz, Maria Teresa; Rueda, Carmen S15-03 Mitigation of exposure to radon by household water treatment . 2200 Turtiainen, Tuukka S15-04 Dose assessment for tritium releases during normal operation of NPP (ABSTRACT) . 2207 Duran, Juraj; Malátová, Irena S15-05 The legacy of uranium mines – Pluralist Expertise Group experiment on uranium mines in Limousin (France) (ABSTRACT) . 2208 Ringeard, Caroline; Catelinois, Olivier; Sene, Monique; Barbey, Pierre; Andres, Christian; Devin, Patrick; Vandenhove, Hildegarde; Servant-Perrier, Anne-Christine; Leuraud, Klervi; Zerbib, Jean-Claude Third European IRPA Congress 2010, Helsinki, Finland Contents Topic 15: Radiation protection of the public P15 Poster presentations P15-01 Radiation situation in Moscow and public doses due to man-made radiation exposure . 2210 Metlyaev, Evgeny; Filonova, Anna P15-02 Ionizing radiation exposure of the Belgian population in 2006 . 2216 Vanmarcke, Hans; Bosmans, Hilde; Eggermont, Gilbert P15-03 Sharing an environmental monitoring network: The AREVA Tricastin experience . 2226 Mercat, Catherine; Devin, Patrick; Garnier, François P15-04 137Cs activity concentrations in Polish meats – Current status and dose assessment for consumers . 2236 Rachubik, Jarosław P15-05 Public doses due to tritium emissions from Cernavoda NPP (ABSTRACT) . 2244 Bobric, Elena; Popescu, Ion; Simionov, Vasile P15-06 New Swedish regulations for clearance of materials, rooms, buildings and land . 2245 Efraimsson, Henrik P15-07 The approach to assessing doses to humans in the Posiva safety case . 2254 Hjerpe, Thomas; Ikonen, Ari T. K.; Avila, Rodolfo; Broed, Robert P15-08 Study of the site dose rate of the spent fuel storage facility with add-on shielding . 2264 Lee, Kuo-Wie; Lu, Chung-Hsin; Lin, Uei-Tyng; Wang, Jing-Ning; Chang, Shu-Jun; Chang, Bor-Jing P15-09 Using equivalent point source to evaluate steel shielding cover for turbine buildings . 2269 Lu, Chung-hsin; Chang, Bor-Jing; Shih, Chien-Liang P15-10 Shielding analysis for Proton Therapy Center in Prague, Czech Republic . 2276 Urban, Tomas; Kluson, Jaroslav P15-11 Ambient radiation monitoring in a corridor configuration . 2286 Lai, Yung-Chang; Chen, Yu-Wen; Huang, Ying-Fong P15-12 Contribution to the national survey of population exposure from selected X-ray medical examinations in Slovakia . 2292 Nikodemová, Denisa; Šalát, Dušan; Horváthová, Martina; Böhm, Karol; Cabáneková, Helena P15-13 Utility of a web based data survey for a national MDCT radiology practice survey . 2299 Wallace, Anthony; Hayton, Anna; Edmonds, Keith; Tingey, David P15-14 Application of the European DOSE DATAMED methodology and reference doses for the estimate of Australian MDCT effective dose (mSv) . 2310 Hayton, Anna; Wallace, Anthony; Edmonds, Keith; Tingey, David P15-15 Comparison of spectroscopic investigation and computer modelling of lanthanide(III) and actinide(III) speciation in human biological fluids . 2318 Barkleit, Astrid; Heller, Anne; Baraniak, Lutz; Bernhard, Gert Third European IRPA Congress 2010, Helsinki, Finland Contents P15-16 Natural radioactivity of building materials: Radiation protection concepts, measurement methods and regulatory implementation (ABSTRACT) . 2328 Maringer, Franz Josef; Gruber, Valeria; Brettner-Messler, Robert; Baumgartner, Andreas P15-17 Mapping of aerosol releases from Forsmark nuclear power plant . 2329 Bohl Kullberg, Erika P15-18 A nation wide survey on drinking water radioactivity in Estonia: facts, risk assessment and remedial actions (ABSTRACT) . 2336 Forte, Maurizio; Ruut, Jyri; Aro, Tiiu; Rusconi, Rosella; Trotti, Flavio; Caldognetto, Elena; Risica, Serena; Realini, Franco; Airoldi, Riccardo Third European IRPA Congress 2010, Helsinki, Finland Session 15: Radiation protection of the public S15 Oral presentations S15-01 S15-01 The main directions of the Russian efforts in radiation safety and health protection Kiselev, Mikhail1; Shandala, Nataliya2 1 Federal Medical Biological Agency, RUSSIAN FEDERATION 2 Burnasyan Federal Medical Biophysical Centre, RUSSIAN FEDERATION Abstract The status of radiation protection and radiation safety at the Russian hazardous enterprises is assessed as satisfactory. According to data of long-term monitoring, annual dose to nuclear workers is not higher than 2.5 mSv. Contribution of the nuclear industry to the public doses is not higher than some parts of the percent. Over many years, any excess radionuclide discharge/effluent has not been registered and chemical contamination of the common air and water environmental media do not exceed the permissible concentrations. Indexes of the public health are similar to those for the whole Russian Federation. Chronic occupational morbidity rates are lower than 2.0 cases per 10 000 workers. The acute occupational pathology occurs very seldom, mainly due to incidents. Over 60 years of the nuclear industry history, 754 persons have been radiation injured, 350 persons of them had diagnosis acute radiation disease; amount of radiation-induced deaths was 71 (taking into account consequences of the Chernobyl accident). Today, Russia must develop the national system for control and keeping radiation protection at the required level. This paper will give some examples of the current radiation protection problems important for public health and scientific results of research on the health effects of long-term, low-dose radiation exposure. Introduction The Foundations for the state policy in nuclear and radiation safety assurance in the Russian Federation for the period till 2010 and future perspectives (approved by the RF President 4 December 2003) serve as a basis for development of radiation safety assurance and public health protection in respect to impact of radiation factors in Russia. The Foundations for the state policy are implemented in work of the federal authorities. The Federal Medical Biological Agency (FMBA of Russia) is one of them. Since 1946 up to now, the FMBA of Russia develops practically all issues of radiation safety and health protection in Russia. The FMBA of Russia is a federal authority, which was assigned the responsibility for medical sanitary support and state sanitary epidemiological supervision both of workers from some industrial institutions with especially hazardous work conditions and residents of some Russian areas. The listing of such organizations includes: the Third European IRPA Congress 2010, Helsinki, Finland 2180 Session 15: Radiation protection of the public – Oral presentations S15 Kiselev, Mikhail and Shandala, Nataliya S15-01 The main directions of the Russian efforts in radiation safety and health protection state atomic energy corporation “Rosatom”, state shipbuilding corporation, federal agency of marine and river transport. They have nuclear and radiation hazardous facilities and cover 22 settlements situated in the supervision areas of the mentioned facilities. Moreover, the FMBA of Russia regulates safety during nuclear energy using and it is one of the customers and coordinator of the medical part of the Federal target program «Nuclear and radiation safety assurance for 2008 and for the period till 2015». The structure of the FMBA of Russia includes research institutes specialized in radiation medicine and biology; clinics; institutions under the sanitary epidemiological supervision system, which institutions are located according to the principle of optimum dislocation with respect to organizations with especially hazardous work conditions. Thus, three interconnected components – science, medical support and regulation – predetermine the foundation for radiation safety assurance system. The special feature of this system is its complex functioning: from surveillance, control and supervision of work conditions at radiation hazardous facilities and population living at the areas of their allocation, medical aid rendering and to scientific support of radiation safety and health protection problems. Current status of radiation safety Annual analysis of the operator’s radiation passports and territorial bodies’ reports shows that today, ionizing radiation is not the key health affecting factor both for workers of radiation facilities and population living at the supervision areas. Over many years, excess radionuclide discharges/effluents have not been registered. Contamination of common air and water environmental media with different chemicals do not exceed the maximum permissible concentrations. Radiation safety conditions at the facilities under the State Corporation “Rosatom” are evaluated as satisfactory. Long-term monitoring shows that annual doses to nuclear workers do not exceed 2.5 mSv (Fig. 1). Fig. 1. Dynamics of annual and collective doses to nuclear workers of Russia. Comparison of some demographic indexes of the public health in Russia as a whole and those for the contingent under the FAMB of Russia service (Table 1), shows that the birth rate here is lower than the similar index over the Russian Federation. This fact can be explained by the age structure of residents in the close territorial formations, Third European IRPA Congress 2010, Helsinki, Finland 2181 Session 15: Radiation protection of the public – Oral presentations S15 Kiselev, Mikhail
Recommended publications
  • Internal and External Exposure Exposure Routes 2.1
    Exposure Routes Internal and External Exposure Exposure Routes 2.1 External exposure Internal exposure Body surface From outer space contamination and the sun Inhalation Suspended matters Food and drink consumption From a radiation Lungs generator Radio‐ pharmaceuticals Wound Buildings Ground Radiation coming from outside the body Radiation emitted within the body Radioactive The body is equally exposed to radiation in both cases. materials "Radiation exposure" refers to the situation where the body is in the presence of radiation. There are two types of radiation exposure, "internal exposure" and "external exposure." External exposure means to receive radiation that comes from radioactive materials existing on the ground, suspended in the air, or attached to clothes or the surface of the body (p.25 of Vol. 1, "External Exposure and Skin"). Conversely, internal exposure is caused (i) when a person has a meal and takes in radioactive materials in the food or drink (ingestion); (ii) when a person breathes in radioactive materials in the air (inhalation); (iii) when radioactive materials are absorbed through the skin (percutaneous absorption); (iv) when radioactive materials enter the body from a wound (wound contamination); and (v) when radiopharmaceuticals containing radioactive materials are administered for the purpose of medical treatment. Once radioactive materials enter the body, the body will continue to be exposed to radiation until the radioactive materials are excreted in the urine or feces (biological half-life) or as the radioactivity weakens over time (p.26 of Vol. 1, "Internal Exposure"). The difference between internal exposure and external exposure lies in whether the source that emits radiation is inside or outside the body.
    [Show full text]
  • Mean Glandular Dose from Routine Mammography
    Naresuan University Journal 2006; 14(3): 19-26 19 Mean Glandular Dose from Routine Mammography Supawitoo Sookpenga,* and Potjana Kettedb a Department of Radiological Technology, Faculty of Allied Health Science, Naresuan University, Phitsanulok 65000, Thailand. b Department of Radiology, Buddhachinaraj Hospital, Phitsanulok 65000, Thailand. *Corresponding author. E-mail address: [email protected] (S. Sookpeng) Received 21 July 2006; accepted 6 December 2006 Abstract A mammography examination facilitates the early detection of breast cancer. However, the potential risk of radiation-induced carcinogenesis is also increased with such a procedure. The objective of this research was to measure the mean glandular dose (MGD) from craniocaudal (CC) and mediolateral oblique (MLO) views in each breast and the total dose per woman (for both breasts and two views) from the exposure factor in patients undergoing mammography on six mammography x-ray generators in the lower region of northern Thailand. The values of compressed breast thickness (CBT), as well as the MGD calculated from the exposure and tube voltage both mAs and target/filter combination, were collected from 2,060 films from 515 women ranging in age from 28 to 91 years. Significant differences were found between MGD from CC and MLO projections. The MGD per film was 1.42+0.80 mGy for the CC projection and 1.56+0.86 mGy for the MLO projection, (p<0.001). The MGD per CC and MLO film was significantly related to CBT (r = 0.610, p<0.01 and r = 0.596, p<0.01 respectively). The result indicated that 96.1 % of CC films and 94.2 % of MLO films had doses less than 3.0 mGy as recommended by the American College of Radiology recommendations.
    [Show full text]
  • Diagnostic Imaging; Nuclear Medicine; Radiation Risk Vs. Benefit
    Diagnostic Imaging, Nuclear Medicine, Radiation Risks vs. Benefit & Radiation Protection (Chapter 15, 16, & 17) 1 Outline Background perspective Diagnostic radiology Interventional radiology Nuclear medicine Fetal & childhood dose 2 1 Internal Radiation People are exposed to radiation from radioactive material inside their bodies. Besides radon, the most important internal radioactive element is naturally occurring K-40, but uranium and thorium are also present as well as H-3 and C-14. The amount of radiation from potassium-40 does not vary much from one person to another. However, exposure from radon varies significantly from place to place depending on the amount of uranium in the soil. On average, in the United States radon contributes 55% of all radiation exposure from natural and man- made sources. Another 11% comes from the other radioactive materials inside the body. 2 Average Annual Effective Dose in US population (1982) mSv Natural Background Radon 2.0 other 1.0 Occupational 0.009 Medical diagnostic X-rays 0.39 nuclear medicine 0.14 __________________________________ Total (rounded) 3.6 mSv (360 mrem)/year From: Mettler et al., Ionizing Radiation From NCRP 1987 6 3 FIGURE 16.3 Color plot of the annual cosmic radiation doses (in microsievert) in North America. The variation with altitude is very clear, with the highest doses in the Rocky Mountains. Looking at Medical Exposures Patients Professionals Classes of Exposure in Medicine Diagnostic Interventional Radiology Nuclear Medicine Irradiation of Children and Pregnant Women 8 4 Diagnostic Radiology Surveys of dose from diagnostic exposures conducted with: NCRP 100 (1989) which contains a compilation of limited surveys, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) 2000 Various other surveys and sources of dose info Diagnostic dose is certainly a potential for stochastic effects, deterministic effects very unlikely.
    [Show full text]
  • Validation of Mean Glandular Dose Values Provided by a Digital Breast Tomosynthesis System in Brazil
    ISSSD 2014 April 13 to 16th, 2014. Cusco, Peru VALIDATION OF MEAN GLANDULAR DOSE VALUES PROVIDED BY A DIGITAL BREAST TOMOSYNTHESIS SYSTEM IN BRAZIL Bruno Beraldo Oliveira1, Lucas Paixão1, Sabrina Donato da Silva1 Maria Helena Araújo Teixeira2, Maria do Socorro Nogueira1/3 1 Post-graduation in Sciences and Technology of Radiations Minerals and Materials - CDTN/CNEN Presidente Antônio Carlos, 6627 31270-901, Belo Horizonte, Brazil [email protected] 2 Dr Maria Helena Araújo Teixeira Clinic Guajajaras, 40 30180-100, Belo Horizonte, Brazil [email protected] 3 Development Center of Nuclear Technology - CDTN/CNEN Presidente Antônio Carlos, 6627 31270-901, Belo Horizonte, Brazil [email protected] 213 ISSSD 2014 April 13 to 16th, 2014. Cusco, Peru Abstract Digital breast tomosynthesis (DBT) is an emerging imaging modality that provides quasi-three-dimensional structural information of the breast and has strong promise to improve the differentiation of normal tissue and suspicious masses reducing the tissue overlaps. DBT images are reconstructed from a sequence of low-dose X-ray projections of the breast acquired at a small number of angles over a limited angular range. The Hologic Selenia Dimensions system is equipped with an amorphous Selenium (a-Se) detector layer of 250 μm thickness and a 70 μm pixel pitch. Studies are needed to determine the radiation dose of patients that are undergoing this emerging procedure to compare with the results obtained in DBT images. The mean glandular dose (DG) is the dosimetric quantity used in quality control of the mammographic systems. The aim of this work is to validate DG values for different breast thicknesses provided by a Hologic Selenia Dimensions system using a DBT mode in comparison with the same results obtained by a calibrated 90X5-6M-model Radcal ionization chamber.
    [Show full text]
  • Analysis of Patient Breast Dose from a Mammographic Biopsy Unit
    Australasian Physical & Engineering Sciences in Medicine (2019) 42:193–199 https://doi.org/10.1007/s13246-019-00729-6 SCIENTIFIC PAPER Analysis of patient breast dose from a mammographic biopsy unit Donald McLean1 · Lewis Ryan1 · Lisa Robertson2 Received: 12 August 2018 / Accepted: 21 January 2019 / Published online: 1 February 2019 © Australasian College of Physical Scientists and Engineers in Medicine 2019 Abstract Further assessment of suspicious lesions found during asymptomatic breast cancer screening is critical and involves mammo- graphic follow up with biopsy. The X-ray procedure is complex and variable in nature and until now there is little information on the radiation dose to the breast or associated risks. A survey of radiation doses from a Siemens MammoTest prone biopsy with the support of a Sectra L30 AIR mammographic unit for workup and post clip images has been completed. Procedure details and outcomes, including radiographic and patient related variables have been collected and analysed using standard dosimetric formulation. The partial irradiation of the breast in biopsy and magnification views was considered. The aver- age mean glandular breast dose was 5.13 mGy, comprising of 3.52 mGy from the biopsy procedure and 1.61 mGy from the workup and post clip images, with an average of 8.4 biopsy images and 5.8 workup and post clip images. The risk from these dose levels are dependent on the age of the woman, however are not considered high for a symptomatic X-ray procedure. Keywords Mammographic dose · Biopsy · Mean glandular dose Introduction a stereo pair of images are taken to plan the biopsy proce- dure and to locate the region of interest.
    [Show full text]
  • Exposure Dose from Natural and Artificial Radiation
    Radiation around Us Exposure Dose from Natural and Artificial Radiation From outer Natural radiation space Artificial (in Japan) 0.3mSv radiation From radon in the air 0.48mSv From foods 0.99mSv From the ground Chest CT scan 2.4〜 0.33mSv (single scan) 12.9mSv Annual dose from natural radiation (Japanese average): 2.1 mSv Annual dose from natural radiation (global average): 2.4 mSv Tokyo to New York 0.11〜 Chest X‐ray scan (single scan) 0.06mSv Air travel (round trip) 0.16mSv mSv: millisieverts Sources: Prepared based on the 2008 UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) Report; and "Environmental Radiation in Daily Life (2011)," new edition, Nuclear Safety Research Association; ICRP (International Commission on Radiological Protection) 103, etc. Radiation around Us Comparison of Exposure Doses per Hour Comparison of ambient dose rates μSv/h 100 20.8〜41.6 In the International Space Station 10 7.40 Aircraft (Tokyo ⇔ New York) 1 1.05 Kerala (India) 0.1 0.10 Top of Mt. Fuji 0.11 Misasa Hot Spring 0.057〜0.110 Gifu Prefecture 0.01 0.028〜0.079 Tokyo Sources: Prepared based on "Radiation Exposure Management," the website of the JAXA Space Station Kibo PR Center, 2013; "Japanese Internet System for Calculation of Aviation Route Doses (JISCARD)," the website of the National Institute of Radiological Sciences; "Research on Ambient Gamma‐ray Doses in the Environment," the website of the National Institute of Radiological Sciences; Furuno, p.25‐33 of the 51st report of the Balneological Laboratory, Okayama University,
    [Show full text]
  • Dental X-Ray and Mammography Safety Washington State Department of Health Updated: 05/20/2013 and National Standards
    Definition: Radiation safety inspections of dental X-ray offices determine the type of imaging system, provide estimates of patient Dental X-ray radiation dose, measure the quality of image processing and evaluate X-ray machine performance. An indicator of unnecessarily high radiation exposure is determined by comparing average estimated and patient radiation exposure (entrance skin exposure) from dental intra- oral X-ray procedures to national averages. Mammography facility inspections provide estimates of radiation dose to the breast (glandular dose) and data on image quality score (the ability of the image to show Mammography fine detail). Indicators of mammography quality are mean glandular dose and the percent of mammography facilities issued violations for not meeting Food and Drug Administration radiation standards. Image Safety quality score is used as an indicator of the ability of the mammography X-ray system to allow accurate diagnoses to be made. Summary which is closer to the national average of 30%. The Washington State Department of Health During 1998–2006, the increase in image quality inspects X-ray facilities and equipment to in Washington paralleled a rise in the mean improve safety for patients, the general radiation dose. During 2007–2011, the mean public and healthcare workers. The goal is to dose went down due to the increasing use of achieve the best diagnostic quality image digital imaging systems. The average with the least amount of radiation exposure. mammographic image quality score continued to Dental intra-oral X-rays and mammography rise during the same period. are two common healthcare procedures using X-rays. Introduction Radiation exposure from dental intra-oral X- More than 6,150 X-ray facilities operate in rays depends primarily on the type of Washington.
    [Show full text]
  • Glandular Dose of Full Field Digital Mammography in Korean Women Based on Specific Factors
    BREAST IMAGING Iran J Radiol. 2018 October; 15(4):e62958. doi: 10.5812/iranjradiol.62958. Published online 2018 August 1. Research Article Glandular Dose of Full Field Digital Mammography in Korean Women Based on Specific Factors Seung Hee Han 1, Bong Joo Kang 1, *, Ji Eun Baek 1, Hyun Sil Lee 1 and Sung Hun Kim 1 1Department of Radiology, Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea *Corresponding author: Bong Joo Kang, Department of Radiology, Mary’s Hospital, College of Medicine, the Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea. Tel: +82-222586253, Fax: +82-25996771, Email: [email protected] Received 2017 October 17; Revised 2018 June 27; Accepted 2018 July 10. Abstract Background: Mammographic screening for breast cancer has been proved to reduce mortality. However, because of the potential harm of ionizing radiation, radiation dose management has been issued. Objectives: We investigated the influence of several factors on the radiation dose change in full-field digital mammography (FFDM) using a radiation dose management system in Korean women. Patients and Methods: Using an existing radiation dose management system (RadimetricsTM), radiation dose tracking, monitor- ing, and statistical analyses were conducted. Information including parameters, utilization data, and a dose report were sent to the conventional picture archiving, communication system, and radiation dose management system. We reviewed the data and com- pared the parameters (exposure, glandular dose, compression thickness, and compression force) between two different devices, among classifications (plain, spot and magnification view, and implant), and between control modes (auto and manual).
    [Show full text]
  • NCRP Composite Glossary
    NCRP Composite Glossary [updated July 2011] A absolute risk: Expression of excess risk due to exposure as the arithmetic difference between the risk among those exposed and that obtained in the absence of exposure. The resultant risk coefficient is normalized to a population base of 10,000 people and is expressed as the number of excess cases per 10,000 persons per gray per year at risk [i.e., (104 PY Gy)–1]. Absolute risk coefficients project can be modeled as a function of time since exposure (or attained age). [159] absorbed dose (D): The energy imparted to matter by ionizing radiation per unit mass of irradiated material at the point of interest. The SI unit is J kg–1 with the special name gray (Gy). The special unit previously used was rad. 1 Gy = 100 rad (see mean absorbed dose). [163] absorbed dose ( D): The energy imparted to matter by ionizing radiation per unit of irradiated material at the point of interest. Absorbed dose is the quotient of d∈ by dm, where d∈ is the mean energy imparted by ionizing radiation to matter in a volume element and dm is the mass of matter in that volume element: D = d∈/dm. The SI unit of absorbed dose is joule per kilogram (J kg –1), and its special name is gray (Gy). The special unit previously used was rad. 1 Gy = 100 rad (see mean absorbed dose). [158] absorbed dose (D): Quotient of d∈ by dm, where d∈ is the mean energy imparted by ionizing radiation to matter in a volume element and dm is the mass of matter in that volume element: D = d∈/dm.
    [Show full text]
  • Mean Glandular Dose (MGD) and the X-Ray Beam Half Value Layer (HVL) for a Typical Mamnograph
    4S^ DEPARTMENT OF COMMUNITY SERVICES AND HEALTH Australian Radiation Laboratory Radiation Doses from Mammography in Australia by Julian E. M. Thomson, Beverley F. Young, Joseph G. Young and David R. C. Tingey ARL/TR101 • MAY 1991 AUSTRALIAN RADIATION LABORATORY RADIATION DOSES FROM MAMMOGRAPHY IN AUSTRALIA by Julian E M Thomson, Beverley F Young, Joseph G Young and David R C Tingey ARL/TR 101 LOWER PLENTY ROAD ISSN 0157-1400 YALLAMBIE VIC. 3085 MAY 1991 TEL: (03) 433 2211 ABSIKAGI During 1989-90 the Australian Radiation Laboratory conducted a postal survey of at least 90% of the mammographic facilities in Australia. The primary aim of the survey was to measure the mean glandular dose (MGD) and the X-ray beam half value layer (HVL) for a typical mamnograph. The MGD and HVL were measured with a specially designed tissue equivalent monitor which was inexpensive and robust enough to withstand the rigour of the postal service. In all, 258 mammographic centres were surveyed. It was found that for centres using film-screen imaging, the average mean glandular dose was 1.83 mGy for centres using grids and 0.84 mGy for centres not using grids. In addition to the MGD and HVL, comprehensive statistical information was collected and data is presented on the types of equipment and techniques used, the number and age of patients and demographic distribution of centres. The use of dedicated equipment using film-screen techniques was almost universal (98%). Most mammography was performed using X-ray tubes with molybdenum anodes (97%) and the use of grids was popular (80%).
    [Show full text]
  • Radiation Protection in Mammography
    Health Santé Canada Canada Radiation Protection in Mammography Safety Code 33 Radiation Protection in Mammography Recommended Safety Procedures for the Use of Mammographic X-Ray Equipment Safety Code 33 Environmental Health Directorate Health Protection Branch Published by authority of the Minister of National Health and Welfare Également disponible en français sous le titre : Radioprotection dans l‘exercice de la mammographie Code de sécurité 33 94-EHD-188 Our mission is to help the people of Canada Table of Contents maintain and improve their health. Health Canada Explanatory notes . 5 Acknowledgements . 7 1. Introduction . 9 © Minister of Supply and Services Canada 1995 Available in Canada through your local bookseller 2. Principal aims and scope of the Safety Code . 12 or by mail from: Canada Communications Group–Publishing 3. Responsibility and personnel. 13 Ottawa, Canada K1A 0S9 3.1 Owner . 13 3.2 Radiologist . 14 Cat. H46-2/94-188E 3.3 Medical Physicist. 15 ISBN 0-660-15611-3 3.4 Quality Control Technologist . 15 3.5 X-ray Technologist . 16 4. Facility, equipment and installation requirements . 17 4.1 Facility design criteria . 17 4.1.1 General recommendations . 18 4.1.2 Shielding recommendations . 19 4.2 Equipment purchase . 20 4.2.1 Performance specification writing . 20 Canadian Cataloguing in Publication Data 4.2.2 Acceptance testing . 21 4.3 Radiation protection inspection . 22 Main entry under title: 5. Equipment specifications . 23 Radiation Protection in Mammography 5.1 Newly purchased medical X-ray equipment . 23 (Safety Code 33) 5.2 Existing medical X-ray equipment . 23 5.3 General requirements for Publ.
    [Show full text]
  • Assessment of Mean Glandular Dose and Entrance Surface Dose in Mammography
    Journal of Research in Medical and Dental Science Medic in al h an 2021, Volume 9, Issue 2, Page No: 8-11 c d r a D e Copyright CC BY-NC 4.0 s e n e t R a Available Online at: www.jrmds.in f l o S c l i eISSN No. 2347-2367: pISSN No. 2347-2545 a e n n r c u e o J JRMDS Assessment of Mean Glandular Dose and Entrance Surface Dose in Mammography Yousif M Abdallah1*, Nouf H Abuhadi2, Hanan A. Aldousari3 1Department of Radiological Science and Medical Imaging, College of Applied Medical Science, Majmaah University, 11952, Majmaah, Saudi Arabia 2Department Diagnostic Radiology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia 3Department of Medical Physics Jaber Alahmad Center for Molecular Imaging, Kuwait ABSTRACT X-ray diagnostic tests are important for public health. Such tests may involve significant patient irradiation and may be the population’s largest radiation source. X-ray mammograms show different female lesions using ionizing radiation. The result is exposure to a small amount of increased radiation. This study was performed during mammograms to determine the average absorbed dose of x-rays and factors influencing the breast 's median glandular dose (MGD). The study was conducted in Khartoum, Sudan, mammography patients. Sample size was 300 patients with different disease types. This study was in two Khartoum Hospitals. This study evaluated Robson’s Mean Glandular Dose (MGD) and additional mammographic dance tests. Patient age, breast thickness, tube filter and exposure factors (mAs and kVp) were study parameters.
    [Show full text]