Campanula Patula

Total Page:16

File Type:pdf, Size:1020Kb

Campanula Patula Campanula patula Status Differentiation from similar species UK Biodiversity Action Plan Priority species. Most other Campanula species in Britain have larger, Nationally Scarce. bell-shaped flowers. The species most likely to be IUCN threat category: Endangered (2005). confused with C. patula are: Taxonomy • C. persicifolia which has flowers mostly more Magnoliopsida: Campanulaceae than 3 cm long. Scientific name: Campanula patula L. • C. rapunculus which has basal and lower stem Common names: leaves suddenly narrowing at their base into the Spreading Bellflower, stalk rather than narrowing gradually, and a Clychlys Lledaenol. narrow, more columnar inflorescence. There are 16 species of Campanula in Britain of which • The very common C. rotundifolia which has only five are native. Members of the genus have blue generally smaller, nodding flowers and to purple (rarely albino) bell-shaped flowers which heart-shaped basal leaves (the stem leaves are have a lobed calyx behind and an inferior ovary. often narrow and oblong and quite different in shape). Biology & Distribution It is a biennial herb of sunny, well-drained sites on • The two garden plants, C. poscharskyana and C. infertile sandy or gravelly soils and is found in open portenshlagiana, which have heart-shaped leaves. woodland, wood borders, hedgebanks and on banks and rock outcrops. Disturbance is needed for the Key characters germination of the seeds, which are long-lived, often Usually biennial to 60 cm tall, without non-flowering resulting in reappearance of the species after a long rosettes at base of flowering stem. Basal leaves absence. obovate to oblong, gradually narrowing into an indistinct petiole. Stem-leaves linear to obovate. In Britain C. patula mainly occurs in the southern Inflorescence widely spreading. Calyx-lobes linear Welsh borders, with scattered localities in SE England. to lanceolate, entire or with 1-2 small teeth at base. It is also introduced elsewhere (Preston et al. 2002). It Corollas mostly 15-25 mm, cut to about half way. has a continental distribution in W. Europe. Stigmas less than half as long as style. Capsule with pores in apical half. The decline of C. patula has been apparent since the 1950s. It has disappeared from many sites due to References the cessation of coppicing and other disturbance in Preston, C.D., Pearman, D. A. & Dines, T. D. eds. woodland, and the increased use of herbicides on (2002). New Atlas of the British & Irish flora. roadsides and railway banks. Oxford University Press, Oxford. Stewart, A., Pearman, D. A. & Preston, C.D. eds. Identification & Field survey (1994). Scarce Plants in Britain. JNCC, Campanula patula is relatively easily distinguished Peterborough. by its narrow leaves, widely spreading inflorescence with stalked flowers 15-25 mm long with spreading lobes which are cut to about half way down the flower, and the fruiting capsules which have pores near the apex. The calyx has 5 narrow lobes, which are entire or with 1-2 small basal teeth, and they do not have small reflexed appendages between them. The lower stem leaves may be difficult to see late in the season as they wither away. Calyx-lobes linear to lanceolate Corolla 15-25 mm long Corolla cut to about half way Inflorescence spreading Non-flowering Basal leaves rosettes absent gradually narrowing at base Figure 1. Illustration of key features (from J. E. Smith & J. Sowerby (1852). English Botany. London).
Recommended publications
  • University of Copenhagen, 1353 Copenhagen, Denmark
    Molecular phylogeny of Edraianthus (Grassy Bells; Campanulaceae) based on non- coding plastid DNA sequences Stefanovic, Sasa; Lakusic, Dmitar; Kuzmina, Maria; Mededovic, Safer; Tan, Kit; Stevanovic, Vladimir Published in: Taxon Publication date: 2008 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Stefanovic, S., Lakusic, D., Kuzmina, M., Mededovic, S., Tan, K., & Stevanovic, V. (2008). Molecular phylogeny of Edraianthus (Grassy Bells; Campanulaceae) based on non-coding plastid DNA sequences. Taxon, 57(2), 452-475. Download date: 02. okt.. 2021 Stefanović & al. • Phylogeny of Edraianthus TAXON 57 (2) • May 2008: 452–475 Molecular phylogeny of Edraianthus (Grassy Bells; Campanulaceae) based on non-coding plastid DNA sequences Saša Stefanović1*, Dmitar Lakušić2, Maria Kuzmina1, Safer Međedović3, Kit Tan4 & Vladimir Stevanović2 1 Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada. *[email protected] (author for correspondence) 2 Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia 3 University of Sarajevo, Faculty of Forestry, 71000 Sarajevo, Bosnia and Herzegovina 4 Institute of Biology, University of Copenhagen, 1353 Copenhagen, Denmark The Balkan Peninsula is known as an ice-age refugium and an area with high rates of speciation and diversifi- cation. Only a few genera have their centers of distribution in the Balkans and the endemic genus Edraianthus is one of its most prominent groups. As such, Edraianthus is an excellent model not only for studying specia- tion processes and genetic diversity but also for testing hypotheses regarding biogeography, identification and characterization of refugia, as well as post-glacial colonization and migration dynamics in SE Europe.
    [Show full text]
  • Flora of Vascular Plants of the Seili Island and Its Surroundings (SW Finland)
    Biodiv. Res. Conserv. 53: 33-65, 2019 BRC www.brc.amu.edu.pl DOI 10.2478/biorc-2019-0003 Submitted 20.03.2018, Accepted 10.01.2019 Flora of vascular plants of the Seili island and its surroundings (SW Finland) Andrzej Brzeg1, Wojciech Szwed2 & Maria Wojterska1* 1Department of Plant Ecology and Environmental Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland 2Department of Forest Botany, Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71D, 60-625 Poznań, Poland * corresponding author (e-mail: [email protected]; ORCID: https://orcid.org/0000-0002-7774-1419) Abstract. The paper shows the results of floristic investigations of 12 islands and several skerries of the inner part of SW Finnish archipelago, situated within a square of 11.56 km2. The research comprised all vascular plants – growing spontaneously and cultivated, and the results were compared to the present flora of a square 10 × 10 km from the Atlas of Vascular Plants of Finland, in which the studied area is nested. The total flora counted 611 species, among them, 535 growing spontaneously or escapees from cultivation, and 76 exclusively in cultivation. The results showed that the flora of Seili and adjacent islands was almost as rich in species as that recorded in the square 10 × 10 km. This study contributed 74 new species to this square. The hitherto published analyses from this area did not focus on origin (geographic-historical groups), socioecological groups, life forms and on the degree of threat of recorded species. Spontaneous flora of the studied area constituted about 44% of the whole flora of Regio aboënsis.
    [Show full text]
  • Phylogenetic Diversity of Plant Metacommunity of the Dnieper River ARENA Terrace Within the ‘Dnieper-Orilskiy’ Nature Reserve
    Ekológia (Bratislava) Vol. 36, No. 4, p. 352–365, 2017 DOI:10.1515/eko-2017-0028 Phylogenetic diversity of plant metacommunity of THE Dnieper RIVER ARENA terrace WITHIN THE ‘Dnieper-Orilskiy’ Nature Reserve OLEXANDER ZHUKOV1, OLGA KUNAH1, YULIA DUBININA2, DMITRY GANGA3, GALINA ZADOROZHNAYA4 1Department of Zoology and Ecology, Oles Honchar Dnipro National University, pr. Gagarina, 72, 49010 Dnipro, Ukraine; e-mail:[email protected] 2Department of Ecology and Information Technologies, Melitopol Institute of Ecology and Social Technologies of the Open International University of Human Development ‘Ukraine’, Interculturnaya St., 380, 72316 Melitopol, Ukraine; e-mail: [email protected] 4’Dnieper-Orilskiy’ Nature Reserve, 52030 Obukhovka, Dniprovsk district, Dnipropetrovsk region, Ukraine 5Department of Human and Animal Physiology, Oles Honchar Dnipro National University, pr. Gagarina, 72, 49010 Dnipro, Ukraine; e-mail:[email protected] Abstract Zhukov O., Kunah O., Dubinina Y., Ganga D., Zadorozhnaya G.: Phylogenetic diversity of plant metacommunity of the Dnieper river arena terrace within the ‘Dnieper-Orilskiy’ Nature Reserve. Ekológia (Bratislava), Vol. 36, No. 4, p. 352–365 , 2017. This article presents the features of the phylogenetic organization of the plant communities of the Dnieper River terrace within the ‘Dnieper-Orilskiy’ Nature Reserve and the patterns of its spatial variation involving remote sensing data of the Earth’s surface. The research ma- terials were collected in the period 2012−2016 from within the nature reserve. The research polygon is within the first terrace (arena) of the Dnieper valley. Sandy steppe, meadow, for- est and marsh communities within the Protoch river floodplain and the Orlova ravine, as well as artificial pine plantations were the habitats present within the research polygon.
    [Show full text]
  • Landscape Management for Grassland Multifunctionality
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.17.208199; this version posted August 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Landscape management for grassland multifunctionality Neyret M.1, Fischer M.2, Allan E.2, Hölzel N.3, Klaus V. H.4, Kleinebecker T.5, Krauss J.6, Le Provost G.1, Peter. S.1, Schenk N.2, Simons N.K.7, van der Plas F.8, Binkenstein J.9, Börschig C.10, Jung K.11, Prati D.2, Schäfer D.12, Schäfer M.13, Schöning I.14, Schrumpf M.14, Tschapka M.15, Westphal C.10 & Manning P.1 1. Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany. 2. Institute of Plant Sciences, University of Bern, Switzerland. 3. Institute of Landscape Ecology, University of Münster, Germany. 4. Institute of Agricultural Sciences, ETH Zürich, Switzerland. 5. Institute of Landscape Ecology and Resource Management, University of Gießen, Germany. 6. Biocentre, University of Würzburg, Germany. 7. Ecological Networks, Technical University of Darmstadt, Darmstadt, German. 8. Plant Ecology and Nature Conservation. Wageningen University & Research, Netherlands. 9. Institute for Biology, University Freiburg, Germany. 10. Department of Crop Sciences, Georg-August University of Göttingen, Germany. 11. Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Germany. 12. Botanical garden, University of Bern, Switzerland. 13. Institute of Zoologie, University of Freiburg, Germany. 14. Max Planck Institute for Biogeochemistry, Jena, German.
    [Show full text]
  • The Vascular Plant Red Data List for Great Britain
    Species Status No. 7 The Vascular Plant Red Data List for Great Britain Christine M. Cheffings and Lynne Farrell (Eds) T.D. Dines, R.A. Jones, S.J. Leach, D.R. McKean, D.A. Pearman, C.D. Preston, F.J. Rumsey, I.Taylor Further information on the JNCC Species Status project can be obtained from the Joint Nature Conservation Committee website at http://www.jncc.gov.uk/ Copyright JNCC 2005 ISSN 1473-0154 (Online) Membership of the Working Group Botanists from different organisations throughout Britain and N. Ireland were contacted in January 2003 and asked whether they would like to participate in the Working Group to produce a new Red List. The core Working Group, from the first meeting held in February 2003, consisted of botanists in Britain who had a good working knowledge of the British and Irish flora and could commit their time and effort towards the two-year project. Other botanists who had expressed an interest but who had limited time available were consulted on an appropriate basis. Chris Cheffings (Secretariat to group, Joint Nature Conservation Committee) Trevor Dines (Plantlife International) Lynne Farrell (Chair of group, Scottish Natural Heritage) Andy Jones (Countryside Council for Wales) Simon Leach (English Nature) Douglas McKean (Royal Botanic Garden Edinburgh) David Pearman (Botanical Society of the British Isles) Chris Preston (Biological Records Centre within the Centre for Ecology and Hydrology) Fred Rumsey (Natural History Museum) Ian Taylor (English Nature) This publication should be cited as: Cheffings, C.M. & Farrell, L. (Eds), Dines, T.D., Jones, R.A., Leach, S.J., McKean, D.R., Pearman, D.A., Preston, C.D., Rumsey, F.J., Taylor, I.
    [Show full text]
  • Latin for Gardeners: Over 3,000 Plant Names Explained and Explored
    L ATIN for GARDENERS ACANTHUS bear’s breeches Lorraine Harrison is the author of several books, including Inspiring Sussex Gardeners, The Shaker Book of the Garden, How to Read Gardens, and A Potted History of Vegetables: A Kitchen Cornucopia. The University of Chicago Press, Chicago 60637 © 2012 Quid Publishing Conceived, designed and produced by Quid Publishing Level 4, Sheridan House 114 Western Road Hove BN3 1DD England Designed by Lindsey Johns All rights reserved. Published 2012. Printed in China 22 21 20 19 18 17 16 15 14 13 1 2 3 4 5 ISBN-13: 978-0-226-00919-3 (cloth) ISBN-13: 978-0-226-00922-3 (e-book) Library of Congress Cataloging-in-Publication Data Harrison, Lorraine. Latin for gardeners : over 3,000 plant names explained and explored / Lorraine Harrison. pages ; cm ISBN 978-0-226-00919-3 (cloth : alkaline paper) — ISBN (invalid) 978-0-226-00922-3 (e-book) 1. Latin language—Etymology—Names—Dictionaries. 2. Latin language—Technical Latin—Dictionaries. 3. Plants—Nomenclature—Dictionaries—Latin. 4. Plants—History. I. Title. PA2387.H37 2012 580.1’4—dc23 2012020837 ∞ This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). L ATIN for GARDENERS Over 3,000 Plant Names Explained and Explored LORRAINE HARRISON The University of Chicago Press Contents Preface 6 How to Use This Book 8 A Short History of Botanical Latin 9 Jasminum, Botanical Latin for Beginners 10 jasmine (p. 116) An Introduction to the A–Z Listings 13 THE A-Z LISTINGS OF LatIN PlaNT NAMES A from a- to azureus 14 B from babylonicus to byzantinus 37 C from cacaliifolius to cytisoides 45 D from dactyliferus to dyerianum 69 E from e- to eyriesii 79 F from fabaceus to futilis 85 G from gaditanus to gymnocarpus 94 H from haastii to hystrix 102 I from ibericus to ixocarpus 109 J from jacobaeus to juvenilis 115 K from kamtschaticus to kurdicus 117 L from labiatus to lysimachioides 118 Tropaeolum majus, M from macedonicus to myrtifolius 129 nasturtium (p.
    [Show full text]
  • European Red List of Vascular Plants Melanie Bilz, Shelagh P
    European Red List of Vascular Plants Melanie Bilz, Shelagh P. Kell, Nigel Maxted and Richard V. Lansdown European Red List of Vascular Plants Melanie Bilz, Shelagh P. Kell, Nigel Maxted and Richard V. Lansdown IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission This publication has been prepared by IUCN (International Union for Conservation of Nature). The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the European Commission or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of the European Commission or IUCN. Citation: Bilz, M., Kell, S.P., Maxted, N. and Lansdown, R.V. 2011. European Red List of Vascular Plants. Luxembourg: Publications Office of the European Union. Design and layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: Narcissus nevadensis is endemic to Spain where it has a very restricted distribution. The species is listed as Endangered and is threatened by modifications to watercourses and overgrazing. © Juan Enrique Gómez. All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should not be reproduced or used in other contexts without written permission from the copyright holder. Available from: Luxembourg: Publications Office of the European Union, http://bookshop.europa.eu IUCN Publications Services, www.iucn.org/publications A catalogue of IUCN publications is also available.
    [Show full text]
  • Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants
    Mycorrhiza (2006) 16: 299–363 DOI 10.1007/s00572-005-0033-6 REVIEW B. Wang . Y.-L. Qiu Phylogenetic distribution and evolution of mycorrhizas in land plants Received: 22 June 2005 / Accepted: 15 December 2005 / Published online: 6 May 2006 # Springer-Verlag 2006 Abstract A survey of 659 papers mostly published since plants (Pirozynski and Malloch 1975; Malloch et al. 1980; 1987 was conducted to compile a checklist of mycorrhizal Harley and Harley 1987; Trappe 1987; Selosse and Le Tacon occurrence among 3,617 species (263 families) of land 1998;Readetal.2000; Brundrett 2002). Since Nägeli first plants. A plant phylogeny was then used to map the my- described them in 1842 (see Koide and Mosse 2004), only a corrhizal information to examine evolutionary patterns. Sev- few major surveys have been conducted on their phyloge- eral findings from this survey enhance our understanding of netic distribution in various groups of land plants either by the roles of mycorrhizas in the origin and subsequent diver- retrieving information from literature or through direct ob- sification of land plants. First, 80 and 92% of surveyed land servation (Trappe 1987; Harley and Harley 1987;Newman plant species and families are mycorrhizal. Second, arbus- and Reddell 1987). Trappe (1987) gathered information on cular mycorrhiza (AM) is the predominant and ancestral type the presence and absence of mycorrhizas in 6,507 species of of mycorrhiza in land plants. Its occurrence in a vast majority angiosperms investigated in previous studies and mapped the of land plants and early-diverging lineages of liverworts phylogenetic distribution of mycorrhizas using the classifi- suggests that the origin of AM probably coincided with the cation system by Cronquist (1981).
    [Show full text]
  • Complementary Assembly Processes Across Biodiversity Gradients
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Complementary assembly processes across biodiversity gradients Fergus, Alexander Jon Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-104357 Dissertation Originally published at: Fergus, Alexander Jon. Complementary assembly processes across biodiversity gradients. 2014, Univer- sity of Zurich, Faculty of Science. COMPLEMENTARY ASSEMBLY PROCESSES ACROSS BIODIVERSITY GRADIENTS Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Alexander Jon Fergus aus Neuseeland Promotionskomitee Prof. Dr. Bernhard Schmid (Leitung der Dissertation) Prof. Dr. Andrew Hector Prof. Dr Andreas Prinzing PD Dr. Christiane Roscher Dr. Lindsay Turnbull Zürich 2014 COMPLEMENTARY ASSEMBLY PROCESSES ACROSS BIODIVERSITY GRADIENTS Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Alexander Jon Fergus aus Neuseeland Promotionskomitee: Prof. Dr. Bernhard Schmid (Leitung der Dissertation) Prof. Dr. Andrew Hector Prof. Dr Andreas Prinzing PD Dr. Christiane Roscher Dr. Lindsay Turnbull Zürich 2014 For Ma, who would have wanted to have seen this thing finished. Ma and Pa visiting the Jena Experiment in 2008. Table of Contents Summary 8 Zusammenfassung 14 General introduction 20 Chapter 1 Biodiversity experiments: what have we learnt about 38 biodiversity – ecosystem functioning relationships? (Fergus, A.J.F. & Schmid, B. 2010. In Atlas of Biodiversity Risk (eds. J. Settele, R. Grabaum, V. Grobelnick, V. Hammen, S. Klotz, L. Penev, I. Kühn). Pensoft, Sofia, Moscow. Chapter 2: pp. 28-31) Chapter 2 A comparison of the strength of biodiversity effects across 52 multiple functions.
    [Show full text]
  • Cytotaxonomic Studies in the Genus Campanula
    Cytotaxonomic studies in the genus Campanula Th.W.J. Gadella (.Botanical Museum and Herbarium, Utrecht) {received January 25th, 1964) CONTENTS Abstract 2 Introduction 3 Chapter I. The classification of the genus campanula 4 A. The place of the the genus Campanula in family Campanulaceae ... 4 B. The system of A. de Candolle (1830) 6 C. The system of Boissier (1875) 7 D. The system of Fedorov (1957) 7 E. Other taxonomical work on the 9 genus Campanula Chapter II. The chromosome numbers of the 10 investigated species . A. Introduction 10 B. Material and methods 10 C. Results 11 Chapter III. The relation between morphological and cytological CHARACTERS 42 A. Introduction 42 B. The cytological observations of Sugiura 42 The relation C. between the morphological and cytological characters of the species investigated by the present author 43 D. A discussion on the chromosome numbers of some species not investigated by the present author 51 E. A correlation between the number of chromosomes and the size of the pollengrains 55 Chapter IV. Crossing experiments 59 A. Introduction 59 B. Self-pollination experiments 60 C. Interspecific crosses 63 1. Introduction 63 2. Material and methods 63 3. Results 64 D. General conclusions 73 Chapter Some V. generalremarks on the classification and evolution OF CAMPANULA 74 A. Introduction 74 B. taxonomic Some suggestions 75 C. Theories on the evolution of the chromosome numbers .... 77 2 th. w. j. gadella Chapter VI. Some polymorphic species 79 A. Introduction 79 B. Experimental cultivations 80 1. Campanula cochleariifolia Lam 80 2. Campanula garganica Ten 81 3. Campanula glomerata L 81 4.
    [Show full text]
  • European Red List of Vascular Plants Melanie Bilz, Shelagh P
    European Red List of Vascular Plants Melanie Bilz, Shelagh P. Kell, Nigel Maxted and Richard V. Lansdown European Red List of Vascular Plants Melanie Bilz, Shelagh P. Kell, Nigel Maxted and Richard V. Lansdown IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission This publication has been prepared by IUCN (International Union for Conservation of Nature). The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the European Commission or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of the European Commission or IUCN. Citation: Bilz, M., Kell, S.P., Maxted, N. and Lansdown, R.V. 2011. European Red List of Vascular Plants. Luxembourg: Publications Office of the European Union. Design and layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: Narcissus nevadensis is endemic to Spain where it has a very restricted distribution. The species is listed as Endangered and is threatened by modifications to watercourses and overgrazing. © Juan Enrique Gómez. All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should not be reproduced or used in other contexts without written permission from the copyright holder. Available from: Luxembourg: Publications Office of the European Union, http://bookshop.europa.eu IUCN Publications Services, www.iucn.org/publications A catalogue of IUCN publications is also available.
    [Show full text]
  • An Ecological Database of the British Flora
    An Ecological Database of the British Flora submitted by Helen Jacqueline Peat for examination for the degree Doctor of Philosophy Department of Biology University of York October 1992 Abstract The design and compilation of a database containing ecological information on the British Flora is described. All native and naturalised species of the Gymnospermae and Angiospermae are included. Data on c.130 characteristics concerning habitat, distribution, morphology, physiology, life history and associated organisms, were collected by both literature searching and correspondence with plant ecologists. The evolutionary history of 25 of the characteristics was investigated by looking at the amount of variance at each taxonomic level. The variation in pollination mechanisms was found at high taxonomic levels suggesting these evolved, and became fixed, early on in the evolution of flowering plants. Chromosome number, annualness, dichogamy and self-fertilization showed most variance at low taxonomic levels, suggesting these characteristics have evolved more recently and may still be subject to change. Most of the characteristics, however, eg. presence of compound leaves, height and propagule length showed variance spread over several taxonomic levels suggesting evolution has occurred at different times in different lineages. The necessity of accounting for phylogeny when conducting comparative analyses is discussed, and two methods allowing this are outlined. Using these, the questions: 'Why does stomatal distribution differ between species?' and 'Why do different species have different degrees of mycorrhizal infection?' were investigated. Amphistomaty was found to be associated with species of unshaded habitats, those with small leaves and those with hairy leaves, and hypostomaty with woody species, larger leaves and glabrous leaves.
    [Show full text]