United States Patent (19) 11, 3,989,755 Mccoy Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11, 3,989,755 Mccoy Et Al United States Patent (19) 11, 3,989,755 McCoy et al. (45) Nov. 2, 1976 54 PRODUCTION OF OXIMES BY THE (56) References Cited REACTION OF CARBON MONOXDE WITH UNITED STATES PATENTS NTROCOMPOUNDS 2,945,065 7/1960 Donaruma...................... 260/566 A 75) Inventors: John J. McCoy, Media; John G. 3,480,672 11/1969 Kober et al..................... 260/566 A Zajacek, Strafford, both of Pa.; Karl 3,734,964 5/1973 Knifton........................... 260/566. A E. Fuger, Therwil, Switzerland (73) Assignee: Atlantic Richfield Company, Los Primary Examiner-Gerald A. Schwartz Angeles, Calif. Attorney, Agent, or Firm-Delbert E. McCaslin 22 Filed: Feb. 20, 1975 (21) Appl. No.: 551,487 57) ABSTRACT Related U.S. Application Data Production of oximes (and ketones) by contacting at 63) Continuation-in-part of Ser. No. 372,457, June 21, elevated temperatures and pressures, a primary or sec 1973, abandoned. ondary saturated aliphatic nitrocompound with carbon monoxide in the presence of a catalyst comprising me 52 U.S. C. ........................ 260/566 A; 260/586 C; tallic selenium or inorganic selenium compounds and 260/586 R; 260/593 R a base. (51 int. Cl”........................................ C07C 131/04 58) Field of Search........ 260/566 A, 586 A, 586 R, 20 Claims, No Drawings 260/593 R 3,989,755 2 cycloaliphatic nitrocompound is contacted with carbon PRODUCTION OF OXIMES BY THE REACTION OF monoxide at temperatures in the range of from 50° to 200 C. under pressures in the range of from 10 atmo CARBON MONOXIDE WITH NITROCOMPOUNDS spheres to 200 atmospheres in the presence of a sele nium catalyst and a base. RELATED APPLICATION It is an object of the present invention, therefore, to This application is a continuation-in-part of applica provide an improved process for the production of tion Ser. No. 372,457 filed June 21, 1973, entitled oximes. PRODUCTION OF OXIMES BY THE REACTION It is another object of this invention to provide a OF CARBON MONOXIDE WITH NITROCOM 0 process for the production of oximes and ketones. POUNDS now abandoned. It is another object of this invention to provide an efficient process for the production of oximes that FIELD OF INVENTION minimizes the formation of undesirable by-products. The present invention relates to a process for the It is another object of this invention to provide an manufacture of oximes (and ketones) by the reaction 15 efficient, high yield process for the production of an of carbon monoxide with a primary or secondary satu efficient, high yield process for the production of ox rated aliphatic nitrocompound, or a saturated cycloali imes from the reaction of primary or secondary satu phatic nitrocompound under elevated temperature and rated aliphatic nitrocompounds, or a saturated cycloal pressure conditions in the presence of a catalyst and a iphatic nitrocompound by using metallic selenium, or base. inorganic compounds of selenium or combinations Oximes are an important class of organic compounds thereof as a catalyst in conjunction with a base. and are of significant importance in industrial chemis It is another object of this invention to provide a try. Cyclohexanone oxime, for example is used as an process for the production of oximes which uses readily intermediate in the manufacture of caprolactam, an available, low cost starting materials. important fiber precursor, by the Beckmann rearrange 25. These and other objects of the invention will become ment. Other oximes, such as acetoxime, can be used as apparent from the following description of the process a source of the oxime moiety, instead of using hydrox and from the claims. ylamine itself. This can overcome the many disadvan tages in handling hydroxylamine solutions, and in the DESCRIPTION OF THE PROCESS subsequent workup of its reaction mixtures. Other 30 In the instant process the nitrocompound is, in gen open chain oximes such as methyl ethyl ketoxime, eral, largely converted to the oxime. In some cases, butyraldoxime, etc. are used commercially as anti-skin however, depending on the starting nitrocompound ning agents in paints. and the particular reaction conditions employed, the Although methods are available for the reduction of corresponding ketone can be formed. For example, aliphatic nitrocompounds to oximes, they have a num 35 when nitrocyclohexane is reacted under the conditions ber of disadvantages not found in the instant process. of this process to prepare cyclohexanone oxime, cyclo For example, in U.S. Pat. No. 3,480,672 there is de hexanone can be formed as a by-product. This ketone scribed a process for the reduction of aliphatic nitro can be easily converted to the oxime by reaction with compounds using carbonyl sulfide as a reducing agent. hydroxylamine or, if desired, simply separated from the This process requires the use of a large molar excess of 40 cyclohexanone oxime by any number of suitable sepa toxic carbonyl sulfide as compared to the starting nitro ration techniques. compound, gives a relatively low conversion for the Suitable nitrocompounds for the process of this in quantity of carbonylsulfide used and, apparently, is not vention are primary or secondary saturated aliphatic a catalytic reaction. In U.S. Pat. No. 2,945,065 there is mononitrocompounds and saturated cycloaliphatic described a method by which nitrocyclohexane is re 45 mono-nitrocompounds. The term "saturated' herein duced to the oxime by reaction with carbon monoxide refers to compounds which contain no olefinic or acet at an elevated temperature and pressure. However, this ylinic bonds but does not exclude the arylalkyl nitro process requires that the nitrocyclohexane be con compounds. Substituted or unsubstituted nitroalkanes verted to an alkaline nitronate salt in a previous and which are suitable include nitromethane, nitroethane, separate step. Further, this process requires the use of 50 1-nitropropane, 2-nitropropane, l-nitrobutane, 2 anhydrous conditions, an alkanol as a solvent (some of nitrobutane, 1-nitropentane, 1-nitro-1-methylpropane, which is also consumed as a reactant), and a higher 1-nitro-3-methylpropane, 2-nitro-3-ethylbutane, 1 temperature to achieve a convenient reaction rate than nitro-2,2-dimethylbutane, 1-nitro-3-methylbutane, 2 is required by the instant process. In U.S. Pat. No. nitro-4-methylpentane, 1-nitrohexane, 3-nitro-4,5- 3,734,964 there is described a method for partial re 55 dimethylhexane, 3-nitrododecane, nitrooctadecane, duction of a nitroparaffin to the corresponding oxime 5-nitro-7,8-dimethyloctadecane, and the like. Also using critical ratios of a copper salt catalyst, nitroge suitable are the nitrocycloalkanes such as nitrocyclobu nous base and water. This process requires that a base tane, nitrocyclopentane, nitrocyclohexane, nitrocy copper catalyst complex be formed and then passing cloheptane, nitrocyclooctane, nitrocyclododecane and carbon monoxide into a reaction mixture of the formed 60 the like including the alkyl substituted or halo substi complex and nitroparaffin. Other methods, well known tuted compounds. Likewise the aryl nitroalkyl com in the art, employing hydrogen as a reducing agent are pounds such as phenyl nitromethane, p-bromo-phenyl complicated by the undesirable reduction of the oxime nitromethand, p-toluyl nitromethane and the like are to an amine. suitable. These are merely representative of the com 65 pounds suitable, since in general any nitrocompound of SUMMARY OF THE INVENTION the types described containing up to 20 carbon atoms In accordance with this invention a primary or secon can be employed including mixtures of such nitrocom dary saturated aliphatic nitrocompound or saturated pounds. 3,989,755 3 4 Catalysts for use in this invention include selenium. It will be understood from the foregoing disclosure In addition, various compounds containing selenium that all of the disclosed catalysts, solvents and bases are can be used alone or in combination with selenium operable with all of the nitrocompounds disclosed for metal. One of the simpletstand least expensive forms of the production of the oximes. It will be distinctly under Selenium is the metal itself which can be as good, if not 5 stood, however, by those skilled in this art that every better, than most selenium compounds. Nevertheless, combination is not equally effective in maximizing good yields can be obtained with such compounds as Oxime production from a particular nitrocompound Selenium dioxide, titanium diselenide, sodium selenite, starting material since these vary widely in their reac Zinc selenite, zinc selenide, tungsten selenide, selenium tivity. sulfide and selenium disulfide. 10 The catalyst of this invention is preferably used in The catalyst material, as indicated above, can be molar ratios of 2:1 to 1000:1 of the nitrocompound to self-supported or the catalyst material can be deposited catalyst. Preferably, the molar amounts of the nitro on a support or carrier for dispersing the catalyst to compound to catalyst is in the range of from 5:1 to increase its effective surface. Alumina, silica, carbon, 100:1. It will be understood, however, that larger or asbestos, bentonite, diatomaceous earth, fuller's earth, 15 smaller amounts of catalyst can be used. The ratio of and analogous materials are useful as carriers for this base to nitrocompound can range from 0.01:1 to 10:1, purpose. Preferably, the carrier selected is one which is however, larger or smaller amounts can be used, for inert in the described process. example, when an amine is used as both solvent and A base must also be added to the reaction. Organic base the quantity of base is of necessity far in excess of bases, metal salts of carboxylic acids and metal hydrox 20 the molar quantity of the catalyst or of nitrocompound ides have been found to be effective. Organic bases since it must be and is sufficient to dissolve the nitro suitable for the reaction are tertiary amines such as compound.
Recommended publications
  • Developing a Method for Determining the Mass Balance of Selenium and Tellurium Bioprocessed by a Selenium-Resistant Bacterium Grown in The
    Developing a Method for Determining the Mass Balance of Selenium and Tellurium Bioprocessed by a Selenium-Resistant Bacterium Grown in the Presence of Selenite or Tellurite __________________ A Thesis Presented to The Faculty of the Department of Chemistry Sam Houston State University ____________________ In Partial Fulfillment Of the Requirements for the Degree of Master of Science ____________________ by Janet Horton Bius December, 2001 Developing a Method for Determining the Mass Balance of Selenium and Tellurium Bioprocessed by a Selenium-Resistant Bacterium Grown in the Presence of Selenite or Tellurite by Janet Horton Bius ____________________ Approved: _____________________________ Thomas G. Chasteen ____________________________ Mary F. Plishker ____________________________ Rick C. White Approved: ____________________________ Brian Chapman, Dean College of Arts and Sciences II ABSTRACT Bius, Janet Horton, Developing a Method for Determining the Mass Balance of Selenium and Tellurium Bioprocessed by a Selenium-Resistant Bacterium Grown in the Presence of Selenite or Tellurite, Master of Science (Chemistry), December, 2001. Sam Houston State University, Hunts- ville, Texas, 68 pp. Purpose The purpose of this investigation was to determine: (1) the mass balance of selenium or tellurium that was bioreduced when a selenium-resistant facultative anaerobe was amended with either selenium or tellurium; and (2) methods to analyze for these metalloids in biological samples. Methods Analytical methods were developed for the determination of
    [Show full text]
  • Iron-Intercalated Zirconium Diselenide Thin Films from The
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. http://pubs.acs.org/journal/acsodf Article Iron-Intercalated Zirconium Diselenide Thin Films from the Low- η5‑ η5‑ Pressure Chemical Vapor Deposition of [Fe( C5H4Se)2Zr( C5H5)2]2 Clara Sanchez-Perez, Caroline E. Knapp, Ross H. Colman, Carlos Sotelo-Vazquez, Sanjayan Sathasivam, Raija Oilunkaniemi, Risto S. Laitinen,* and Claire J. Carmalt* Cite This: ACS Omega 2020, 5, 15799−15804 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information fi ABSTRACT: Transition metal chalcogenide thin lms of the type FexZrSe2 have applications in electronic devices, but their use is limited by current synthetic techniques. fi Here, we demonstrate the synthesis and characterization of Fe-intercalated ZrSe2 thin lms on quartz substrates using the low-pressure chemical vapor deposition of the single-source η5 η5 ff fi precursor [Fe( -C5H4Se)2Zr( -C5H5)2]2. Powder X-ray di raction of the lm scraping and subsequent Rietveld refinement of the data showed the successful synthesis of the Fe0.14ZrSe2 phase, along with secondary phases of FeSe and ZrO2. Upon intercalation, a opt small optical band gap enhancement (Eg(direct) = 1.72 eV) is detected in comparison with that of the host material. ■ INTRODUCTION post-transition20 metals have been intercalated to modulate Transition metal dichalcogenide (TMD) layered materials electronic states and dramatically change the opto-electronic have attracted a great deal of interest due to their unique and magnetic properties of the host material.
    [Show full text]
  • Is Selenium a Metal, Non-Metal Or Metalloid?
    Is Selenium a metal, non-metal or metalloid? Abstract Is selenium(Se) a metal, non-metal, or a metalloid? There are various public opinions circulating around it. Since a long time from now, there are a lot of voices discussing this. Even until now, there is still no consensus about it. So, in this project, we are trying to find out whether selenium is a non-metal, metal or metalloids base on its physical and chemical properties which could be studied in the secondary school combining with the other information from the internet. Principles and hypothesis Studied from the secondary school chemistry, the general properties of metals include being good conductors of heat and electricity, having high melting and boiling points. Non-metals generally have a lower melting point and boiling point than metals and they being poor conductors of heat and electricity, etc. And the physical properties of metalloids are having extremely high melting/ boiling point, and having fair electrical conductivity. On the other hand, the oxides of metal are generally basic whereas the oxide of non-metals and metalloids are generally acidic. We will define selenium’s chemical category based on the above properties. Besides, we would like to introduce the concept of displacement reaction in studying the chemical properties of the chalcogens(e.g. sulphur(S) and selenium(Se)), especially selenium such rarely mentioned element. We can assume selenium is a metal if selenium could displace a metal oxide or a metal could displace selenium (IV) oxide. If selenium is a non-metal, its oxide could be displaced by sulphur which is supposed to be more reactive than selenium in the chalcogen group.
    [Show full text]
  • Facts an Facts and Achievements
    2016 2016 Facts and Achievements Facts and Achievements MANA Progress Report Facts and Achievements 2016 MANA Progress Report Facts and Achievements 2016 March 2017 March 2017 Preface Masakazu Aono MANA Director-General NIMS The International Center for Materials Nanoarchitectonics (MANA) was established in October 2007 as one of the initial five research centers in the framework of the World Premier International Research Center Initiative (WPI Program), which is sponsored by Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT). This year marks the tenth anniversary of the start of MANA. We are happy to see that MANA has grown to become one of the world’s top research centers in materials science and technology and produced remarkable results in fields ranging from fundamental research to practical applications. MANA is conducting research on the basis of the new concept “Nanoarchitectonics”. This concept has been refined continuously by MANA’s researchers and is now accepted around the world. As we follow this concept, MANA strives to extract the maximum value from nanotechnology for the development of appropriate materials for new innovative technologies. I humbly request your warm support as we continue our earnest efforts. The MANA Progress Report consists of two booklets named “Facts and Achievements 2016” and “Research Digest 2016”. This booklet “Facts and Achievements 2016” serves as a summary to highlight the progress of the MANA project. The other booklet “Research Digest 2016” presents MANA research activities. Facts and Achievements 2016 Preface 1 MANA Progress Report Facts and Achievements 2016 1. WPI Progress Report: Executive Summary .....................................4 2.
    [Show full text]
  • Selenium Dioxide Sld
    SELENIUM DIOXIDE SLD CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 7.1 Grades of Purity: Commercial, 99.5+% Common Synonyms Solid White Sour odor Not flammable 7.2 Storage Temperature: Cool ambient Selenious anhydride 4.2 Flammable Limits in Air: Not flammable Selenium oxide 7.3 Inert Atmosphere: No requirement 4.3 Fire Extinguishing Agents: Currently not Sinks and mixes with water. 7.4 Venting: Open available 7.5 IMO Pollution Category: Currently not available KEEP PEOPLE AWAY. AVOID CONTACT WITH SOLID AND DUST. 4.4 Fire Extinguishing Agents Not to Be Wear goggles, dust respirator, and rubber overclothing (including gloves). Used: Currently not available 7.6 Ship Type: Currently not available Notify local health and pollution control agencies. 4.5 Special Hazards of Combustion 7.7 Barge Hull Type: Currently not available Protect water intakes. Products: Sublimes and forms toxic vapors when heated in fire. 8. HAZARD CLASSIFICATIONS Not flammable. 4.6 Behavior in Fire: Currently not available Fire POISONOUS GASES MAY BE PRODUCED WHEN HEATED. 4.7 Auto Ignition Temperature: Not pertinent 8.1 49 CFR Category: Poison 4.8 Electrical Hazards: Not pertinent 8.2 49 CFR Class: 6.1 CALL FOR MEDICAL AID. 4.9 Burning Rate: Not pertinent 8.3 49 CFR Package Group: I Exposure DUST 8.4 Marine Pollutant: No POISONOUS IF INHALED OR IF SKIN IS EXPOSED. 4.10 Adiabatic Flame Temperature: Currently If inhaled will cause coughing or difficult breathing. not available 8.5 NFPA Hazard Classification: Not listed If in eyes, hold eyelids open and flush with plenty of water.
    [Show full text]
  • Why Nature Chose Selenium Hans J
    Reviews pubs.acs.org/acschemicalbiology Why Nature Chose Selenium Hans J. Reich*, ‡ and Robert J. Hondal*,† † University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, Vermont 05405, United States ‡ University of WisconsinMadison, Department of Chemistry, 1101 University Avenue, Madison, Wisconsin 53706, United States ABSTRACT: The authors were asked by the Editors of ACS Chemical Biology to write an article titled “Why Nature Chose Selenium” for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173−1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se−O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Oxidation Mechanism of Copper Selenide
    DOI 10.1515/htmp-2013-0097 High Temp. Mater. Proc. 2014; 33(5): 469 – 476 Pekka Taskinen*, Sonja Patana, Petri Kobylin and Petri Latostenmaa Oxidation Mechanism of Copper Selenide Abstract: The oxidation mechanism of copper selenide atmosphere [2]. The roasting option is industrially attrac- was investigated at deselenization temperatures of copper tive as it leads to essentially 100% separation of selenium refining anode slimes. The isothermal roasting of syn- from the other components of anode slime and produces thetic, massive copper selenide in flowing oxygen and relatively pure crude selenium in a single step. oxygen – 20% sulfur dioxide mixtures at 450–550 °C indi- The industrial copper anode slimes are complex mix- cate that in both atmospheres the mass of Cu2Se increases tures of the insoluble substances in the electrolyte and a as a function of time, due to formation of copper selenite significant fraction of it comes from residues of the mold as an intermediate product. Copper selenide oxidises to paint in the anode casting, typically barium sulfate. Sele- copper oxides without formation of thick copper selenite nium is present in the slimes fed to the deselenization scales, and a significant fraction of selenium is vaporized process mostly as copper and silver selenides as well as as SeO2(g). The oxidation product scales on Cu2Se are elementary selenium [3], depending on the processing porous which allows transport of atmospheric oxygen to steps prior to the actual selenium roasting. Therefore, the reaction zone and selenium dioxide vapor to the their detailed mineralogical analysis is not straightfor- surrounding gas. Predominance area diagrams of the ward on the microscopic scale.
    [Show full text]
  • C2cc33754a.Pdf
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 Supporting Information for …Synthesis of Selenium Nano-Composite (t-Se@PS) by Surface Initiated Atom Transfer Radical Polymerization … by Michael C. P. Wang, and Byron D. Gates* Supporting Information for … Synthesis of Selenium Nano-Composite (t-Se@PS) by Surface Initiated Atom Transfer Radical Polymerization Michael C. P. Wang, and Byron D. Gates* Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada * To whom correspondence should be addressed. Email: [email protected] Tel. (+1) 778-782-8066. Fax. (+1) 778-782-3765. 1 Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 Supporting Information for …Synthesis of Selenium Nano-Composite (t-Se@PS) by Surface Initiated Atom Transfer Radical Polymerization … by Michael C. P. Wang, and Byron D. Gates* Experimental Anisotropic nanostructures of single crystalline t-Se were synthesized by a hydrothermal process without the assistance of surfactants, which are commonly used to facilitate the formation of anisotropic nanostructures.1-2 Surfactants are used in other syntheses to prevent the nanostructures from aggregating, and serve as protective barriers between nanostructures’ surfaces and the surrounding chemical environment. The absence of surfactants or other coatings on the surfaces of the selenium nanostructures expose its surfaces to oxidative damage by oxygen and moisture. Synthesis of 1D t-Se nanostructures:3 One dimensional selenium nanostructures were synthesized from amorphous selenium colloids. The selenium colloids were synthesized by reducing selenious acid with hydrazine. For example, 2.73 g (21.1 mmol) of selenious acid (H2SeO3; 98%; Sigma-Aldrich) was dissolved in 100 mL of 18 Mcm water (purified with Barnstead Nanopure DIamond Life Science water filtration system) with magnetic stirring in a 250 mL round bottom flask.
    [Show full text]
  • Unique Properties of Aluminium and Its Compounds
    Unique properties of some selected p block elements (Reading material for CML 514) Unique properties of Aluminium and its compounds Aluminium is the third most abundant metal on the earth’s crust and it is found to be present in as many as 270 minerals. Aluminosilicates form a major component of the earth’s crust. Aluminium is one of the lightest metals with low density and resists reactivity by forming a thin passivation layer of aluminium oxide (about 4 nm thickness) on any exposed aluminium surface. Although pure aluminium has a very low yield strength (the stress at which a material begins to deform plastically) its alloys with metals such as copper, magnesium and zinc have very high yield strength comparable to that of steel. Many of its alloys have very good strength to weight ratio and therefore find applications where a strong light metal is required such as aeroplanes, modern trains and racing cars. It is a good thermal and electrical conductor, possessing 59% of the electrical conductivity of copper, while its density is only 30% that of copper. AlCl3 is a very good Lewis acid and a reagent suited specifically for alkylation and acylation reactions of aromatics (Friedel–Crafts reaction). Sodium salts of long chain aryl sulphonates (for example, dodecyl benzenesulphonate), whose aryl–alkyl unit is made using AlCl3 catalyst, are used as surfactants in laundry detergents. Aluminium sulfate is an important flocculating agent in the purification of water and a sizing agent of paper replacing potassium alum. Positively charged aluminium cations neutralise the negative charge on colloidal particles in water leading to mutual adsorption and flocculation.
    [Show full text]
  • Selenium Recovery in Precious Metal Technology
    Selenium Recovery in Precious Metal Technology Fabian Kling Willig Degree Project in Engineering Chemistry, 30 hp Report passed: February 2014 Supervisors: Tomas Hedlund, Umeå University Mikhail Maliarik, Outotec (Sweden) AB Abstract Selenium is mostly extracted from copper anode slimes because the selenium-rich ores are too rare to be mined with profit. When copper anode slimes are processed in a precious metal plant the first step is to remove copper by pressure leach in an autoclave. The anode slime is then dried and fed into a Kaldo furnace. The Kaldo is heated and reduction and smelting begins. During reduction, slag builders are added to form a slag with impurities and fluxes with coke breeze are added to reduce precious metal. In the oxidation step, selenium dioxide, sulphur dioxide and some tellurium dioxide are removed along with the process gas. The dioxides and the process gas are captured in a circulating venturi solution in the gas cleaning system. The dioxides lowers the pH of the venturi solution. Sodium hydroxide is added to the solution to keep pH above 4 in order to prevent selenium from precipitating in the circulation tank. After a Kaldo cycle, the venturi solution is transferred to a precipitation tank where sulphur dioxide is added in order to precipitate selenium. The precipitated selenium is finally collected in a filter press and sold as crude (99.5%) selenium. During commissioning of a precious metal plant and during processing of 2 batches anode slime, data such as pH and electrochemical potential was collected from the venturi solution and later shown in a Pourbaix diagram.
    [Show full text]
  • Is Attorney Patented Feb
    Feb. 6, 1940. ` Q_ W, HEWLETT 2,189,580 METHOD OF MAKING A PHOTOELECTRIC CELL Filed May 29, 1937 Inventor : Clarence VV. Hewlett, is Attorney Patented Feb. 6, 1940 , 2,189,580 UNITED’ STATES PATENT OFFICE _, g aisance METHOD 0F MAKING A PHUTOELECTRIC Clarence W. Hewlett, Schenectady, N. Y., assigner to General Electric Company, a corporation of New York Application May 29, 1937, Serial No. 145,539 4 Claims. (CLES-8.9) The present invention relates to light-sensitive posited .on the selenium. The first, which is devices, more particularly to photoelectric cells, designated by reference character 4, is preferably which generate a measurable electromotive force of cadmium, and the uppermost metal layer 6 is when subjected to light of practical intensities. a relatively non-oxidizable metal preferably 5 In my application Serial No. 716,677, filed platinum. A contact ring 6 of any suitable metal March 21, 1934, I have disclosed and claimed a such as cadmium is applied in any convenient photo-voltaic cell which consists of a metal plate manner either to the selenium layer 3 before the or base member coated first with selenium and sputtered layers have­ been deposited, or to the then with cadmium and a relatively non-oxidiz platinum 5 after both metal layers have been de l0 able metal such as platinum in order. The cad posited. In case the ring is applied to the se 10 mium and platinum layers are preferably laid lenium layer, the sputtered layers are deposited down by‘sputtering and are so t-hin as to be semi not only over the selenium layer but also over ` transparent to light.
    [Show full text]