Odd Dimensional Manifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algebraic Equations for Nonsmoothable 8-Manifolds
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. NICHOLAAS H. KUIPER Algebraic equations for nonsmoothable 8-manifolds Publications mathématiques de l’I.H.É.S., tome 33 (1967), p. 139-155 <http://www.numdam.org/item?id=PMIHES_1967__33__139_0> © Publications mathématiques de l’I.H.É.S., 1967, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ALGEBRAIC EQUATIONS FOR NONSMOOTHABLE 8-MANIFOLDS by NICOLAAS H. KUIPER (1) SUMMARY The singularities of Brieskorn and Hirzebruch are used in order to obtain examples of algebraic varieties of complex dimension four in P^C), which are homeo- morphic to closed combinatorial 8-manifolds, but not homeomorphic to any differentiable manifold. Analogous nonorientable real algebraic varieties of dimension 8 in P^R) are also given. The main theorem states that every closed combinatorial 8-manifbld is homeomorphic to a Nash-component with at most one singularity of some real algebraic variety. This generalizes the theorem of Nash for differentiable manifolds. § i. Introduction. The theorem of Wall. From the smoothing theory of Thorn [i], Munkres [2] and others and the knowledge of the groups of differential structures on spheres due to Kervaire, Milnor [3], Smale and Gerf [4] follows a.o. -
An Introduction to Differentiable Manifolds
Mathematics Letters 2016; 2(5): 32-35 http://www.sciencepublishinggroup.com/j/ml doi: 10.11648/j.ml.20160205.11 Conference Paper An Introduction to Differentiable Manifolds Kande Dickson Kinyua Department of Mathematics, Moi University, Eldoret, Kenya Email address: [email protected] To cite this article: Kande Dickson Kinyua. An Introduction to Differentiable Manifolds. Mathematics Letters. Vol. 2, No. 5, 2016, pp. 32-35. doi: 10.11648/j.ml.20160205.11 Received : September 7, 2016; Accepted : November 1, 2016; Published : November 23, 2016 Abstract: A manifold is a Hausdorff topological space with some neighborhood of a point that looks like an open set in a Euclidean space. The concept of Euclidean space to a topological space is extended via suitable choice of coordinates. Manifolds are important objects in mathematics, physics and control theory, because they allow more complicated structures to be expressed and understood in terms of the well–understood properties of simpler Euclidean spaces. A differentiable manifold is defined either as a set of points with neighborhoods homeomorphic with Euclidean space, Rn with coordinates in overlapping neighborhoods being related by a differentiable transformation or as a subset of R, defined near each point by expressing some of the coordinates in terms of the others by differentiable functions. This paper aims at making a step by step introduction to differential manifolds. Keywords: Submanifold, Differentiable Manifold, Morphism, Topological Space manifolds with the additional condition that the transition 1. Introduction maps are analytic. In other words, a differentiable (or, smooth) The concept of manifolds is central to many parts of manifold is a topological manifold with a globally defined geometry and modern mathematical physics because it differentiable (or, smooth) structure, [1], [3], [4]. -
Arxiv:1303.6028V2 [Math.DG] 29 Dec 2014 B Ahrglrlvlhprufc Scle an Called Is Hypersurface Level Regular Each E Scle the Called Is Set E.[T3 )
ISOPARAMETRIC FUNCTIONS ON EXOTIC SPHERES CHAO QIAN AND ZIZHOU TANG Abstract. This paper extends widely the work in [GT13]. Existence and non-existence results of isoparametric functions on exotic spheres and Eells-Kuiper projective planes are established. In particular, every homotopy n-sphere (n > 4) carries an isoparametric function (with certain metric) with 2 points as the focal set, in strong contrast to the classification of cohomogeneity one actions on homotopy spheres [St96] ( only exotic Kervaire spheres admit cohomogeneity one actions besides the standard spheres ). As an application, we improve a beautiful result of B´erard-Bergery [BB77] ( see also pp.234-235 of [Be78] ). 1. Introduction Let N be a connected complete Riemannian manifold. A non-constant smooth function f on N is called transnormal, if there exists a smooth function b : R R such that f 2 = → |∇ | b( f ), where f is the gradient of f . If in addition, there exists a continuous function a : ∇ R R so that f = a( f ), where f is the Laplacian of f , then f is called isoparametric. → △ △ Each regular level hypersurface is called an isoparametric hypersurface and the singular level set is called the focal set. The two equations of the function f mean that the regular level hypersurfaces of f are parallel and have constant mean curvatures, which may be regarded as a geometric generalization of cohomogeneity one actions in the theory of transformation groups ( ref. [GT13] ). Owing to E. Cartan and H. F. M¨unzner [M¨u80], the classification of isoparametric hy- persurfaces in a unit sphere has been one of the most challenging problems in submanifold geometry. -
Graphs and Patterns in Mathematics and Theoretical Physics, Volume 73
http://dx.doi.org/10.1090/pspum/073 Graphs and Patterns in Mathematics and Theoretical Physics This page intentionally left blank Proceedings of Symposia in PURE MATHEMATICS Volume 73 Graphs and Patterns in Mathematics and Theoretical Physics Proceedings of the Conference on Graphs and Patterns in Mathematics and Theoretical Physics Dedicated to Dennis Sullivan's 60th birthday June 14-21, 2001 Stony Brook University, Stony Brook, New York Mikhail Lyubich Leon Takhtajan Editors Proceedings of the conference on Graphs and Patterns in Mathematics and Theoretical Physics held at Stony Brook University, Stony Brook, New York, June 14-21, 2001. 2000 Mathematics Subject Classification. Primary 81Txx, 57-XX 18-XX 53Dxx 55-XX 37-XX 17Bxx. Library of Congress Cataloging-in-Publication Data Stony Brook Conference on Graphs and Patterns in Mathematics and Theoretical Physics (2001 : Stony Brook University) Graphs and Patterns in mathematics and theoretical physics : proceedings of the Stony Brook Conference on Graphs and Patterns in Mathematics and Theoretical Physics, June 14-21, 2001, Stony Brook University, Stony Brook, NY / Mikhail Lyubich, Leon Takhtajan, editors. p. cm. — (Proceedings of symposia in pure mathematics ; v. 73) Includes bibliographical references. ISBN 0-8218-3666-8 (alk. paper) 1. Graph Theory. 2. Mathematics-Graphic methods. 3. Physics-Graphic methods. 4. Man• ifolds (Mathematics). I. Lyubich, Mikhail, 1959- II. Takhtadzhyan, L. A. (Leon Armenovich) III. Title. IV. Series. QA166.S79 2001 511/.5-dc22 2004062363 Copying and reprinting. Material in this book may be reproduced by any means for edu• cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg• ment of the source is given. -
EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps. -
And Free Cyclic Group Actions on Homotopy Spheres
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 220, 1976 DECOMPOSABILITYOF HOMOTOPYLENS SPACES ANDFREE CYCLICGROUP ACTIONS ON HOMOTOPYSPHERES BY KAI WANG ABSTRACT. Let p be a linear Zn action on C and let p also denote the induced Z„ action on S2p~l x D2q, D2p x S2q~l and S2p~l x S2q~l " 1m_1 where p = [m/2] and q = m —p. A free differentiable Zn action (£ , ju) on a homotopy sphere is p-decomposable if there is an equivariant diffeomor- phism <t>of (S2p~l x S2q~l, p) such that (S2m_1, ju) is equivalent to (£(*), ¿(*)) where S(*) = S2p_1 x D2q U^, D2p x S2q~l and A(<P) is a uniquely determined action on S(*) such that i4(*)IS p~l XD q = p and A(Q)\D p X S = p. A homotopy lens space is p-decomposable if it is the orbit space of a p-decomposable free Zn action on a homotopy sphere. In this paper, we will study the decomposabilities of homotopy lens spaces. We will also prove that for each lens space L , there exist infinitely many inequivalent free Zn actions on S m such that the orbit spaces are simple homotopy equiva- lent to L 0. Introduction. Let A be the antipodal map and let $ be an equivariant diffeomorphism of (Sp x Sp, A) where A(x, y) = (-x, -y). Then there is a uniquely determined free involution A($) on 2(4>) where 2(4») = Sp x Dp+1 U<¡,Dp+l x Sp such that the inclusions S" x Dp+l —+ 2(d>), Dp+1 x Sp —*■2(4>) are equi- variant. -
Homotopy Is Not Isotopy for Homeomorphisms of 3-Manifolds
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector KMC-9383,86 13.00+ .CO C 1986 Rrgamon Res Ltd. HOMOTOPY IS NOT ISOTOPY FOR HOMEOMORPHISMS OF 3-MANIFOLDS JOHN L. FRIEDMAN? and DONALD M. WIT-I (Received in reuised form 7 May 1985) IXl-RODUCTION THE existence of a homeomorphism that is homotopic but not isotopic to the identity has remained an open question for closed 3-manifolds [I, 23. We consider here homeotopy groups:: of spherical spaces, finding as a by-product of our work an example of such a homeomorphism for a closed 3-manifold whose prime factors include certain spherical spaces. The homeotopy groups of a composite 3-manifold have as subgroups the disk-fixing or point-fixing homeotopy groups of each prime factor [3,4]. In the work reported here our primary aim has been to calculate, for spherical spaces the corresponding 0th homeotopy groups, the groups of path connected components of the spaces of disk-fixing and point- fixing homeomorphisms. Homeomorphism groups of spherical spaces have been considered recently by Rubinstein et al. [S-7]. Asano [8], Bonahon [9] and Ivanov [lo]. Their results are consistent with Hatcher’s conjecture [ 1 l] that for each spherical space the group of homeomorphisms has the same homotopy type as the group of isometries. Homotopy classes of the groups HO and XX of homeomorphisms that fix respectively a disk and a point do not generally have this character (for spherical spaces): in particular, nonzero elements of ~,,(&‘a) and rr,, (XX) are commonly not represented by isometries. -
Milnor, John W. Groups of Homotopy Spheres
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 699–710 http://dx.doi.org/10.1090/bull/1506 Article electronically published on June 12, 2015 SELECTED MATHEMATICAL REVIEWS related to the paper in the previous section by JOHN MILNOR MR0148075 (26 #5584) 57.10 Kervaire, Michel A.; Milnor, John W. Groups of homotopy spheres. I. Annals of Mathematics. Second Series 77 (1963), 504–537. The authors aim to study the set of h-cobordism classes of smooth homotopy n-spheres; they call this set Θn. They remark that for n =3 , 4thesetΘn can also be described as the set of diffeomorphism classes of differentiable structures on Sn; but this observation rests on the “higher-dimensional Poincar´e conjecture” plus work of Smale [Amer. J. Math. 84 (1962), 387–399], and it does not really form part of the logical structure of the paper. The authors show (Theorem 1.1) that Θn is an abelian group under the connected sum operation. (In § 2, the authors give a careful treatment of the connected sum and of the lemmas necessary to prove Theorem 1.1.) The main task of the present paper, Part I, is to set up methods for use in Part II, and to prove that for n = 3 the group Θn is finite (Theorem 1.2). (For n =3the authors’ methods break down; but the Poincar´e conjecture for n =3wouldimply that Θ3 = 0.) We are promised more detailed information about the groups Θn in Part II. The authors’ method depends on introducing a subgroup bPn+1 ⊂ Θn;asmooth homotopy n-sphere qualifies for bPn+1 if it is the boundary of a parallelizable man- ifold. -
Quantitative Algebraic Topology and Lipschitz Homotopy
Quantitative algebraic topology and Lipschitz homotopy Steven Ferry ∗, and Shmuel Weinberger y ∗Rutgers University, Piscataway, NJ 08854, USA, and yUniversity of Chicago, Chicago, IL 60737, USA Submitted to Proceedings of the National Academy of Sciences of the United States of America We consider when it is possible to bound the Lipschitz constant a its one point compactification E(ξN # Gr(N; m + N))^, the priori in a homotopy between Lipschitz maps. If one wants uniform Thom space of the universal bundle. Let us call this map bounds, this is essentially a finiteness condition on homotopy. This contrasts strongly with the question of whether one can homotop m+N N the maps through Lipschitz maps. We also give an application to ΦM : S ! E(ξ # Gr(N; m + N))^ cobordism and discuss analogous isotopy questions. Thom shows, among other things, that: Lipschitz homotopy j amenable group j uniformly finite homology 1. M bounds iff ΦM is homotopic to a constant map. If M is the boundary of W , one embeds W in Dm+N+1, extending Introduction the embedding of M into Sm+N . Extending Thom's construc- he classical paradigm of geometric topology, exempli- tion over this disk gives a nullhomotopy of ΦM . Conversely, Tfied by, at least, immersion theory, cobordism, smooth- one uses the nullhomotopy and takes the transverse inverse of ing and triangulation, surgery, and embedding theory is that Gr(N, m+N) under a good smooth approximation to the ho- of reduction to algebraic topology (and perhaps some addi- motopy to the constant map 1 to produce the nullcobordism. -
The Generalized Poincaré Conjecture in Higher Dimensions
THE GENERALIZED POINCARÉ CONJECTURE IN HIGHER DIMENSIONS BY STEPHEN SMALE1 Communicated by Edwin Moise, May 20, 1960 The Poincaré conjecture says that every simply connected closed 3-manifold is homeomorphic to the 3-sphere S3. This has never been proved or disproved. The problem of showing whether every closed simply connected w-manifold which has the homology groups of 5W, or equivalently is a homotopy sphere, is homeomorphic to 5n, has been called the generalized Poincaré conjecture. We prove the following theorem. n 00 THEOREM A. If M is a closed differentiable (C ) manifold which is a homotopy sphere, and if n^Z, 4, then Mn is homeomorphic to Sn. We would expect that our methods will yield Theorem A for com binatorial manifolds as well, but this has not been done. The complete proof will be given elsewhere. Here we give an out line of the proof and mention other related and more general results. The first step in the proof is the construction of a nice cellular type structure on any closed C00 manifold M. More precisely, define a real valued ƒ on M to be a nice function if it possesses only nonde- generate critical points and for each critical point /3, jT(/3) =X(/3), the index of /3. THEOREM B. On every closed C°° manifold there exist nice functions. The proof of Theorem B is begun in our article [3]. In the termi nology of [3], it is proved that a gradient system can be C1 approxi mated by a system with stable and unstable manifolds having normal intersection with each other. -
Scale and the Differential Structure of Images
Scale and the differential structure of images Luc M J Florack, Bat M ter Haar Romeny, Jan J Koenderink and Max A Viergever capture the crucial observation of the inherently multi- Why and how one should study a scale-space is scale character of image structure. prescribed by the universal physical law of scale For some time there has been discussion on the invariance, expressed by the so-called Pi-theorem. question of how to generate a scale-space, the con- The fact that any image is a physical observable with an tinuous analogue of the pyramid, in a unique way, as inner and outer scale bound, necessarily gives rise to a there seemed to exist no clear way to choose among the 'scale-space representation', in wphich a given image is many possible scale-space filters' *. One obviously represented by a one-dimensiond family of images needed a set of natural, a priori scale-space constraints. representing that image on vurious levels of inner spatial A fundamental approach was adopted by scale. An early vision system is completely ignorant of Koenderink', Witkin" and Yuille and Poggio', who the geometry of its input. Its primary task is to establish formulated an a priori conttraint in the form of a this geometry at any available scale. The absence of causality requirement: no 'spurious detail' should be geometrical knowledge poses additional constraints on generated upon increasing scale. This, together with the construction of a scale-space, notably linearity, some symmetry constraints, unambiguously established spatial shift invariance and isotropy, thereby defining a the Gaussian kernel (i.e. -
Homeomorphisms Between Homotopy Manifolds and Their Resolutions
Inventiones math. 10, 239- 250 (1970) by Springer-Verlag 1970 Homeomorphisms between Homotopy Manifolds and Their Resolutions MARSHALL M. COHEN* (Ithaca) w 1. Introduction A homotopy n-manifold without boundary is a polyhedron M (i. e., a topological space along with a family of compatible triangulations by locally finite simplicial complexes) such that, for any triangulation in the piecewise linear (p. I.) structure of M, the link of each/-simplex (0 < i < n) has the homotopy type of the sphere S"-i-1. More generally, a homotopy n-manifold is a polyhedron such that the link of each /-simplex in any triangulation is homotopically an (n - i- 1) sphere or ball, and in which 0M - the union of all simplexes with links which are homotopically balls - is itself a homotopy (n- 1)-manifold without boundary. We note that ifM is a homotopy manifold then 0M is a well-defined subpolyhedron of M. Also, the question of whether a polyhedron M is a homotopy manifold is completely determined by a single triangulation of M (by Lemma LK 5 of [8]). Our main purpose is to prove Theorem 1. Assume that M 1 and M 2 are connected homotopy n-mani- folds where n>6 or where n=5 and t~M1 =OM2= ~. Let f: MI~M 2 be a proper p.I. mapping such that all point-inverses of f and of (f[OM 0 are contractible. Let d be a fixed metric on M 2 and e: MI--*R 1 a positive continuous function. 7hen there is a homeomorphism h: M 1--, M 2 such that d(h(x), f(x)) < e(x) for all x in M 1.