Homotopy Is Not Isotopy for Homeomorphisms of 3-Manifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1303.6028V2 [Math.DG] 29 Dec 2014 B Ahrglrlvlhprufc Scle an Called Is Hypersurface Level Regular Each E Scle the Called Is Set E.[T3 )
ISOPARAMETRIC FUNCTIONS ON EXOTIC SPHERES CHAO QIAN AND ZIZHOU TANG Abstract. This paper extends widely the work in [GT13]. Existence and non-existence results of isoparametric functions on exotic spheres and Eells-Kuiper projective planes are established. In particular, every homotopy n-sphere (n > 4) carries an isoparametric function (with certain metric) with 2 points as the focal set, in strong contrast to the classification of cohomogeneity one actions on homotopy spheres [St96] ( only exotic Kervaire spheres admit cohomogeneity one actions besides the standard spheres ). As an application, we improve a beautiful result of B´erard-Bergery [BB77] ( see also pp.234-235 of [Be78] ). 1. Introduction Let N be a connected complete Riemannian manifold. A non-constant smooth function f on N is called transnormal, if there exists a smooth function b : R R such that f 2 = → |∇ | b( f ), where f is the gradient of f . If in addition, there exists a continuous function a : ∇ R R so that f = a( f ), where f is the Laplacian of f , then f is called isoparametric. → △ △ Each regular level hypersurface is called an isoparametric hypersurface and the singular level set is called the focal set. The two equations of the function f mean that the regular level hypersurfaces of f are parallel and have constant mean curvatures, which may be regarded as a geometric generalization of cohomogeneity one actions in the theory of transformation groups ( ref. [GT13] ). Owing to E. Cartan and H. F. M¨unzner [M¨u80], the classification of isoparametric hy- persurfaces in a unit sphere has been one of the most challenging problems in submanifold geometry. -
EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps. -
The Birman-Hilden Theory
THE BIRMAN{HILDEN THEORY DAN MARGALIT AND REBECCA R. WINARSKI Abstract. In the 1970s Joan Birman and Hugh Hilden wrote several papers on the problem of relating the mapping class group of a surface to that of a cover. We survey their work, give an overview of the subsequent developments, and discuss open questions and new directions. 1. Introduction In the early 1970s Joan Birman and Hugh Hilden wrote a series of now- classic papers on the interplay between mapping class groups and covering spaces. The initial goal was to determine a presentation for the mapping class group of S2, the closed surface of genus two (it was not until the late 1970s that Hatcher and Thurston [33] developed an approach for finding explicit presentations for mapping class groups). The key innovation by Birman and Hilden is to relate the mapping class group Mod(S2) to the mapping class group of S0;6, a sphere with six marked points. Presentations for Mod(S0;6) were already known since that group is closely related to a braid group. The two surfaces S2 and S0;6 are related by a two-fold branched covering map S2 ! S0;6: arXiv:1703.03448v1 [math.GT] 9 Mar 2017 The six marked points in the base are branch points. The deck transforma- tion is called the hyperelliptic involution of S2, and we denote it by ι. Every element of Mod(S2) has a representative that commutes with ι, and so it follows that there is a map Θ : Mod(S2) ! Mod(S0;6): The kernel of Θ is the cyclic group of order two generated by (the homotopy class of) the involution ι. -
3-Manifold Groups
3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1. -
And Free Cyclic Group Actions on Homotopy Spheres
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 220, 1976 DECOMPOSABILITYOF HOMOTOPYLENS SPACES ANDFREE CYCLICGROUP ACTIONS ON HOMOTOPYSPHERES BY KAI WANG ABSTRACT. Let p be a linear Zn action on C and let p also denote the induced Z„ action on S2p~l x D2q, D2p x S2q~l and S2p~l x S2q~l " 1m_1 where p = [m/2] and q = m —p. A free differentiable Zn action (£ , ju) on a homotopy sphere is p-decomposable if there is an equivariant diffeomor- phism <t>of (S2p~l x S2q~l, p) such that (S2m_1, ju) is equivalent to (£(*), ¿(*)) where S(*) = S2p_1 x D2q U^, D2p x S2q~l and A(<P) is a uniquely determined action on S(*) such that i4(*)IS p~l XD q = p and A(Q)\D p X S = p. A homotopy lens space is p-decomposable if it is the orbit space of a p-decomposable free Zn action on a homotopy sphere. In this paper, we will study the decomposabilities of homotopy lens spaces. We will also prove that for each lens space L , there exist infinitely many inequivalent free Zn actions on S m such that the orbit spaces are simple homotopy equiva- lent to L 0. Introduction. Let A be the antipodal map and let $ be an equivariant diffeomorphism of (Sp x Sp, A) where A(x, y) = (-x, -y). Then there is a uniquely determined free involution A($) on 2(4>) where 2(4») = Sp x Dp+1 U<¡,Dp+l x Sp such that the inclusions S" x Dp+l —+ 2(d>), Dp+1 x Sp —*■2(4>) are equi- variant. -
Homeotopy Groups by G
HOMEOTOPY GROUPS BY G. s. Mccarty, jr. o Introduction. A principal goal in algebraic topology has been to classify and characterize spaces by means of topological invariants. One such is certainly the group G(X) of homeomorphisms of a space X. And, for a large class of spaces X (including manifolds), the compact-open topology is a natural choice for GiX), making it a topological transformation group on X. GiX) is too large and complex for much direct study; however, homotopy invariants of GiX) are not homotopy invariants of X. Thus, the homeotopy groups of X are defined to be the homotopy groups of GiX). The Jf kiX) = 7tt[G(Z)] are topological in- variants of X which are shown (§2) not to be invariant even under isotopy, yet the powerful machinery of homotopy theory is available for their study. In (2) some of the few published results concerning the component group Ji?0iX) = jr0[G(X)] are recounted. This group is then shown to distinguish members of some pairs of homotopic spaces. In (3) the topological group G(X) is given the structure of a fiber bundle over X, with the isotropy group xGiX) at x e X as fiber, for a class of homogeneous spaces X. This structure defines a topologically invariant, exact sequence, Jf^iX). In (4), ¿FJJi) is shown to be defined for manifolds, and this definition is ex- tended to manifolds with boundary. Relations are then derived among the homeo- topy groups of the set of manifolds got by deletion of finite point sets from a compact manifold. -
Milnor, John W. Groups of Homotopy Spheres
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 699–710 http://dx.doi.org/10.1090/bull/1506 Article electronically published on June 12, 2015 SELECTED MATHEMATICAL REVIEWS related to the paper in the previous section by JOHN MILNOR MR0148075 (26 #5584) 57.10 Kervaire, Michel A.; Milnor, John W. Groups of homotopy spheres. I. Annals of Mathematics. Second Series 77 (1963), 504–537. The authors aim to study the set of h-cobordism classes of smooth homotopy n-spheres; they call this set Θn. They remark that for n =3 , 4thesetΘn can also be described as the set of diffeomorphism classes of differentiable structures on Sn; but this observation rests on the “higher-dimensional Poincar´e conjecture” plus work of Smale [Amer. J. Math. 84 (1962), 387–399], and it does not really form part of the logical structure of the paper. The authors show (Theorem 1.1) that Θn is an abelian group under the connected sum operation. (In § 2, the authors give a careful treatment of the connected sum and of the lemmas necessary to prove Theorem 1.1.) The main task of the present paper, Part I, is to set up methods for use in Part II, and to prove that for n = 3 the group Θn is finite (Theorem 1.2). (For n =3the authors’ methods break down; but the Poincar´e conjecture for n =3wouldimply that Θ3 = 0.) We are promised more detailed information about the groups Θn in Part II. The authors’ method depends on introducing a subgroup bPn+1 ⊂ Θn;asmooth homotopy n-sphere qualifies for bPn+1 if it is the boundary of a parallelizable man- ifold. -
Quantitative Algebraic Topology and Lipschitz Homotopy
Quantitative algebraic topology and Lipschitz homotopy Steven Ferry ∗, and Shmuel Weinberger y ∗Rutgers University, Piscataway, NJ 08854, USA, and yUniversity of Chicago, Chicago, IL 60737, USA Submitted to Proceedings of the National Academy of Sciences of the United States of America We consider when it is possible to bound the Lipschitz constant a its one point compactification E(ξN # Gr(N; m + N))^, the priori in a homotopy between Lipschitz maps. If one wants uniform Thom space of the universal bundle. Let us call this map bounds, this is essentially a finiteness condition on homotopy. This contrasts strongly with the question of whether one can homotop m+N N the maps through Lipschitz maps. We also give an application to ΦM : S ! E(ξ # Gr(N; m + N))^ cobordism and discuss analogous isotopy questions. Thom shows, among other things, that: Lipschitz homotopy j amenable group j uniformly finite homology 1. M bounds iff ΦM is homotopic to a constant map. If M is the boundary of W , one embeds W in Dm+N+1, extending Introduction the embedding of M into Sm+N . Extending Thom's construc- he classical paradigm of geometric topology, exempli- tion over this disk gives a nullhomotopy of ΦM . Conversely, Tfied by, at least, immersion theory, cobordism, smooth- one uses the nullhomotopy and takes the transverse inverse of ing and triangulation, surgery, and embedding theory is that Gr(N, m+N) under a good smooth approximation to the ho- of reduction to algebraic topology (and perhaps some addi- motopy to the constant map 1 to produce the nullcobordism. -
The Generalized Poincaré Conjecture in Higher Dimensions
THE GENERALIZED POINCARÉ CONJECTURE IN HIGHER DIMENSIONS BY STEPHEN SMALE1 Communicated by Edwin Moise, May 20, 1960 The Poincaré conjecture says that every simply connected closed 3-manifold is homeomorphic to the 3-sphere S3. This has never been proved or disproved. The problem of showing whether every closed simply connected w-manifold which has the homology groups of 5W, or equivalently is a homotopy sphere, is homeomorphic to 5n, has been called the generalized Poincaré conjecture. We prove the following theorem. n 00 THEOREM A. If M is a closed differentiable (C ) manifold which is a homotopy sphere, and if n^Z, 4, then Mn is homeomorphic to Sn. We would expect that our methods will yield Theorem A for com binatorial manifolds as well, but this has not been done. The complete proof will be given elsewhere. Here we give an out line of the proof and mention other related and more general results. The first step in the proof is the construction of a nice cellular type structure on any closed C00 manifold M. More precisely, define a real valued ƒ on M to be a nice function if it possesses only nonde- generate critical points and for each critical point /3, jT(/3) =X(/3), the index of /3. THEOREM B. On every closed C°° manifold there exist nice functions. The proof of Theorem B is begun in our article [3]. In the termi nology of [3], it is proved that a gradient system can be C1 approxi mated by a system with stable and unstable manifolds having normal intersection with each other. -
Homeomorphisms Between Homotopy Manifolds and Their Resolutions
Inventiones math. 10, 239- 250 (1970) by Springer-Verlag 1970 Homeomorphisms between Homotopy Manifolds and Their Resolutions MARSHALL M. COHEN* (Ithaca) w 1. Introduction A homotopy n-manifold without boundary is a polyhedron M (i. e., a topological space along with a family of compatible triangulations by locally finite simplicial complexes) such that, for any triangulation in the piecewise linear (p. I.) structure of M, the link of each/-simplex (0 < i < n) has the homotopy type of the sphere S"-i-1. More generally, a homotopy n-manifold is a polyhedron such that the link of each /-simplex in any triangulation is homotopically an (n - i- 1) sphere or ball, and in which 0M - the union of all simplexes with links which are homotopically balls - is itself a homotopy (n- 1)-manifold without boundary. We note that ifM is a homotopy manifold then 0M is a well-defined subpolyhedron of M. Also, the question of whether a polyhedron M is a homotopy manifold is completely determined by a single triangulation of M (by Lemma LK 5 of [8]). Our main purpose is to prove Theorem 1. Assume that M 1 and M 2 are connected homotopy n-mani- folds where n>6 or where n=5 and t~M1 =OM2= ~. Let f: MI~M 2 be a proper p.I. mapping such that all point-inverses of f and of (f[OM 0 are contractible. Let d be a fixed metric on M 2 and e: MI--*R 1 a positive continuous function. 7hen there is a homeomorphism h: M 1--, M 2 such that d(h(x), f(x)) < e(x) for all x in M 1. -
Groups of Homotopy Spheres: I Michel A. Kervaire; John W. Milnor The
Groups of Homotopy Spheres: I Michel A. Kervaire; John W. Milnor The Annals of Mathematics, 2nd Ser., Vol. 77, No. 3. (May, 1963), pp. 504-537. Stable URL: http://links.jstor.org/sici?sici=0003-486X%28196305%292%3A77%3A3%3C504%3AGOHSI%3E2.0.CO%3B2-R The Annals of Mathematics is currently published by Annals of Mathematics. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/annals.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Thu Jul 5 15:47:54 2007 ANNALSOP MATABMATICS Vol. -
The Kontsevich Integral for Bottom Tangles in Handlebodies
THE KONTSEVICH INTEGRAL FOR BOTTOM TANGLES IN HANDLEBODIES KAZUO HABIRO AND GWENA´ EL¨ MASSUYEAU Abstract. Using an extension of the Kontsevich integral to tangles in handle- bodies similar to a construction given by Andersen, Mattes and Reshetikhin, we construct a functor Z : B! A“, where B is the category of bottom tangles in handlebodies and A“ is the degree-completion of the category A of Jacobi diagrams in handlebodies. As a symmetric monoidal linear category, A is the linear PROP governing \Casimir Hopf algebras", which are cocommutative Hopf algebras equipped with a primitive invariant symmetric 2-tensor. The functor Z induces a canonical isomorphism gr B =∼ A, where gr B is the as- sociated graded of the Vassiliev{Goussarov filtration on B. To each Drinfeld associator ' we associate a ribbon quasi-Hopf algebra H' in A“, and we prove that the braided Hopf algebra resulting from H' by \transmutation" is pre- cisely the image by Z of a canonical Hopf algebra in the braided category B. Finally, we explain how Z refines the LMO functor, which is a TQFT-like functor extending the Le{Murakami{Ohtsuki invariant. Contents 1. Introduction2 2. The category B of bottom tangles in handlebodies 11 3. Review of the Kontsevich integral 14 4. The category A of Jacobi diagrams in handlebodies 20 5. Presentation of the category A 31 6. A ribbon quasi-Hopf algebra in A“ 43 7. Weight systems 47 8. Construction of the functor Z 48 ' 9. The braided monoidal functor Zq and computation of Z 55 arXiv:1702.00830v5 [math.GT] 11 Oct 2020 10.