Quantitative Algebraic Topology and Lipschitz Homotopy

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Algebraic Topology and Lipschitz Homotopy Quantitative algebraic topology and Lipschitz homotopy Steve Ferrya and Shmuel Weinbergerb,1 aDepartment of Mathematics, Rutgers University, Piscataway, NJ 08854; and bDepartment of Mathematics, University of Chicago, Chicago, IL 60637 Edited by Alexander Nabutovsky, University of Toronto, Toronto, ON, Canada, and accepted by the Editorial Board January 14, 2013 (received for review May 16, 2012) We consider when it is possible to bound the Lipschitz constant 1. M bounds iff ΦM is homotopic to a constant map. If M is the + + a priori in a homotopy between Lipschitz maps. If one wants uniform boundary of W, one embeds W in Dm N 1, extending the em- + bounds, this is essentially a finiteness condition on homotopy. This bedding of M into Sm N. Extending Thom’s construction over contrasts strongly with the question of whether one can homotop this disk gives a nullhomotopy of ΦM. Conversely, one uses the the maps through Lipschitz maps. We also give an application to nullhomotopy and takes the transverse inverse of Gr(N, m + cobordism and discuss analogous isotopy questions. N) under a good smooth approximation to the homotopy to the constant map ∞ to produce the nullcobordism. amenable group | uniformly finite cohomology 2. ΦM is homotopic to a constant map iff νM*([M]) = 0 ∈ Hm(Gr (N, m + N); Z2). This condition is often reformulated in – he classical paradigm of geometric topology, exemplified by, terms of the vanishing of Stiefel Whitney numbers. Tat least, immersion theory, cobordism, smoothing and tri- It is now reasonable to define the complexity of M in terms of angulation, surgery, and embedding theory is that of reduction to the volume of a Riemannian metric on M whose local structure algebraic topology (and perhaps some additional pure algebra). A is constrained [e.g., by having curvature and injectivity radius geometric problem gives rise to a map between spaces, and solving bounded appropriately, jKj ≤ 1, inj ≥ 1, or, alternatively, by fi the original problem is equivalent to nding a nullhomotopy or counting the number of simplices in a triangulation (again a lift of the map. Finally, this homotopical problem is solved whose local structure is bounded)]. In that case, supposing M typically by the completely nongeometric methods of algebraic bounds [i.e., the conclusion of Thom’s theorem holds (2)], can topology (e.g., localization theory, rational homotopy theory, we then bound the complexity of the manifold that M bounds? spectral sequences). Note that the Lipschitz constant of ΦM isrelatedtothe Although this has had enormous successes in answering classical complexity that we have chosen, in that the curvature controls fi qualitative questions, it is extremely dif cult [as has been em- the local Lipschitz constant of ν, but that there is an additional phasized by Gromov (1)] to understand the answers quantitatively. global aspect that comes from the embedding. It is understood ’ One general type of question that tests one s understanding of the that because of expander graphs, for example, one might have to solution of a problem goes like this: Introduce a notion of com- have extremely thin tubular neighborhoods when one embeds plexity, and then ask about the complexity of the solution to the a manifold in a high-dimensional Euclidean space. This increases problem in terms of the complexity of the original problem. Other the Lipschitz constant accordingly when extending νM to ΦM.We possibilities can involve understanding typical behavior or the shall refer to the Lipschitz constant of a Thom map for M as the implications of making variations of the problem. Thom complexity of M. In this task, the complexity of the problem is often reflected, Of course, we can separate the problems and deal with the somewhat imperfectly, in the Lipschitz constant of the map. In- problem of understanding the complexity of embedded coboun- deed, one can often view the Lipschitz constant of the map as daries based on a complexity involving jKj and τ, which is, by a measure of the complexity of the geometric problem. definition, the feature size of computational topology, the smallest For concreteness, let us quickly review the classical case of size at which normal exponentials to M in a high-dimensional cobordism, following Thom (2). Let M be a compact smooth sphere collide. Doing this, studying the Lipschitz constant of Φ n M manifold. The problem is: When is M the boundary of some essentially is the same as considering sup(jKj,1/τ) In this paper, n+1 other compact smooth W ? that is the approach we take; however, an alternative approach There are many possible choices of manifolds in this con- avoiding the issues associated with choosing an embedding can be struction, such as oriented manifolds, manifolds with some based on the method of Buoncristiano and Hacon (3). structure on their (stabilized) tangent bundles, Piecewise linear The second issue, then, is item (4). How does one get in- (PL) and topological versions, and so on. However, for now, we formation about the size of the nullhomotopy? Algebraic to- will confine our attention to this simplest version. pology does not directly help us because it reasons algebraically m Thom (2) embeds M in a high-dimensional Euclidean space involving many formally defined groups and their structures, m+N−1 m+N M ⊂ S ⊂ R and then classifies the normal bundle by constantly identifying objects with equivalence classes. Despite N amapνM: νM → E(ξ ↓ Gr(N, m + N)) from the normal bundle this, Gromov (1) has suggested the following. to the universal bundle of N-planes in m + N space. Including + + Rm N into Sm N via one-point compactification, we can think of Optimistic Possibility νM as being a neighborhood of M in this sphere (via the tubular If X and Y are finite complexes and Y is simply connected, there + neighborhood theorem) and extend this map to Sm N if we in- is a constant K, such that if f, g: X → Y are homotopic Lipschitz clude E(ξN ↓ Gr(N, m + N)) into its one-point compactification E(ξN ↓ Gr(N, m + N))^, the Thom space of the universal bundle. Letuscallthismap Author contributions: S.F. and S.W. performed research and wrote the paper. À Á The authors declare no conflict of interest. m+N N ΦM : S → E ξ ↓GrðN; m + NÞ ̂: This article is a PNAS Direct Submission. A.N. is a guest editor invited by the Editorial Board. Thom (2) shows, among other things, that: 1To whom correspondence should be addressed. E-mail: [email protected]. 19246–19250 | PNAS | November 26, 2013 | vol. 110 | no. 48 www.pnas.org/cgi/doi/10.1073/pnas.1208041110 Downloaded by guest on September 26, 2021 < ; ...; > maps with Lipschitz constant L, they are homotopic through KL- sending the barycenter of each simplex ei0 eik to + ... + RN+1 SPECIAL FEATURE Lipschitz maps. ei0 eik , which is a vertex of the unit cube in . The rest of this paper makes some initial comments regarding Extending linearly throws our complex onto a subcomplex of this problem. We shall first discuss a stronger problem, that of the unit cube via a homeomorphism whose bi-Lipschitz con- constructing a KL-Lipschitz homotopy. We give necessary and stant is controlled by d. It is now an easy matter to subdivide the sufficient conditions for there to be a KL-Lipschitz homotopy be- cube into smaller congruent pieces. Here, by the “bi-Lipschitz tween homotopic L-Lipschitz maps with constant K only depending constant,” we mean the sup of the Lipschitz constants of the fi on dim(X). The hypotheses of this situation are suf cient for un- embedding and its inverse. oriented cobordism and give a linear increase of Thom complexity We now proceed to the converse. Assuming that Y is a finite for the problem of unoriented smooth embedded cobordism be- complex with at least one nonfinite homotopy group, we will fi fi cause the Thom space is a nite complex with nite homotopy show that there is a nullhomotopic Lipschitz map Rn → Y for groups in that case. some n that is not Lipschitz nullhomotopic. The argument shows We also give some contrasting results, where, essentially for that there is no constant C(n) that works for all subcubes of Rn. homological reasons, one cannot find Lipschitz homotopies, but ~ Suppose that π1(Y)isinfinite. We give Y the path metric homotopies through Lipschitz maps are possible. obtained by pulling the metric in Y up locally. Then, by König’s Finally, we make some comments and conjectures about the ~ lemma (7), the 1-skeleton of Y contains an infinite path R that related problem of isotopy of embeddings in both the Lipschitz ~ has infinite diameter in Y. Let X = [0, ∞) with the usual sim- setting and the Ck setting. Both of these contrast with the C1 plicial structure. The map f: X → R is 1-Lipschitz and nullho- setting considered by Gromov (5). motopic. If there were a Lipschitz homotopy F from f to a j × Constructing Lipschitz Homotopies constant, the length of each path~ F {x} I would then be boun- Theorem 1. Let Y be a finite complex with finite homotopy groups in ded independent of x.LiftingtoY would give uniformly bounded dimensions ≤d. Then, there exists C(d) so that for all simplicial path paths from f(x) to the basepoint for all x, contradicting the fact fi metric spaces X with dimension X ≤ d, such that the restriction of that R has in nite diameter. π fi ≤ − ≥ the metric to each simplex of X is standard, if f, g: X → Y are Assume that k(Y)is nite for k n 1, n 2, and assume that π fi fi homotopic L-Lipschitz maps with L ≥ 1, there is then a C(d)L- n(Y)isin nite.
Recommended publications
  • Arxiv:1303.6028V2 [Math.DG] 29 Dec 2014 B Ahrglrlvlhprufc Scle an Called Is Hypersurface Level Regular Each E Scle the Called Is Set E.[T3 )
    ISOPARAMETRIC FUNCTIONS ON EXOTIC SPHERES CHAO QIAN AND ZIZHOU TANG Abstract. This paper extends widely the work in [GT13]. Existence and non-existence results of isoparametric functions on exotic spheres and Eells-Kuiper projective planes are established. In particular, every homotopy n-sphere (n > 4) carries an isoparametric function (with certain metric) with 2 points as the focal set, in strong contrast to the classification of cohomogeneity one actions on homotopy spheres [St96] ( only exotic Kervaire spheres admit cohomogeneity one actions besides the standard spheres ). As an application, we improve a beautiful result of B´erard-Bergery [BB77] ( see also pp.234-235 of [Be78] ). 1. Introduction Let N be a connected complete Riemannian manifold. A non-constant smooth function f on N is called transnormal, if there exists a smooth function b : R R such that f 2 = → |∇ | b( f ), where f is the gradient of f . If in addition, there exists a continuous function a : ∇ R R so that f = a( f ), where f is the Laplacian of f , then f is called isoparametric. → △ △ Each regular level hypersurface is called an isoparametric hypersurface and the singular level set is called the focal set. The two equations of the function f mean that the regular level hypersurfaces of f are parallel and have constant mean curvatures, which may be regarded as a geometric generalization of cohomogeneity one actions in the theory of transformation groups ( ref. [GT13] ). Owing to E. Cartan and H. F. M¨unzner [M¨u80], the classification of isoparametric hy- persurfaces in a unit sphere has been one of the most challenging problems in submanifold geometry.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry.
    [Show full text]
  • EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps.
    [Show full text]
  • New Ideas in Algebraic Topology (K-Theory and Its Applications)
    NEW IDEAS IN ALGEBRAIC TOPOLOGY (K-THEORY AND ITS APPLICATIONS) S.P. NOVIKOV Contents Introduction 1 Chapter I. CLASSICAL CONCEPTS AND RESULTS 2 § 1. The concept of a fibre bundle 2 § 2. A general description of fibre bundles 4 § 3. Operations on fibre bundles 5 Chapter II. CHARACTERISTIC CLASSES AND COBORDISMS 5 § 4. The cohomological invariants of a fibre bundle. The characteristic classes of Stiefel–Whitney, Pontryagin and Chern 5 § 5. The characteristic numbers of Pontryagin, Chern and Stiefel. Cobordisms 7 § 6. The Hirzebruch genera. Theorems of Riemann–Roch type 8 § 7. Bott periodicity 9 § 8. Thom complexes 10 § 9. Notes on the invariance of the classes 10 Chapter III. GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY OF BORDISMS. MICROBUNDLES. 11 § 10. Generalized cohomologies. Examples. 11 Chapter IV. SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES 16 § 11. Strict application of K-theory 16 § 12. Simultaneous applications of the K- and J-functors. Cohomology operation in K-theory 17 § 13. Bordism theory 19 APPENDIX 21 The Hirzebruch formula and coverings 21 Some pointers to the literature 22 References 22 Introduction In recent years there has been a widespread development in topology of the so-called generalized homology theories. Of these perhaps the most striking are K-theory and the bordism and cobordism theories. The term homology theory is used here, because these objects, often very different in their geometric meaning, Russian Math. Surveys. Volume 20, Number 3, May–June 1965. Translated by I.R. Porteous. 1 2 S.P. NOVIKOV share many of the properties of ordinary homology and cohomology, the analogy being extremely useful in solving concrete problems.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • The Seifert-Van Kampen Theorem Via Covering Spaces
    Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques i Informàtica Universitat de Barcelona The Seifert-Van Kampen theorem via covering spaces Autor: Roberto Lara Martín Director: Dr. Javier José Gutiérrez Marín Realitzat a: Departament de Matemàtiques i Informàtica Barcelona, 29 de juny de 2017 Contents Introduction ii 1 Category theory 1 1.1 Basic terminology . .1 1.2 Coproducts . .6 1.3 Pushouts . .7 1.4 Pullbacks . .9 1.5 Strict comma category . 10 1.6 Initial objects . 12 2 Groups actions 13 2.1 Groups acting on sets . 13 2.2 The category of G-sets . 13 3 Homotopy theory 15 3.1 Homotopy of spaces . 15 3.2 The fundamental group . 15 4 Covering spaces 17 4.1 Definition and basic properties . 17 4.2 The category of covering spaces . 20 4.3 Universal covering spaces . 20 4.4 Galois covering spaces . 25 4.5 A relation between covering spaces and the fundamental group . 26 5 The Seifert–van Kampen theorem 29 Bibliography 33 i Introduction The Seifert-Van Kampen theorem describes a way of computing the fundamen- tal group of a space X from the fundamental groups of two open subspaces that cover X, and the fundamental group of their intersection. The classical proof of this result is done by analyzing the loops in the space X and deforming them into loops in the subspaces. For all the details of such proof see [1, Chapter I]. The aim of this work is to provide an alternative proof of this theorem using covering spaces, sets with actions of groups and category theory.
    [Show full text]
  • And Free Cyclic Group Actions on Homotopy Spheres
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 220, 1976 DECOMPOSABILITYOF HOMOTOPYLENS SPACES ANDFREE CYCLICGROUP ACTIONS ON HOMOTOPYSPHERES BY KAI WANG ABSTRACT. Let p be a linear Zn action on C and let p also denote the induced Z„ action on S2p~l x D2q, D2p x S2q~l and S2p~l x S2q~l " 1m_1 where p = [m/2] and q = m —p. A free differentiable Zn action (£ , ju) on a homotopy sphere is p-decomposable if there is an equivariant diffeomor- phism <t>of (S2p~l x S2q~l, p) such that (S2m_1, ju) is equivalent to (£(*), ¿(*)) where S(*) = S2p_1 x D2q U^, D2p x S2q~l and A(<P) is a uniquely determined action on S(*) such that i4(*)IS p~l XD q = p and A(Q)\D p X S = p. A homotopy lens space is p-decomposable if it is the orbit space of a p-decomposable free Zn action on a homotopy sphere. In this paper, we will study the decomposabilities of homotopy lens spaces. We will also prove that for each lens space L , there exist infinitely many inequivalent free Zn actions on S m such that the orbit spaces are simple homotopy equiva- lent to L 0. Introduction. Let A be the antipodal map and let $ be an equivariant diffeomorphism of (Sp x Sp, A) where A(x, y) = (-x, -y). Then there is a uniquely determined free involution A($) on 2(4>) where 2(4») = Sp x Dp+1 U<¡,Dp+l x Sp such that the inclusions S" x Dp+l —+ 2(d>), Dp+1 x Sp —*■2(4>) are equi- variant.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology .
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy and the Fundamental Group 11 1. Homotopy 11 2. The Fundamental Group 12 3. Homotopy Equivalence 18 4. Categories and Functors 20 5. The fundamental group of S1 22 6. Some Applications 25 Chapter 3. Quotient Spaces and Covering Spaces 33 1. The Quotient Topology 33 2. Covering Spaces 40 3. Action of the Fundamental Group on Covering Spaces 44 4. Existence of Coverings and the Covering Group 48 5. Covering Groups 56 Chapter 4. Group Theory and the Seifert{Van Kampen Theorem 59 1. Some Group Theory 59 2. The Seifert{Van Kampen Theorem 66 Chapter 5. Manifolds and Surfaces 73 1. Manifolds and Surfaces 73 2. Outline of the Proof of the Classification Theorem 80 3. Some Remarks about Higher Dimensional Manifolds 83 4. An Introduction to Knot Theory 84 Chapter 6. Singular Homology 91 1. Homology, Introduction 91 2. Singular Homology 94 3. Properties of Singular Homology 100 4. The Exact Homology Sequence{ the Jill Clayburgh Lemma 109 5. Excision and Applications 116 6. Proof of the Excision Axiom 120 3 4 CONTENTS 7. Relation between π1 and H1 126 8. The Mayer-Vietoris Sequence 128 9. Some Important Applications 131 Chapter 7. Simplicial Complexes 137 1. Simplicial Complexes 137 2. Abstract Simplicial Complexes 141 3. Homology of Simplicial Complexes 143 4. The Relation of Simplicial to Singular Homology 147 5. Some Algebra. The Tensor Product 152 6.
    [Show full text]