Upper Limb 2017

Total Page:16

File Type:pdf, Size:1020Kb

Upper Limb 2017 The Shoulder The shoulder is the upper part of the upper extremity, where our arms connect with our central axis — the spine and ribcage. The shoulder girdle is composed of the scapula and clavicle. The shoulder joint is the gleno-humeral joint. The humerus is loosely attached to the scapula by the shallow gleno-humeral joint. It is supported and moved by a series of short powerful muscles which have their origin on the scapula. Two larger muscles, Pectoralis major and Latissimus dorsi, run from the spine and ribcage, bypassing the scapula to attach to the humerus. The scapula in turn can move freely over the posterior aspect of the ribcage. It is moved and stabilised by powerful muscles that have their origin on the spine (Trapezius, Rhomboids, Levator scapulae) and ribcage (Pectoralis minor and Serratus anterior). The clavicle performs the major bracing task, helping keep the shoulder at a useful distance from the midline. It is attached to the scapula at the acromio- clavicular joint and to the sternum at the sterno-clavicular joint. This combination of a mobile shoulder joint and a scapula that can move into the optimum position gives the humerus enormous flexibility relative to the spine. This helps us get our hands where we want them so we can feel, manipulate and otherwise interact with the world. Chinese Medicine Perspective All the arm meridians cross the shoulder. However, most of the important structures of the shoulder are in the lateral and posterior aspects and are thereby governed by the arm yang meridians - Large Intestine, Sanjiao and Small Intestine. Of the yin meridians, only the most superficial (or least yin), the tai yin meridian of the Lung, plays any significant roll in the shoulder. Palpate your own armpit where the Heart and Pericardium meridians pass and feel how little substance there is there. Notice also that the distance between the Lu and Ht meridians is small relative to that between the LI and SI meridians. Thus the LI, SJ and SI (and to a lesser extent the Lu) are those most involved in shoulder problems. The author’s perspective on the sinew channels (jinjing) as they cross the shoulder is: Jingjin Pathway - elbow to neck/chest Large Intestine Up lateral intermuscular septum to Deltoid insertion, Deltoid, binds at acromion, Trapezius Sanjiao Up lateral intermuscular septum (with LI) to lateral tubercle, Supraspinatus, Levator scapula Small Intestine Triceps, Infraspinatus, Teres major and minor, Rhomboids, Serratus posterior superior, contra-lateral Splenius cervicis and capitis Lung Brachialis and Biceps, Coracobrachialis, binds at coracoid process, Pectoralis minor, subclavius Pericardium Up medial intermuscular septum to axilla, divides, Subscapularis, Serratus anterior, and Latissimus dorsi, Teres major Heart Up medial intermuscular septum, Pectoralis major The arm yang meridians do not seem to have any direct relationship with the organs whose names they bear. They have no points that directly affect those organs, the points that do directly affect them being on other meridians, notably the Bl and St meridians. It is more useful to think of the arm yang meridians as reflecting the yang aspects of the related zang. Therefore, LI meridian relates to yang aspects of Lu SJ “ “ “ “ “ PC SI “ “ “ “ “ Ht 2 of 25 Points that affect the shoulder The many local points of the shoulder have precise local effects that often depend on precise needling. Choices about direction and depth are particularly important. The anatomy of the target tissue is the main guide. In addition to the meridian points there are several extra points. Even with this many points there are many situations requiring the use of ah shi points. Local points LI15 (Jianyu) Gleno-humeral joint and supraspinatus tendon LI16 (Jugu) Acromio-clavicular joint and supraspinatus SJ 14 (Jianliao) Supraspinatus and infraspinatus tendons SI 9 (Jianzhen) Teres major, Latissimus dorsi SI10 (Naoshu) Infraspinatus SI 11 (Tianzong) Infraspinatus SI 12 (Bingfeng) Supraspinatus muscle SI 14 (Jianweishu) Levator scapulae SI 15 (Jianzhongshu) Splenius cervicis SJ 15 (Tianliao) Trapezius Bl 41 (Pohu) Serratus posterior superior Bl 43 (Gohuangshu) Serratus posterior superior Lu 1 (Zhongfu) Pectoralis major and minor There is little agreement in available texts about the names and locations of extra points around the shoulder. Extra (Jianqian, Taijian, N-UE-11) 1.0 - 1.5 cun anterior to LI 15 below clavicle Gleno-humeral joint Extra (Taijian, Jianshu, N-UE-42) In the hollow below AC jt, lateral to the tip of the coracoid process. Gleno humeral joint Extra (Jianneiling, Jianqian, M-UE-48) With the arm hanging at the side, midway between the end of the anterior axillary crease and LI15 (Jianyu) Anterior deltoid, short head of Biceps, Coracobrachialis Extra (Jubei) 3 cun above anterior axillary fold. Gleno-humeral joint 3 of 25 Distal points LI 11 (Quchi) The best general point for mechanical shoulder problems Lu 7 (Lieque) Anterior shoulder. Combines well with Lu 2 Lu 5 (Chize) Anterior shoulder pain and qi stagnation Lu 9 (Taiyuan) Bilateral shoulder pain Extra point The most tender point between St 36 and St 38 about two fingers width from the edge of the tibia. Needled and manipulated while patient moves their shoulder around. To increase range of movement of stiff shoulder Examination of the shoulder A thorough examination of the shoulder is almost always productive Patient sitting Look: from the front for asymmetry, swelling etc. Move: Test passive and active resisted movements Passive movements: These test the quality and range of joint movement. You are looking for: • differences between the ranges of movement of the two shoulders. Restricted shoulder movement can be caused by tight muscles, contracted ligaments or joint capsules, or bony deformity. • an altered quality of the end feel and pain at the end of the (passive) range. In general tight muscles produce little pain at the end of the passive movement and the endfeel is springy. Contracted joint capsules and ligaments, on the other hand are often painful at the end of range and have a more sudden endfeel. A single reduced range of movement is usually a sign of a trigger point in a muscle that performs the opposite action to the restricted movement. For instance, restricted internal rotation can indicate a trigger point in infraspinatus, a major external rotator. Several restricted ranges of movement, on the other hand, usually indicate a disorder of the gleno-humeral joint. Active resisted movements - test a muscle’s integrity and strength. 4 of 25 Pain indicates some sort of inflammation or damage to the musculo tendinous structures responsible for the movement being tested. For instance, painful shoulder abduction can indicate disorder of Supraspinatus, a major abductor. Weakness is more difficult to interpret as it can be caused by neurological phenomena or atrophy from lack of use. Stand behind patient with one hand on the shoulder and the other holding the arm to move or resist. Test flexion & extension abduction & adduction internal & external rotation Feel: Diagnosis of shoulder dysfunction is greatly aided by the accessibility of all the major structures. By palpating these, suspicions derived from the movement tests can be confirmed and areas of dysfunction that produced no positive movement signs can be uncovered. During the palpation the operator tests each structure with appropriate pressure and the patient reports any tenderness elicited. The operator tries to feel the dysfunction Stand behind patient and examine both sides at once. • sterno - clavicular joint • the clavicle (signs of previous fracture) • coracoid process (mainly as a landmark) • coraco-clavicular ligaments (conoid and trapezoid) • head of the humerus (tenderness - capsule tightness/ inflammation) • pectoralis minor (muscle belly for trigger points) • pectoralis major (muscle belly for trigger points) • coracobrachialis (muscle belly for trigger points) • anterior deltoid (muscle belly for trigger points) • acromion process, acromio-clavicular joint • bicipital groove (for bicipital tendinopathy and as a landmark) • supraspinatus tendon (for tendinopathy) • infraspinatus / teres minor tendons (for tendinopathy) • infraspinatus / teres minor muscle bellies (muscle belly for trigger points) • medial to medial scapula border (upper ribs, serratus post. sup.) 5 of 25 • levator scapula and upper trapezius (muscle belly for trigger points) • subscapularis (muscle belly for trigger points) Note: If you cannot elicit or aggravate pain in the shoulder region by testing the active and passive movements of the shoulder then the most likely cause of the pain is referred pain from the neck &/or the upper back. Check this by testing neck movements. On the following page I have reproduced a list of the muscles responsible for the various shoulder movements. Keep a copy in your clinic to assist your examination. 6 of 25 Muscles of the Shoulder Movement Primary movers Secondary movers Flexion Anterior Deltoid Pectoralis major Coracobrachialis Biceps brachialis Extension Latissimus dorsi Teres minor Teres major Triceps (long head) Posterior deltoid Abduction Deltoid - middle Deltoid - rest Supraspinatus Serratus anterior Adduction Pectoralis major Teres major Latissimus dorsi External Rotation Infraspinatus Posterior deltoid Teres minor Internal Rotation Subscapularis Anterior deltoid Pectoralis major Latissimus dorsi Teres major Scapular Elevation Trapezius Rhomboids Levator scapulae Scapular Depression Latissimus Dorsi
Recommended publications
  • Should Joint Presentation File
    6/5/2017 The Shoulder Joint Bones of the shoulder joint • Scapula – Glenoid Fossa Infraspinatus fossa – Supraspinatus fossa Subscapular fossa – Spine Coracoid process – Acromion process • Clavicle • Humerus – Greater tubercle Lesser tubercle – Intertubercular goove Deltoid tuberosity – Head of Humerus Shoulder Joint • Bones: – humerus – scapula Shoulder Girdle – clavicle • Articulation – glenohumeral joint • Glenoid fossa of the scapula (less curved) • head of the humerus • enarthrodial (ball and socket) 1 6/5/2017 Shoulder Joint • Connective tissue – glenoid labrum: cartilaginous ring, surrounds glenoid fossa • increases contact area between head of humerus and glenoid fossa. • increases joint stability – Glenohumeral ligaments: reinforce the glenohumeral joint capsule • superior, middle, inferior (anterior side of joint) – coracohumeral ligament (superior) • Muscles play a crucial role in maintaining glenohumeral joint stability. Movements of the Shoulder Joint • Arm abduction, adduction about the shoulder • Arm flexion, extension • Arm hyperflexion, hyperextension • Arm horizontal adduction (flexion) • Arm horizontal abduction (extension) • Arm external and internal rotation – medial and lateral rotation • Arm circumduction – flexion, abduction, extension, hyperextension, adduction Scapulohumeral rhythm • Shoulder Joint • Shoulder Girdle – abduction – upward rotation – adduction – downward rotation – flexion – elevation/upward rot. – extension – Depression/downward rot. – internal rotation – Abduction (protraction) – external rotation
    [Show full text]
  • Extended Insertion of Teres Minor Muscle: a Rare Case Report
    Eur J Anat, 16 (3): 224-225 (2012) CASE REPORT Extended insertion of teres minor muscle: a rare case report Monica Jain, Lovesh Shukla, Dalbir Kaur Maharaja Agrasen Medical College, Agroha-125047, Hisar, Haryana, India SUMMARY upwards and laterally, and gets inserted on the lowest of the three impressions on the greater Teres minor is one of the muscles of the shoul- tubercle of the humerus and fuses with the der joint along with subscapularis, supraspina- capsule of the shoulder joint along with other tus and infraspinatus forming rotator cuff. muscles forming the rotator cuff. It is inner- Variations of teres minor are relatively uncom- vated by the posterior branch of the axillary mon. A unique and extended insertion of this nerve. It stabilizes the humerus by holding muscle is being reported in the present case. the humeral head in the glenoid cavity of the Knowledge of the anatomy of this muscle is scapula, a and causes lateral rotation of the important to avoid injury to the axillary nerve arm (Johnson, 2008). Variations of teres and posterior circumflex humeral vessels while minor are relatively uncommon and have been surgically approaching the shoulder joint and occasionally reported by various authors inserting portals of the arthroscope in a poste- (Bergman et al., 2006). rior approach to the shoulder joint. Key words: Teres minor – Rotator cuff – CASE REPORT Shoulder joint – Capsule of shoulder joint – Humerus – Surgical neck of humerus During routine dissection of the shoulder region of upper limb of an approximately 50 year-old male cadaver for undergraduate teach- INTRODUCTION ing and training, a unique and extended inser- tion of the teres minor muscle was found on the Teres minor is a one of the short scapular right side.
    [Show full text]
  • Anatomic Variations in Relation to the Origin of the Musculocutaneous Nerve: Absence and Non-Perforation of the Coracobrachialis Muscle
    Int. J. Morphol., 36(2):425-429, 2018. Anatomic Variations in Relation to the Origin of the Musculocutaneous Nerve: Absence and Non-Perforation of the Coracobrachialis Muscle. Anatomical Study and Clinical Significance Variaciones Anatómicas en Relación al Origen del Nervio Musculocutáneo: Ausencia y no Perforación del Músculo Coracobraquial: Estudio Anatómico y Significado Clínico Daniel Raúl Ballesteros Larrotta1; Pedro Luis Forero Porras2 & Luis Ernesto Ballesteros Acuña1 BALLESTEROS, D. R.; FORERO, P. L. & BALLESTEROS, L. E. Anatomic variations in relation to the origin of the musculocutaneous nerve: Absence and non-perforation of the coracobrachialis muscle. Anatomical study and clinical significance. Int. J. Morphol., 36(2):425- 429, 2018. SUMMARY: The most frequent anatomic variations of the musculocutaneous nerve could be divided in two main groups: communicating branches with the median nerve and variations in relation to the origin, which in turn can be subdivided into absence of the nerve and non-perforation of the coracobrachialis muscle. Unusual clinical symptoms and/or unusual physical examination in patients with motor disorders, could be explained by anatomic variations of the musculocutaneous nerve. A total of 106 arms were evaluated, corresponding to 53 fresh male cadavers who were undergoing necropsy. The presence or absence of the musculocutaneous nerve was evaluated and whether it pierced the coracobrachialis muscle or not. The lengths of the motor branches and the distances from its origins to the coracoid process were measured. In 10 cases (9.5 %) an unusual origin pattern was observed, of which six (5.7 %) correspond to non-perforation of the coracobrachialis muscle and four (3.8 %) correspond to absence of the nerve.
    [Show full text]
  • Multi-Modal Imaging of the Subscapularis Muscle
    Insights Imaging (2016) 7:779–791 DOI 10.1007/s13244-016-0526-1 REVIEW Multi-modal imaging of the subscapularis muscle Mona Alilet1 & Julien Behr2 & Jean-Philippe Nueffer1 & Benoit Barbier-Brion 3 & Sébastien Aubry 1,4 Received: 31 May 2016 /Revised: 6 September 2016 /Accepted: 28 September 2016 /Published online: 17 October 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract • Long head of biceps tendon medial dislocation can indirect- The subscapularis (SSC) muscle is the most powerful of the ly signify SSC tendon tears. rotator cuff muscles, and plays an important role in shoulder • SSC tendon injury is associated with anterior shoulder motion and stabilization. SSC tendon tear is quite uncom- instability. mon, compared to the supraspinatus (SSP) tendon, and, most • Dynamic ultrasound study of the SSC helps to diagnose of the time, part of a large rupture of the rotator cuff. coracoid impingement. Various complementary imaging techniques can be used to obtain an accurate diagnosis of SSC tendon lesions, as well Keywords Subscapularis . Tendon injury . Rotator cuff . as their extension and muscular impact. Pre-operative diag- Magnetic resonance imaging . Coracoid impingement nosis by imaging is a key issue, since a lesion of the SSC tendon impacts on treatment, surgical approach, and post- operative functional prognosis of rotator cuff injuries. Introduction Radiologists should be aware of the SSC anatomy, variabil- ity in radiological presentation of muscle or tendon injury, The subscapularis (SSC) muscle is one of the four compo- and particular mechanisms that may lead to a SSC injury, nents of the rotator cuff along with the supraspinatus (SSP), such as coracoid impingement.
    [Show full text]
  • M1 – Muscled Arm
    M1 – Muscled Arm See diagram on next page 1. tendinous junction 38. brachial artery 2. dorsal interosseous muscles of hand 39. humerus 3. radial nerve 40. lateral epicondyle of humerus 4. radial artery 41. tendon of flexor carpi radialis muscle 5. extensor retinaculum 42. median nerve 6. abductor pollicis brevis muscle 43. flexor retinaculum 7. extensor carpi radialis brevis muscle 44. tendon of palmaris longus muscle 8. extensor carpi radialis longus muscle 45. common palmar digital nerves of 9. brachioradialis muscle median nerve 10. brachialis muscle 46. flexor pollicis brevis muscle 11. deltoid muscle 47. adductor pollicis muscle 12. supraspinatus muscle 48. lumbrical muscles of hand 13. scapular spine 49. tendon of flexor digitorium 14. trapezius muscle superficialis muscle 15. infraspinatus muscle 50. superficial transverse metacarpal 16. latissimus dorsi muscle ligament 17. teres major muscle 51. common palmar digital arteries 18. teres minor muscle 52. digital synovial sheath 19. triangular space 53. tendon of flexor digitorum profundus 20. long head of triceps brachii muscle muscle 21. lateral head of triceps brachii muscle 54. annular part of fibrous tendon 22. tendon of triceps brachii muscle sheaths 23. ulnar nerve 55. proper palmar digital nerves of ulnar 24. anconeus muscle nerve 25. medial epicondyle of humerus 56. cruciform part of fibrous tendon 26. olecranon process of ulna sheaths 27. flexor carpi ulnaris muscle 57. superficial palmar arch 28. extensor digitorum muscle of hand 58. abductor digiti minimi muscle of hand 29. extensor carpi ulnaris muscle 59. opponens digiti minimi muscle of 30. tendon of extensor digitorium muscle hand of hand 60. superficial branch of ulnar nerve 31.
    [Show full text]
  • Stretching and Positioning Regime for Upper Limb
    Information for patients and visitors Stretching and Positioning Regime for Upper Limb Physiotherapy Department This leaflet has been designed to remind you of the exercises you Community & Therapy Services have been taught, the correct techniques and who to contact with any queries. For more information about our Trust and the services we provide please visit our website: www.nlg.nhs.uk Information for patients and visitors Muscle Tone Muscle tone is an unconscious low level contraction of your muscles while they are at rest. The purpose of this is to keep your muscles primed and ready to generate movement. Several neurological causes may change a person’s muscle tone to increase or decrease resulting in a lack of movement. Over time, a lack of movement can cause stiffness, pain, and spasticity. In severe cases this may also lead to contractures. Spasticity Spasticity can be defined as a tightening or stiffness of the muscle due to increased muscle tone. It can interfere with normal functioning. It can also greatly increase fatigue. However, exercise, properly done, is vital in managing spasticity. The following tips may prove helpful: • Avoid positions that make the spasticity worse • Daily stretching of muscles to their full length will help to manage the tightness of spasticity, and allow for optimal movement • Moving a tight muscle to a new position may result in an increase in spasticity. If this happens, allow a few minutes for the muscles to relax • When exercising, try to keep head straight • Sudden changes in spasticity may
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • MRI Patterns of Shoulder Denervation: a Way to Make It Easy
    MRI Patterns Of Shoulder Denervation: A Way To Make It Easy Poster No.: C-2059 Congress: ECR 2018 Type: Educational Exhibit Authors: E. Rossetto1, P. Schvartzman2, V. N. Alarcon2, M. E. Scherer2, D. M. Cecchi3, F. M. Olivera Plata4; 1Buenos Aires, Capital Federal/ AR, 2Buenos Aires/AR, 3Capital Federal, Buenos Aires/AR, 4Ciudad Autonoma de Buenos Aires/AR Keywords: Musculoskeletal joint, Musculoskeletal soft tissue, Neuroradiology peripheral nerve, MR, Education, eLearning, Edema, Inflammation, Education and training DOI: 10.1594/ecr2018/C-2059 Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third- party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file. As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited. You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages. Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
    [Show full text]
  • Design of a Working Model of an Upper Limb Prosthesis: Wrist Mechanism
    DESIGN OF A WORKING MODEL OF AN UPPER LIMB PROSTHESIS: WRIST MECHANISM BY SAHIL VIKAS DANGE A thesis submitted to the Graduate School|New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Mechanical and Aerospace Engineering Written under the direction of Professor William Craelius and Professor Noshir A. Langrana and approved by New Brunswick, New Jersey October, 2017 ABSTRACT OF THE THESIS Design of a working model of an upper limb prosthesis: Wrist Mechanism by Sahil Vikas Dange Thesis Directors: Professor William Craelius and Professor Noshir A. Langrana This thesis demonstrates a new design for an upper limb prosthetic wrist that gives 3 independent degrees of freedom (DOFs) through individual mechanisms. A human wrist has 3 degrees of freedom i.e. Flexion-Extension, Radial- Ulnar deviation and Pronation-Supination. The upper limb prostheses that are currently available in the market generally provide 1 (usually Pronation- Supination) or at most 2 degrees of freedom, which is not sufficient for daily life. For this thesis, a new wrist having all the 3 DOFs was designed in the SolidWorks software, a prototype was 3D printed and a basic analysis of the mechanical properties of the model through SolidWorks simulation was carried out. The prototype mechanisms were then connected to servo motors, with potentiometers as their inputs, that were programmed through an arduino and were tested to see if they work as expected. Faithful recreation of the wrist motions was achieved and the range of motion (ROM) of this prosthesis was similar to the ROM of an actual human wrist.
    [Show full text]
  • Human Functional Anatomy 213 Upper & Lower Limbs Compared
    Human Functional Anatomy 213 week 6 1 Human Functional Anatomy 213 week 6 2 HUMAN FUNCTIONAL ANATOMY 213 DORSAL and VENTRAL, UPPER & LOWER LIMBS COMPARED PREAXIAL and POSTAXIAL THIS WEEKS LAB: Limbs evolved from paddles or fins, each with The hand and Foot 1. Dorsal and ventral sides 2. Preaxial and postaxial edges. In this lecture During Dorsal and ventral, Preaxial and postaxial development, Similarities in structure – Homology? human limbs were 1. Bones the same, but 2. Muscles rotations and 3. Nerves differential Muscles of the Shoulder and Hip/Arm and Thigh growth have The hand and foot modified the Muscles of the leg/foot and forearm/hand overall shape. The preaxial border is closer to the head and therefore supplied by more cranial nerves. We can identify the preaxial and postaxial borders in adult limbs by the first and fifth digits of the hand and foot Veins and nerves Human Functional Anatomy 213 week 6 3 Human Functional Anatomy 213 week 6 4 Similarities in structure - Homology PROXIMAL MUSCLES IN THE UPPER AND LOWER LIMBS Bones and joints Shoulder & Hip – Ball and socket joints Shoulder and arm Hip and thigh Humerus & Femur – Single bone in the proximal segment. Triceps Quadruceps etc Radial nerve Femoral nerve Knee & Elbow – hinge/uniaxial joints. Biceps etc Hamstrings Leg & Forearm – Two bones in the distal segment Musculocutaneous nerve Tibial nerve Tibia & Radius – Preaxial bones. Fibula & ulna – Postaxial bones Deltoid plus Gluteals & TFL posterior axillary muscles plus 6 lateral rotators Axillary nerve and post cord Gluteal nerves Ankle & Wrist – tarsals & carpals Even in the Pectorals Adductors hand and foot we Pectoral nerves Obturator nerve can find homologies between the carpal and tarsal bones.
    [Show full text]
  • Anatomy, Shoulder and Upper Limb, Shoulder Muscles
    Eovaldi BJ, Varacallo M. Anatomy, Shoulder and Upper Limb, Shoulder Muscles. [Updated 2018 Dec 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534836/ Anatomy, Shoulder and Upper Limb, Shoulder Muscles Authors Benjamin J. Eovaldi1; Matthew Varacallo2. Affilations 1 University of Tennessee HSC 2 Department of Orthopaedic Surgery, University of Kentucky School of Medicine Last Update: December 3, 2018. Introduction The shoulder joint (glenohumeral joint) is a ball and socket joint with the most extensive range of motion in the human body. The muscles of the shoulder dynamically function in performing a wide range of motion, specifically the rotator cuff muscles which function to move the shoulder and arm as well as provide structural integrity to the shoulder joint. The different movements of the shoulder are: abduction, adduction, flexion, extension, internal rotation, and external rotation.[1] The central bony structure of the shoulder is the scapula. All the muscles of the shoulder joint interact with the scapula. At the lateral aspect of the scapula is the articular surface of the glenohumeral joint, the glenoid cavity. The glenoid cavity is peripherally surrounded and reinforced by the glenoid labrum, shoulder joint capsule, supporting ligaments, and the myotendinous attachments of the rotator cuff muscles. The muscles of the shoulder play a critical role in providing stability to the shoulder joint. The primary muscle group that supports the shoulder joint is the rotator cuff muscles. The four rotator cuff muscles include:[2] • Supraspinatus • Infraspinatus • Teres minor • Subscapularis. Structure and Function The upper extremity is attached to the appendicular skeleton by way of the sternoclavicular joint.
    [Show full text]
  • Kinematics Based Physical Modelling and Experimental Analysis of The
    INGENIERÍA E INVESTIGACIÓN VOL. 37 N.° 3, DECEMBER - 2017 (115-123) DOI: http://dx.doi.org/10.15446/ing.investig.v37n3.63144 Kinematics based physical modelling and experimental analysis of the shoulder joint complex Modelo físico basado en cinemática y análisis experimental del complejo articular del hombro Diego Almeida-Galárraga1, Antonio Ros-Felip2, Virginia Álvarez-Sánchez3, Fernando Marco-Martinez4, and Laura Serrano-Mateo5 ABSTRACT The purpose of this work is to develop an experimental physical model of the shoulder joint complex. The aim of this research is to validate the model built and identify the forces on specified positions of this joint. The shoulder musculoskeletal structures have been replicated to evaluate the forces to which muscle fibres are subjected in different equilibrium positions: 60º flexion, 60º abduction and 30º abduction and flexion. The physical model represents, quite accurately, the shoulder complex. It has 12 real degrees of freedom, which allows motions such as abduction, flexion, adduction and extension and to calculate the resultant forces of the represented muscles. The built physical model is versatile and easily manipulated and represents, above all, a model for teaching applications on anatomy and shoulder joint complex biomechanics. Moreover, it is a valid research tool on muscle actions related to abduction, adduction, flexion, extension, internal and external rotation motions or combination among them. Keywords: Physical model, shoulder joint, experimental technique, tensions analysis, biomechanics, kinetics, cinematic. RESUMEN Este trabajo consiste en desarrollar un modelo físico experimental del complejo articular del hombro. El objetivo en esta investigación es validar el modelo construido e identificar las fuerzas en posiciones específicas de esta articulación.
    [Show full text]