Leveraging Word and Phrase Alignments for Multilingual Learning

Total Page:16

File Type:pdf, Size:1020Kb

Leveraging Word and Phrase Alignments for Multilingual Learning Leveraging Word and Phrase Alignments for Multilingual Learning Junjie Hu CMU-LTI-21-012 Language Technologies Institute School of Computer Science Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15123 www.lti.cs.cmu.edu Thesis Committee: Dr. Graham Neubig (Chair) Carnegie Mellon University Dr. Yulia Tsvetkov Carnegie Mellon University Dr. Zachary Lipton Carnegie Mellon University Dr. Kyunghyun Cho New York University Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. © 2020 Junjie Hu Keywords: natural language processing, multilingual learning, cross-lingual transfer learn- ing, machine translation, domain adaptation, deep learning Dedicated to my family for their wholehearted love and support in all my endeavours. iv Abstract Recent years have witnessed impressive success in natural language processing (NLP) thanks to the advances of neural networks and the availability of large amounts of labeled data. However, many NLP systems predominately have focused on high- resource languages (e.g., English, Chinese) that have large, computationally accessi- ble collections of labeled data for training. While the achievements on high-resource languages are exciting, there are more than 6,900 languages in the world and the ma- jority of them have far fewer resources for training deep neural networks. In fact, it is often expensive, or sometimes infeasible, to collect labeled data written in all possible languages. As a result, this data scarcity issue limits the generalization of NLP systems in many multilingual scenarios. Moreover, as models may be used to process text from a wide range of domains (e.g., social media or medical articles), the data scarcity issue is further exacerbated by the domain shift between the training and test data. In this thesis, with the goal of improving the generalization ability of NLP models to alleviate the aforementioned challenges, we exploit word and phrase alignment to train neural NLP models (e.g., neural machine translation or contextualized language models), and provide evaluation methods for examining the generalization capabili- ties of such models over diverse application scenarios. This thesis contains two parts. The first part explores cross-lingual generalization for language understanding. In particular, we examine the ability of pre-trained multilingual representations to trans- fer learned knowledge from a high-resource language to other languages. To this end, we first introduce a multi-task benchmark for evaluating the cross-lingual general- ization capabilities of multilingual representations across 40 languages and 9 tasks. Second, we leverage word and sentence alignments from parallel data to improve the multilingual representations for language understanding tasks such as those included in our benchmark. The second part of the thesis is devoted to leveraging alignment information for machine translation, a popular and useful language generation task. In particular, we focus on learning to translate aligned words and phrases between two languages with fewer parallel sentences. To accomplish this goal, we exploit techniques to obtain aligned words and phrases from monolingual data, knowledge bases or crowdsourcing and use them to improve translation systems. vi Acknowledgments First and foremost, I am grateful to my advisors Graham Neubig and Jaime Car- bonell who have provided me with constant supports as well as insightful discussions in my academic development at Carnegie Mellon University. In addition to being an excellent researcher, Graham is also the kindest and most supportive mentor that I have had during my academic career. He has a great sense of research taste, which also motivates me to conduct important research and think deeply about my research agenda. Jaime is one of the most influential researchers that I have met and a role model for my academic career. Both of them will have a long-standing influence on me beyond my PhD. I would like to thank Kyunghyun Cho, Yulia Tsvetkov and Zachary Lipton for all the help they have provided to me during my Ph.D. study, including serving as my committee members, giving advice on my job search, and having insightful discus- sions about my thesis. A huge thanks go to all of my other collaborators and friends throughout my Ph.D. study at CMU: Pengcheng Yin, Wei-cheng Chang, Yuexin Wu, Diyi Yang, Po-Yao Huang, Han Zhao, Yichong Xu, Zhengbao Jiang, Zi-Yi Dou, Mengzhou Xia, Anto- nios Anastasopoulos, Chunting Zhou, Xuezhe Ma, Xinyi Wang, Austin Matthews, Craig Stewart, Nikolai Vogler, Shruti Rijhwani, Paul Michel, Danish Pruthi, Zaid Sheikh, Wei Wei, Zi Yang, Zhilin Yang, Desai Fan, Shuxin Yao, Hector Liu, Zhiting Hu, Jean Oh, Andrej Risteski, Geoff Gordon, Anatole Gershman, Ruslan Salakhut- dinov, and William Cohen. In addition to my time at CMU, I also would like to thank my MPhil advisors Michael R. Lyu and Irwin King at the Chinese University of Hong Kong, and my col- laborators during my internship at Google and Microsoft: Sebastian Ruder, Melvin Johnson, Orhan Firat, Aditya Siddhant, Yu Cheng, Zhe Gan, Jingjing Liu, Jianfeng Gao, Liu Yang, Xiaodong Liu, Yelong Shen. Last but most importantly, I would like to thank my dad Saihao Hu, my mom Suhua Li, my elder sister Jiana Hu, and my lovely girlfriend Ming Jiang for all of your unconditional love and support during my Ph.D. journey. Needless to say, this thesis would not have been possible without your encouragement along the way. This thesis is dedicated to all of you. viii Contents 1 Introduction1 1.1 Main Contributions.................................3 1.2 Thesis Outline....................................5 2 Background7 2.1 Prior Work.....................................7 2.2 Multilingual Neural Network Models........................ 12 2.3 Pre-training of Neural Network Models...................... 13 3 Cross-Lingual Generalization Benchmark 17 3.1 Overview...................................... 17 3.2 XTREME...................................... 19 3.3 Experiments..................................... 23 3.4 Analyses....................................... 28 3.5 Related Work.................................... 34 3.6 Discussion and Future Work............................ 36 4 Leveraging Word and Sentence Alignment for Language Understanding 37 4.1 Overview...................................... 38 4.2 Cross-lingual Alignment.............................. 38 4.3 Experiments..................................... 41 4.4 Related Work.................................... 44 4.5 Discussion and Future Work............................ 45 5 Leveraging Word Alignment for Domain Adaptation of Machine Translation 47 5.1 Overview...................................... 47 5.2 Domain Adaptation by Lexicon Induction..................... 48 ix 5.3 Experimental Results................................ 51 5.4 Related Work.................................... 61 5.5 Discussion and Future Work............................ 62 6 Leveraging Aligned Entities for Machine Translation 63 6.1 Overview...................................... 64 6.2 Denoising Entity Pre-training............................ 65 6.3 Experimental Setting................................ 68 6.4 Discussion...................................... 70 6.5 Related Work.................................... 77 6.6 Discussion and Future Work............................ 78 7 Leveraging Phrase Alignment for Machine Translation 81 7.1 Overview...................................... 81 7.2 Problem Definition................................. 82 7.3 Active Selection Strategies............................. 84 7.4 Training with Sentences and Phrases........................ 87 7.5 Experiments..................................... 89 7.6 Related Work.................................... 97 7.7 Discussion and Future Work............................ 98 8 Conclusion 99 8.1 Summary of Contributions............................. 99 8.2 Key Ideas and Suggestions............................. 101 8.3 Future Work..................................... 103 A Appendix of Chapter 3 105 A.1 Languages...................................... 105 A.2 Translations for QA datasets............................ 105 A.3 Performance on translated test sets......................... 107 A.4 Generalization to unseen tag combinations..................... 107 A.5 Results for each task and language......................... 109 B Appendix of Chapter 4 113 B.1 Training Details for Reproducibility........................ 113 x B.2 Detailed Results................................... 114 B.3 Detailed Results on Performance Difference by Languages............ 115 Bibliography 117 xi xii Chapter 1 Introduction Over the past decade, the success of NLP systems has been mostly driven by deep neural network models and supervised learning approaches on a large amount of labeled data. For example, neural machine translation (NMT) [18] trained on billions of parallel sentences has become the de facto paradigm of many commercial translation systems such as Google’s multilingual NMT system [3, 89] and Microsoft’s NMT system [77]. Among these exciting NLP research develop- ments, this thesis particularly focuses on multilingual learning approaches and investigates two main categories of multilingual NLP tasks – machine translation (MT) and cross-lingual lan- guage understanding. Machine translation is the task of translating text from a source language to another target language. The broad genre of cross-lingual language
Recommended publications
  • BAB I PENDAHULUAN A. Latar Belakang Masalah Olahraga
    BAB I PENDAHULUAN A. Latar Belakang Masalah Olahraga bulutangkis di Indonesia sudah dikenal sejak lama oleh masyarakat Indonesia bahkan mancanegara. Hal ini ditandai dengan munculnya pemain- pemain Indonesia dalam kejuaraan-kejuaraan tingkat dunia, baik dalam nomor tunggal putra, tunggal putri, ganda putra, ganda putri, dan ganda campuran. Menurut Wikipedia, kejayaan Indonesia diawali dengan munculnya juara-juara dunia pada multi event olympiade, diawali oleh Alan Budikusuma dan Susi Susanti (Tahun 1992), Rexy Mainaky dan Ricky Subagja (Tahun 1996), Toni Gunawan dan Candra Wijaya (Tahun 2000), Taufik Hidayat (Tahun 2004), dan terakhir Markis Kido dan Hendra Setiawan (Tahun 2008). Sejak saat itulah pemain-pemain Indonesia sangat disegani oleh pemain- pemain dari luar negeri sehingga olahraga bulutangkis merupakan salah satu cabang olahraga yang mampu membawa nama harum bangsa Indonesia di kancah dunia, karena prestasi olahraga bulutangkis yang mendunia, maka prestasi yang diraih tersebut harus terus dipertahankan dan dikembangkan oleh bangsa Indonesia untuk masa sekarang dan masa yang akan datang. Tetapi pada kenyataannya, peraih medali emas multi event olympiade khususnya dalam nomor tunggal putri semakin menurun dan sampai saat ini tidak pernah ada pemain nomor tunggal putri Indonesia yang menyumbangkan medali emas pada kejuaraan tersebut, terkecuali Susi Susanti pada multi event olympiade Barcelona di Spanyol tahun 1992. Pada masa ini dan di masa yang akan datang akan terjadi persaingan yang sangat ketat antar pemain dan munculnya juara-juara baru yang menggeser juara- juara lama. Persaingan tersebut terjadi dikarenakan adanya keinginan untuk mendapatkan pengakuan dari negara-negara lain. Dalam persaingan yang sangat ketat ini maka pelatih dituntut untuk bekerja keras membina pemainnya dengan tujuan akhir tercipta seorang pemain dunia yang berprestasi dalam cabang olahraga yang dibinanya.
    [Show full text]
  • 16.1 Digital “Modes”
    Contents 16.1 Digital “Modes” 16.5 Networking Modes 16.1.1 Symbols, Baud, Bits and Bandwidth 16.5.1 OSI Networking Model 16.1.2 Error Detection and Correction 16.5.2 Connected and Connectionless 16.1.3 Data Representations Protocols 16.1.4 Compression Techniques 16.5.3 The Terminal Node Controller (TNC) 16.1.5 Compression vs. Encryption 16.5.4 PACTOR-I 16.2 Unstructured Digital Modes 16.5.5 PACTOR-II 16.2.1 Radioteletype (RTTY) 16.5.6 PACTOR-III 16.2.2 PSK31 16.5.7 G-TOR 16.2.3 MFSK16 16.5.8 CLOVER-II 16.2.4 DominoEX 16.5.9 CLOVER-2000 16.2.5 THROB 16.5.10 WINMOR 16.2.6 MT63 16.5.11 Packet Radio 16.2.7 Olivia 16.5.12 APRS 16.3 Fuzzy Modes 16.5.13 Winlink 2000 16.3.1 Facsimile (fax) 16.5.14 D-STAR 16.3.2 Slow-Scan TV (SSTV) 16.5.15 P25 16.3.3 Hellschreiber, Feld-Hell or Hell 16.6 Digital Mode Table 16.4 Structured Digital Modes 16.7 Glossary 16.4.1 FSK441 16.8 References and Bibliography 16.4.2 JT6M 16.4.3 JT65 16.4.4 WSPR 16.4.5 HF Digital Voice 16.4.6 ALE Chapter 16 — CD-ROM Content Supplemental Files • Table of digital mode characteristics (section 16.6) • ASCII and ITA2 code tables • Varicode tables for PSK31, MFSK16 and DominoEX • Tips for using FreeDV HF digital voice software by Mel Whitten, KØPFX Chapter 16 Digital Modes There is a broad array of digital modes to service various needs with more coming.
    [Show full text]
  • MD-Main Draw Badminton Tournament Planner - Bwf.Tournamentsoftware.Com BWF ID St
    YONEX Thailand Open MD-Main Draw Badminton Tournament Planner - bwf.tournamentsoftware.com BWF ID St. Cnty Round 1 Round 2 Quarterfinals Semifinals Final Winner 26394 INA Marcus Fernaldi Gideon [1] 1 80057 INA Kevin Sanjaya Sukamuljo 87403 FRA Eloi Adam 2 73323 FRA Julien Maio 90768 MAS Goh Sze Fei 3 94814 MAS Nur Izzuddin 88094 KOR Ko Sung Hyun 4 54785 KOR Shin Baek Cheol 56203 MAS Aaron Chia [8] 5 99389 MAS Soh Wooi Yik 54805 MAS Goh V Shem 6 52071 MAS Tan Wee Kiong 53924 RUS Vladimir Ivanov 7 67068 RUS Ivan Sozonov 76278 ENG Ben Lane 8 72478 ENG Sean Vendy 70969 JPN Takeshi Kamura [3] 9 90623 JPN Keigo Sonoda 27624 NZL Oliver Leydon-Davis 10 58628 NZL Abhinav Manota 71349 ENG Marcus Ellis 11 51624 ENG Chris Langridge 75983 THA Bodin Isara 12 67172 THA Maneepong Jongjit 88876 INA Fajar Alfian [5] 13 91130 INA Muhammad Rian Ardianto 30342 THA Nipitphon Phuangphuapet 14 74233 THA Tanupat Viriyangkura 91440 INA Muhammad Shohibul Fikri 15 79658 INA Bagas Maulana 67486 NGR Godwin Olofua 16 79662 NGR Anuoluwapo Juwon Opeyori 88405 JPN Akira Koga 17 77123 JPN Taichi Saito 68045 GER Mark Lamsfuss 18 64909 GER Marvin Seidel 92980 DEN Kim Astrup 19 44414 DEN Anders Skaarup Rasmussen 69448 TPE Lee Yang [6] 20 96514 TPE Wang Chi-Lin 84064 MAS Ong Yew Sin 21 99066 MAS Teo Ee Yi 98935 IND M.R. Arjun 22 57372 IND Dhruv Kapila 36299 USA Phillip Chew 23 93167 USA Ryan Chew 54026 JPN Hiroyuki Endo [4] 24 58240 JPN Yuta Watanabe 59803 IND Attri Manu 25 24172 IND Reddy B.
    [Show full text]
  • 1 Kementerian Pendidikan Dan Kebudayaan Badan
    Kementerian Pendidikan dan Kebudayaan Badan Pengembangan dan Pembinaan Bahasa Bacaan untuk Anak Tingkat SD Kelas 4, 5, dan 6 1 MILIK NEGARA TIDAK DIPERDAGANGKAN Atlet Indonesia yang Mendunia Fitrawan Umar Kementerian Pendidikan dan Kebudayaan Badan Pengembangan dan Pembinaan Bahasa ATLET INDONESIA YANG MENDUNIA Penulis : Fitrawan Umar Penyunting : Hidayat Widiyanto Ilustrator : Rulita Sani Hoerunisa Penata Letak: Rulita Sani Hoerunisa Diterbitkan pada tahun 2018 oleh Badan Pengembangan dan Pembinaan Bahasa Jalan Daksinapati Barat IV Rawamangun Jakarta Timur Hak Cipta Dilindungi Undang-Undang Isi buku ini, baik sebagian maupun seluruhnya, dilarang diperbanyak dalam bentuk apa pun tanpa izin tertulis dari penerbit, kecuali dalam hal pengutipan untuk keperluan penulisan artikel atau karangan ilmiah. PB Katalog Dalam Terbitan (KDT) 796.345 UMA Umar, Fitrawan a Atlet Indonesia yang Mendunia/Fitrawan Umar; Penyunting: Hidayat Widiyanto; Jakarta: Badan Pengembangan dan Pembinaan Bahasa, Kementerian Pendidikan dan Kebudayaan 2017 vi; 60 hlm.; 21 cm. ISBN: 978-602-437-207-1 BULU TANGKIS-INDONESIA Sambutan Sikap hidup pragmatis pada sebagian besar masyarakat Indonesia dewasa ini mengakibatkan terkikisnya nilai-nilai luhur budaya bangsa. Demikian halnya dengan budaya kekerasan dan anarkisme sosial turut memperparah kondisi sosial budaya bangsa Indonesia. Nilai kearifan lokal yang santun, ramah, saling menghormati, arif, bijaksana, dan religius seakan terkikis dan tereduksi gaya hidup instan dan modern. Masyarakat sangat mudah tersulut emosinya, pemarah, brutal, dan kasar tanpa mampu mengendalikan diri. Fenomena itu dapat menjadi representasi melemahnya karakter bangsa yang terkenal ramah, santun, toleran, serta berbudi pekerti luhur dan mulia. Sebagai bangsa yang beradab dan bermartabat, situasi yang demikian itu jelas tidak menguntungkan bagi masa depan bangsa, khususnya dalam melahirkan generasi masa depan bangsa yang cerdas cendekia, bijak bestari, terampil, berbudi pekerti luhur, berderajat mulia, berperadaban tinggi, dan senantiasa berbakti kepada Tuhan Yang Maha Esa.
    [Show full text]
  • The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on Iot Nodes in Smart Cities
    sensors Article The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (Z.A.O.); [email protected] (N.S.S.) * Correspondence: [email protected] Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, Citation: Nasif, A.; Othman, Z.A.; we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Sani, N.S.
    [Show full text]
  • Digram Coding Based Lossless Data Compression Algorithm
    Computing and Informatics, Vol. 29, 2010, 741–756 ISSDC: DIGRAM CODING BASED LOSSLESS DATA COMPRESSION ALGORITHM Altan Mesut, Aydin Carus Computer Engineering Department Trakya University Ahmet Karadeniz Yerleskesi Edirne, Turkey e-mail: {altanmesut, aydinc}@trakya.edu.tr Manuscript received 18 August 2008; revised 14 January 2009 Communicated by Jacek Kitowski Abstract. In this paper, a new lossless data compression method that is based on digram coding is introduced. This data compression method uses semi-static dic- tionaries: All of the used characters and most frequently used two character blocks (digrams) in the source are found and inserted into a dictionary in the first pass, compression is performed in the second pass. This two-pass structure is repeated several times and in every iteration particular number of elements is inserted in the dictionary until the dictionary is filled. This algorithm (ISSDC: Iterative Semi- Static Digram Coding) also includes some mechanisms that can decide about total number of iterations and dictionary size whenever these values are not given by the user. Our experiments show that ISSDC is better than LZW/GIF and BPE in com- pression ratio. It is worse than DEFLATE in compression of text and binary data, but better than PNG (which uses DEFLATE compression) in lossless compression of simple images. Keywords: Lossless data compression, dictionary-based compression, semi-static dictionary, digram coding 1 INTRODUCTION Lossy and lossless data compression techniques are widely used to increase capacity of data storage devices and to transfer data faster on networks. Lossy data com- 742 A. Mesut, A. Carus pression reduces the size of the source data by permanently eliminating redundant information.
    [Show full text]
  • YONEX German Open 2018 GERMAN OPEN INSIDE Samstag, 10
    Event-Magazin der YONEX German Open 2018 GERMAN OPEN INSIDE Samstag, 10. März Samstag, 10. März Gabriela und Stefani Stoeva im Halbfinale Lin Dan gegen Ng Ka Long Angus ausgeschieden GERMAN OPEN INSIDE - Samstag 3 Match of the Day 4 - 5 Höhepunkte am Samstag 129 - 13-13 Berichte XXXX und Fotos Viertelfinale 6 - 7 Gabriela und Stefani Stoeva 14 -18 Ergebnisse 8 Foto des Tages 19 Spielplan Halbfinale Die innogy Sporthalle – seit 2005 werden die YONEX German Open in Mülheim an der Ruhr ausgetragen. Ergebnisse und Infos auf YONEX German Open german-open-badminton.de auf Facebook Impressum Herausgeber des Eventmagazins: Hinweise: Vermarktungsgesellschaft Der Herausgeber des Eventmaga- Badminton zins haftet nicht für den Inhalt der Deutschland mbH (VBD) veröffentlichten Anzeigen Südstraße 25a, D-45470 Mülheim an der Ruhr Team: Tel.: 0208/308 2717 Claudia Pauli (cp) E-Mail: janet.bourakkadi @ Katja Süßkraut (ks) vbd-badminton.de Georgios Psaroulakis (gp) Bernd Bauer (bb) Copyright: Sven Heise (sh) Nachdruck, auch auszugsweise, Stephan Wilde (sw) nur mit ausdrücklicher Einwilli- gung des Herausgebers und unter Papier & Druck: voller Quellenangabe Konica Minolta Alexanderstr. 33 45472 Mülheim an der Ruhr Titelfoto: Sven Heise 2 German Open Inside | 10.3.2018 Match of the Day Halbfinale Damendoppel präsentiert vom Sportland Nordrhein-Westfalen 3. Spiel auf Spielfeld 1 Gabriela & Stefani Stoeva – Yuki Fukushima & Sayaka Hirota Herkunftsland: Bulgarien Herkunftsland: Japan Alter: 23 und 22 Jahre Alter: 24 und 23 Jahre Weltranglistenplatz 15 Weltranglistenplatz 4 Ungesetzt bei den YONEX German Open 2018 Setzplatz 3 bei den YONEX German Open 2018 Gabriela und Stefani Stoeva verloren die Im Vorjahr gewannen Yuki Fukushima und bisherigen drei Vergleiche mit den Japane­ Sayaka Hirota das Finale der YONEX German rinnen – darunter die Begegnung im Viertel­ Open gegen die Chinesinnen Huang Dong­ finale der YONEX German Open 2017.
    [Show full text]
  • Facts and Records
    Badminton England Facts and Records Index (cltr + click to jump to a particular section): 1. History of Badminton 2. Olympic Games 3. World Championships 4. Sudirman Cup 5. Thomas Cup 6. Uber Cup 7. Commonwealth Games 8. European Individual Championships 9. European Mixed Championships 10. England International Caps 11. All England Open Badminton Championships 12. England’s Record in International Matches 13. The Stuart Wyatt Trophy 14. International Open Tournaments 15. International Challenge Tournaments 16. English National Championships 17. The All England Seniors’ Open Championships 18. English National Junior Championships 19. Inter-County Championships 20. National Leisure Centre Championships 21. Masters County Challenge 22. Masters County Championships 23. English Recipients for Honours for Services to Badminton 24. Recipients of Awards made by Badminton Association of England Badminton England Facts & Records: Page 1 of 86 As at May 2021 Please contact [email protected] to suggest any amendments. Badminton England Facts and Records 25. English recipients of Awards made by the Badminton World Federation 1. The History of Badminton: Badminton House and Estate lies in the heart of the Gloucestershire countryside and is the private home of the 12th Duke and Duchess of Beaufort and the Somerset family. The House is not normally open to the general public, it dates from the 17th century and is set in a beautiful deer park which hosts the world-famous Badminton Horse Trials. The Great Hall at Badminton House is famous for an incident on a rainy day in 1863 when the game of badminton was said to have been invented by friends of the 8th Duke of Beaufort.
    [Show full text]
  • Maailmameistrivõistlused Sulgpallis. Meeste Paarismäng
    MAAILMAMEISTRIVÕISTLUSED SULGPALLIS. MEESTE PAARISMÄNG Jrk Aasta & võistluspaik Riik Kuld Riik Hõbe Riik Pronksid 1977 Tjun TJUN Christian HADINATA Bengt FRÖMAN Ray STEVENS 1 INA INA SWE ENG Malmö (Swe) Johan WAHJUDI Ade CHANDRA Thomas KIHLSTRÖM Mike TREDGETT F: 15:6, 15:4 PF T/F: 7:15, 11:15 PF H/C: 8:15, 10:15 1980 Christian HADINATA Hariamanto KARTONO Misbun SIDEK Flemming DELFS 2 INA INA MAS DEN Jakarta (Ina) Ade CHANDRA Rudy HERYANTO Jalani SIDEK Steen SKOVGAARD F: 5:15, 15:5, 15:7 PF C/H: 9:15, 10:15 PF K/H: 7:15, 7:15 1983 Steen FLADBERG Martin DEW Christian HADINATA Joo-Bong PARK 3 DEN ENG INA KOR Kopenhaagen (Den) Jesper HELLEDIE Mike TREDGETT Bobby ERTANTO Eun-Ku LEE F: 15:10, 15:10 PF H/E: 16:18, 11:15 PF D/T: 8:15, 15:2, 4:15 1985 Joo-Bong PARK Yongbo LI Liem Swie KING Mark CHRISTENSEN 4 KOR CHN INA DEN Calgary (Can) Moon-Soo KIM Bingyi TIAN Hariamanto KARTONO Michael KJELDSEN F: 5:15, 15:7, 15:9 PF P/K: 11:15, 15:17 PF L/T: 16:18, 18:14, 3:15 1987 Yongbo LI Jalani SIDEK Jens Peter NIERHOFF Joo-Bong PARK 5 CHN MAS DEN KOR Peking (Chn) Bingyi TIAN Razif SIDEK Michael KJELDSEN Moon-Soo KIM F: 15:2, 8:15, 15:9 PF L/T: 4:15, 4:15 PF S/S: 16:17, 4:15 1989 Yongbo LI Hongyong CHEN Jalani SIDEK Rudy GUNAWAN 6 CHN CHN MAS INA Jakarta (Ina) Bingyi TIAN Kang CHEN Razif SIDEK Eddy HARTONO F: 15:3, 15:12 PF L/T: 10:15, 9:15 PF C/C: 11:15, 7:15 1991 Joo-Bong PARK Jon HOLST-CHRISTENSEN Bagus SETIADI Yongbo LI 7 KOR DEN INA CHN Kopenhaagen (Den) Moon-Soo KIM Thomas LUND Imay HENDRA Bingyi TIAN F: 15:10, 12:15, 17:16 PF P/K: 2:15, 12:15 PF
    [Show full text]
  • Badminton Packet # 2
    BADMINTON PACKET # 2 INSTRUCTIONS This Learning Packet has two parts: (1) text to read and (2) questions to answer. The text describes a particular sport or physical activity, and relates its history, rules, playing techniques, scoring, notes and news. The Response Forms (questions and puzzles) check your understanding and appreciation of the sport or physical activity. INTRODUCTION Badminton is a popular and physically demanding game with an interesting history. Like most sports, it requires that players be physically fit and alert. The game demands intense playing time on the court—in fact, games can last anywhere from thirty to ninety minutes. Badminton is considered a good sport to help build and main- tain overall fitness. During an average game, players jump, run, turn and twist in many different directions. In fact, a top-level amateur badminton player runs more in a badmin- ton game than a football end does during a one-hour football game. A badminton player also uses his/her arms more than a pitcher does in the average one and one-half hour baseball game! In short, badminton is great aerobic exercise. It’s a fun sport and also is a means to better physical fitness. HISTORY OF THE GAME Badminton is said to have been played centuries ago in China; the earliest written records of the game date back to the twelfth century. However, the game that we know today as badminton was first played in England in 1873 by soldiers returning from military service in India. There the game was called “poona.” In 1903, the first international badminton competition was played in Ireland.
    [Show full text]
  • Ganda Putra Hendra/Ahsan Jadi Pasangan Atlet Tertua Di Olimpiade Tokyo
    Ganda Putra Hendra/Ahsan Jadi Pasangan Atlet Tertua di Olimpiade Tokyo Realitarakyat.com – Hendra Setiawan/Mohammad Ahsan menjadi salah satu wakil Indonesia yang akan bersaing di Olimpiade Tokyo pada 23 Juli hingga 8 Agustus mendatang meski dalam usia mereka yang tak lagi muda. Dalam usia Hendra yang memasuki 37 dan Ahsan 34 tahun, pasangan peringkat kedua dunia itu menjadi ganda putra tertua di Olimpiade Tokyo nanti. Sebetulnya ada beberapa pemain ganda putra lainnya yang juga melampaui usia lebih dari 30 tahun yang akan tampil di Tokyo, diantaranya Hiroyuki Endo (34), Keigo Sonoda (31), Takeshi Kamura (31), Andres Skaarup Rasmussen (32), Ivan Sozonov (32) dan Vladimir Ivanov (34). Meski sudah melampaui usia emas mereka, Hendra/Ahsan justru seperti terlahir kembali dan mampu menunjukkan persaingannya di level elite dunia pada 2019 sejak keduanya menapaki karier bersama mulai dari nol pada 2018, setelah sempat dipisahkan karena Hendra keluar dari pelatnas pada 2017. Di tengah persaingan para pemain-pemain muda berusia 20 tahunan, pasangan berjuluk The Daddies itu tercatat lolos ke 11 final turnamen BWF sepanjang 2019. Mereka bahkan sukses menyabet status juara dalam tiga ajang besar, yakni All England, Kejuaraan Dunia Bulu Tangkis dan BWF World Tour Finals. Berkat prestasi tersebut, Hendra/Ahsan pun berhasil menduduki peringkat kedua dunia sejak Agustus 2019 hingga sekarang. Mereka mengungguli pemain-pemain muda, seperti Li Jun Hui/Liu Yu Chen (China), Fajar Alfian/Muhammad Rian Ardianto (Indonesia) dan Lee Yang/Wang Chi-Lin (Taiwan). Dengan menempati peringkat kedua dunia itu, Hendra/Ahsan menjadi salah satu wakil Indonesia yang lolos kualifikasi Olimpiade Tokyo bersama kompatriot sekaligus juniornya Kevin Sanjaya Sukamuljo/Marcus Fernaldi Gideon.
    [Show full text]
  • Quad-Byte Transformation As a Pre-Processing to Arithmetic Coding
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 12, December - 2013 Quad-Byte Transformation as a Pre-processing to Arithmetic Coding Jyotika Doshi GLS Inst.of Computer Technology Opp. Law Garden, Ellisbridge Ahmedabad-380006, INDIA Savita Gandhi Dept. of Computer Science; Gujarat University Navrangpura Ahmedabad-380009, INDIA second-stage conventional compression algorithm. Abstract Thus, the intent is to use the paradigm to improve the overall compression ratio in comparison with Transformation algorithms are an interesting what could have been achieved by using only the class of data-compression techniques in which one compression algorithm. can perform reversible transformations on datasets Arithmetic coding [8, 11, 30] is the most widely to increase their susceptibility to other compression preferred efficient entropy coding technique techniques. In recent days, due to its optimal providing optimal entropy. Most of the data entropy, arithmetic coding is the most widely compression algorithms like LZ algorithms [22, 28, preferred entropy encoder in most of the 31, 32]; DMC (Dynamic Markov Compression) [2, compression methods. In this paper, we have 4]; PPM [15] and their variants such as PPMC, proposed QBT-I (Quad-Byte Transformation using PPMD and PPMD+ and others, context-tree Indexes) method to be used as a pre-processing weighting method [29], Grammar—based codes [9] stage before applying arithmetic codingIJERT IJERTand many methods of image compression, audio compression method. QBT-I is intended to and video compression transforms data first and introduce more redundancy in the data and make it then apply entropy coding in the last step. Earlier- more compressible using arithmetic coding.
    [Show full text]