C-215 Cruise Report

Total Page:16

File Type:pdf, Size:1020Kb

C-215 Cruise Report CRUISE REPORT C215 Scientific data collected aboard SSV Corwith Cramer Key West, Florida – Freeport, Bahamas – Samana, Dominican Republic – Silver Bank, Dominican Republic – Key West, Florida 13 February – 21 March, 2008 Windrows of Sargassum weed. Photo by Jeff Schell Sea Education Association Woods Hole, Massachusetts Contact Information: Dr. Jeffrey M. Schell Sea Education Association P.O. Box 6 Woods Hole, MA 02543 508-540-3954 (phone) 800-552-3633 (phone) 508-457-4673 (fax) www.sea.edu Table of Contents Table 1 Ship’s Company 2 Data 3 Description Figure 1 Cruise track 4 Table 2 Summary of oceanographic sampling stations 5-6 Figure 2a Surface water hydrographic regions 7 Figure 2b Surface TS plot and Chlorophyll-a Fluorescence (XYZ plot) 8 Table 3 Surface Station data 9-10 Table 4 CTD station data 11 Table 5 Hydrocast station data 12-13 Figure 3 Water Column TS plot 14 Figure 4a CTD cross-section plot: South to East Florida Shelf and Gulf Stream 15 Figure 4b CTD cross-section plot: NW Sargasso Sea-eddy field 16 Figure 4c CTD cross-section plot: SW Sargasso Sea-eddy field 17 Figure 5a ADCP cross-section plot: South to East Florida Shelf and Gulf Stream 18 Figure 5b ADCP surface current vectors: South to East Florida Shelf and Gulf Stream 19 Figure 6a ADCP cross-section plot: NW and SW Sargasso Sea-eddy fields 20 Figure 6b ADCP surface current vectors: NW Sargasso Sea-eddy field 21 Figure 6c ADCP surface current vectors: SW Sargasso Sea-eddy field 22 Table 6a-b Neuston net station data 23-25 Table 7a-b Meter net station data 26 Table 8a-b Zooplankton 100 count data 27-28 Table 9 Dip net station data 29-30 Table 10 Sediment station data 31 Table 11 Student Research Topics 32 Table 1. C215 Ship’s crew and student participants Nautical Staff Beth Doxsee Captain Carl Herzog Chief Mate Lix Maloney 2nd Mate Sandy Alesworth 3rd Mate Marshall Frye Engineer Sarah Austin Steward Emily Williams Asst Steward Nick Anderson Asst Steward Scientific Staff Jeff Schell Chief Scientist Jim Foley 1st Scientist Nik Shonka 2nd Scientist Maia Theophanis 3rd Scientist Videographers Ryan Maneri Executive Producer Eric Bendick Sound and Lighting Students Gregory Ardini Roger Williams University Etan Brandt-Finell University of Colorado, Boulder Meredith Briand St. Francis Xavier University Shandy Buckley University of Hawaii, Manoa Derek Castro Bowdoin College Jacqueline Feurer SUNY Plattsburg Margaret Garascia Wellesley College Anna Hertzberg Oberlin College Morgan Kelly Lynchburg College Jessica McDermott Binghamton University Kathleen Murphy University of Denver Elizabeth Nguyen Carleton College Allison Pfeiffer Carleton College Zara Pickett Santa Rosa Junior College Elizabeth Stivison Wesleyan University Emily Thiem Lawrence University Brittany Vannoy University of Denver Charley Willison Delta College 2 Data Description This cruise report provides a record of data collected during the cruise C215 aboard the SSV Corwith Cramer to and from Key West, Florida with stops in Freeport, Bahamas and Samana, Dominican Republic, and Silver Bank, Dominican Republic (Figure 1). We collected data with 79 individual deployments from 55 discrete stations (Table 2) along our cruise track. In addition we continuously sampled water depth, sub-bottom profiles and Acoustic Doppler Current Profiles (ADCP) along with flow-through sea surface temperature, salinity and in vivo fluorescence. This report summarizes physical, chemical and biological characteristics along our cruise track and around surveyed island and carbonate bank systems. The C215 cruise track traversed several oceanic regions that can be distinguished by their sea surface temperature, salinity, and chlorophyll-a fluorescence values (Figures 2a-b). Periodic surface nutrient and extracted chlorophyll-a was also measured (Table 3). Sub-surface water masses and their chemical properties were also surveyed using a 12 bottle carousel equipped with a CTD and various instruments (Tables 4 and 5). Large scale hydrography are summarized by TS and contour plots of temperature, salinity, density and in vivo chlorophyll-a fluorescence along our cruise track (Figure 3) and for specific transects across key oceanic features (Figures 4a-c). Oceanic currents are summarized by contour (magnitude and direction) and surface vector plots for important geographic regions: Florida Straits and Gulf Stream (Figures 5a-b) and NW and SW Sargasso Sea (Figures 6a-c). Frequent collections of zooplankton and micronekton communities were conducted using a neuston net (Tables 6a-b), and various meter nets (Tables 7a-b). Zooplankton diversity and taxa composition was examined for all nets (Tables 8a-b). Collection of Sargassum weed and associated community of organisms occurred regularly (Table 9). A detailed analysis of mobile and sessile fauna; as well nutrient enrichment experiments, were performed for various student projects. This data is available upon request. In addition, vertical and horizontal distribution patterns of myctophids (lantern fish), and the marine insect Halobates were studied in relation to environmental characteristics. Results, not reported here, are available upon request through SEA. In collaboration with Dr. Peter deMenocol (Lahmont Doherty Earth Observatory) and as part of various student projects, seafloor sediments were collected using either a shipek grab or gravity core. Brief qualitative descriptions of sediments are provided (Table 10); however, additional data (grain size and foraminifera counts) are available upon request. Additional CTD, CHIRP, ADCP and biological data not reported here are available on request through Sea Education Association (SEA) and the Chief Scientist. The information in this report is not intended to represent final interpretation of the data and should not be excerpted or cited without written permission from SEA. As part of SEA’s educational program, undergraduates conducted independent oceanographic research during the cruise. Project explored regionally, relevant topics in the disciplines of physical, chemical, biological and geological oceanography (Table 11). Student research efforts culminated in a written report and public presentation to the ship’s company. These papers are available on request from SEA. Jeff Schell Chief Scientist C215 3 Figure 1. Final cruise track for C215 based on hourly (local time) positions. Oceanic biomes recognized during C215 include the Florida Straits, a narrow and shallow channel dominated by the Florida Current/Gulf Stream; that separates the Florida continental shelf from the carbonate platforms of the Bahamas Banks. Blake Plateau, a drowned/sediment starved carbonate platform, the NW and SW portions of the Sargasso Sea, the NW Providence Channel separating the predominate banks of the Bahamian platform, the SE banks of the Bahama Platform (Silver Bank), and Samana Bay, Dominican Republic. Blake Plateau North NW Sargasso Atlantic Sea Freeport FL Straits / Gulf Stream Key West NW SW Providence Sargasso Channel Sea Silver Bank Samana 4 Table 2. Summary of oceanographic sampling stations for C215. Station # Date Time Log (nm) Lat (dec Lon (dec Location Station (C215-) (2008) (local +4 Deg N) Deg W) Type GMT) 001 14-Feb 1543 0 24.5 -81.8 South Florida Shelf HC 001 14-Feb 1611 0 24.52 -81.81 South Florida Shelf NT 001 14-Feb 1530 0 24.53 -81.82 South Florida Shelf SG 002 15-Feb 1103 2 24.46 -81.80 South Florida Shelf DN 003 15-Feb 1332 12 24.37 -81.64 South Florida Shelf CTD 004 16-Feb 0000 58 24.50 -81.23 South Florida Shelf CTD 004 16-Feb 0052 58 24.49 -81.24 South Florida Shelf NT 005 16-Feb 0848 71 24.27 -80.98 South Florida Shelf DN 006 16-Feb 1549 94 24.62 -80.72 South Florida Shelf CTD 007 16-Feb 2353 119 24.76 -80.55 South Florida Shelf CTD 008 17-Feb 0740 152 24.91 -80.41 South Florida Shelf DN 009 17-Feb 1045 161 24.85 -80.41 South Florida Shelf DN 009 17-Feb 1023 161 24.8 -80.4 South Florida Shelf HC 009 17-Feb 1058 161 24.85 -80.41 South Florida Shelf NT 009 17-Feb 1023 161 24.84 -80.39 South Florida Shelf SG 010 17-Feb 1636 177 24.70 -80.49 South Florida Shelf DN 011 18-Feb 0507 214 25.94 -79.75 Florida Current CTD 012 18-Feb 1809 258 27.2 -79.9 East Florida Shelf HC 012 18-Feb 1809 258 27.18 -79.93 East Florida Shelf SG 013 18-Feb 2135 268 27.66 -79.96 East Florida Shelf NT 014 19-Feb 0940 298 28.40 -79.92 East Florida Shelf CTD 014 19-Feb 0940 298 28.4 -79.9 East Florida Shelf HC 014 19-Feb 1005 298 28.49 -79.91 East Florida shelf PN 015 19-Feb 1448 325 28.2 -80.1 East Florida Shelf HC 015 19-Feb 1448 325 28.24 -80.12 East Florida Shelf SG 016 19-Feb 1815 340 28.3 -79.9 East Florida Shelf HC 016 19-Feb 1815 340 28.30 -79.90 East Florida Shelf SG 017 19-Feb 2219 355 28.38 -79.74 Florida Current NT 018 20-Feb 0547 381 28.52 -79.30 Florida Current NT 019 20-Feb 1019 391 28.44 -79.13 Blake Plateau CTD 020 20-Feb 1747 401 28.33 -79.09 Blake Plateau SG 021 21-Feb 0001 402 28.50 -78.97 Blake Plateau NT 022 21-Feb 0810 412 28.72 -78.66 Blake Plateau DN 023 21-Feb 1154 415 28.76 78.68 Blake Plateau GC 023 21-Feb 1032 414 28.77 -78.64 Blake Plateau SG 024 22-Feb 1624 515 29.14 -77.15 Blake Plateau CTD 025 23-Feb 0545 542 28.91 -76.57 Sargasso Sea CTD 026 23-Feb 1730 574 28.26 -76.24 Sargasso Sea CTD 027 24-Feb 0020 592 27.76 -76.27 Sargasso Sea NT 028 24-Feb 0928 636 26.96 -76.50 Sargasso Sea DN 029 25-Feb 1140 783 26.52 -78.78 NW Providence Channel DN 030 27-Feb 0207 894 26.12 -78.23 NW Providence Channel CTD 030 27-Feb 0120 894 26.09 -78.23 NW Providence Channel SG 031 27-Feb 0828 912 26.01 -77.88 NW Providence Channel DN
Recommended publications
  • Multidecadal and NA0 Related Variability in a Numerical Model of the North Atlantic Circulation
    Multidecadal and NA0 related variability in a numerical model of the North Atlantic circulation Multidekadische und NA0 bezogene Variabilitäin einem numerischen Modell des Nordatlantiks Jennifer P. Brauch Ber. Polarforsch. Meeresforsch. 478 (2004) ISSN 1618 - 3193 Jennifer P. Brauch UVic Climate Modelling Research Group PO Box 3055, Victoria, BC, V8W 3P6, Canada http://climate.uvic.ca/ [email protected] Die vorliegende Arbeit ist die inhaltlich unverändert Fassung einer Dis- sertation, die 2003 im Fachbereich Physik/Elektrotechnik der Universitä Bremen vorgelegt wurde. Sie ist in elektronischer Form erhältlic unter http://elib.suub.uni-brernen.de/. Contents Zusammenfassung iii Abstract V 1 Introduction 1 2 Background 5 2.1 Main Characteristics of the Arctic and North Atlantic Ocean .... 5 2.1.1 Bathymetry ............................ 5 2.1.2 Major currents .......................... 7 2.1.3 Hydrography ........................... 8 2.1.4 Seaice ............................... 11 2.1.5 Convection ............................ 12 2.2 Variability ................................. 13 2.2.1 NA0 ................................ 13 2.2.2 Variability in the Arctic Mediterranean ............ 17 2.2.3 GSA ................................19 2.2.4 Oscillations in ocean models .................. 20 3 Model description 3.1 Ocean model ................................ 3.1.1 Equations ............................. 3.1.2 Setup ................................ 3.2 Sea Ice model ............................... 3.2.1 Equations ............................
    [Show full text]
  • Surface Currents Near the Greater and Lesser Antilles
    SURFACE CURRENTS NEAR THE GREATER AND LESSER ANTILLES by C.P. DUNCAN rl, S.G. SCHLADOW1'1 and W.G. WILLIAMS SUMMARY The surface flow around the Greater and Lesser Antilles is shown to differ considerably from the widely accepted current system composed of the Caribbean Current and Antilles Current. The most prominent features deduced from dynamic topography are a flow from the north into the Caribbean near Puerto Rico and a permanent eastward-flowing counter-current in the Caribbean itself between Puerto Rico and Venezuela. Noticeably absent is the Antilles Current. A satellite-tracked buoy substantiates the slow southward flow into the Caribbean and the absence of the Antilles Current. INTRODUCTION Pilot Charts for the North Atlantic and the Caribbean Sea (Defense Mapping Agency, 1968) show westerly surface currents to the North and South of Puerto Rico. The Caribbean Current is presented as an uninterrupted flow which passes through the Caribbean Sea, Yucatan Straits, Gulf of Mexico, and Florida Straits to become the Gulf Stream. It is joined off the east coast of Florida by the Antilles Current which is shown as flowing westwards along the north coast of Puerto Rico and then north-westerly along the northern edge of the Bahamas (BOISVERT, 1967). These surface currents are depicted as extensions of the North Equatorial Current and the Guyana Current, and as forming part of the subtropical gyre. As might be expected in the absence of a western boundary, the flow is slow-moving, shallow and broad. This interpretation of the surface currents is also presented by WUST (1964) who employs the same set of ship’s drift observations as are used in the Pilot Charts.
    [Show full text]
  • Transport Variability of the Deep Western Boundary Current and The
    ARTICLE IN PRESS Deep-Sea Research I 51 (2004) 1397–1415 www.elsevier.com/locate/dsr Transport variabilityof the Deep Western BoundaryCurrent and the Antilles Current off Abaco Island, Bahamas Christopher S. Meinena,Ã, Silvia L. Garzolib, William E. Johnsc, MollyO. Baringer b aCooperative Institute for Marine and Atmospheric Studies, University of Miami, NOAA/AOML/PHOD, 4301 Rickenbacker Causeway, Miami FL 33149, USA bAtlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami FL 33149, USA cRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami FL 33149, USA Received 30 September 2003; received in revised form 6 July2004; accepted 15 July2004 Available online 15 September 2004 Abstract Hydrography is combined with 1-year-long Inverted Echo Sounder (IES) travel-time records and bottom pressure observations to estimate the Deep Western BoundaryCurrent (DWBC) transport east of Abaco Island, the Bahamas (near 26.51N); comparison of the results to a more traditional line of current meter moorings demonstrates that the IESs and pressure gauges, combined with hydrography, can accurately monitor the DWBC transport to within the accuracyof the current meter arrayestimate at this location. Between 800 and 4800 dbar, bounded bytwo IES moorings 82 km apart, the enclosed portion of the DWBC is shown to have a mean southward transport of about 25 Sv (1 Sv ¼ 106 m3 sÀ1) and a standard deviation of 23 Sv. The DWBC transport is primarilybarotropic (where barotropic is defined as the near-bottom velocityrather than the vertical average velocity);geostrophic transports relative to an assumed level of no motion do not accuratelyreflect the actual absolute transport variability(correlation coefficient is 0.30).
    [Show full text]
  • (Coryphaena Hippurus) in the Northeastern Caribbean
    Fisheries Research 175 (2016) 24–34 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Movement dynamics of dolphinfish (Coryphaena hippurus) in the northeastern Caribbean Sea: Evidence of seasonal re-entry into domestic and international fisheries throughout the western central Atlantic a,b,∗ a b Wessley Merten , Richard Appeldoorn , Donald Hammond a Department of Marine Sciences, University of Puerto Rico, Mayagüez, PO Box 9000, Mayagüez, PR 00681, United States b Cooperative Science Services LLC, Dolphinfish Research Program, 961 Anchor Road, Charleston, SC 29412, United States a r t i c l e i n f o a b s t r a c t Article history: Distinct spatial variation and fisheries exchange routes for dolphinfish (Coryphaena hippurus) were Received 1 February 2015 resolved relative to the northeastern Caribbean Sea and U.S. east coast using conventional (n = 742; Received in revised form 26 May 2015 mean ± SD cm FL: 70.5 ± 15.2 cm FL) and pop-up satellite archival tags (n = 7; 117.6 ± 11.7 cm FL) Accepted 18 October 2015 from 2008 to 2014. All dolphinfish released in the northeastern Caribbean Sea moved westward ◦ ◦ (274.42 ± 21.06 ), but slower in the tropical Atlantic than Caribbean Sea, with a maximum straight- Keywords: line distance recorded between San Juan, Puerto Rico, and Charleston, South Carolina (1917.49 km); an Dolphinfish 180-day geolocation track was obtained connecting the South Atlantic Bight to the northern limits of Fisheries management Migration the Mona Passage. Two recaptures occurred within the Mona Passage from San Juan, Puerto Rico, and Mark-recapture St.
    [Show full text]
  • An Introduction to the Oceanography, Geology, Biogeography, and Fisheries of the Tropical and Subtropical Western Central Atlantic
    click for previous page Introduction 1 An Introduction to the Oceanography, Geology, Biogeography, and Fisheries of the Tropical and Subtropical Western Central Atlantic M.L. Smith, Center for Applied Biodiversity Science, Conservation International, Washington, DC, USA, K.E. Carpenter, Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA, R.W. Waller, Center for Applied Biodiversity Science, Conservation International, Washington, DC, USA his identification guide focuses on marine spe- lithospheric units, deep ocean basins separated Tcies occurring in the Western Central Atlantic by relatively shallow sills, and extensive systems Ocean including the Gulf of Mexico and Caribbean of island platforms, offshore banks, and Sea; these waters collectively comprise FAO Fishing continental shelves (Figs 2,3). One consequence Area 31 (Fig. 1). The western parts of this area have of this geography is a fine-grained pattern of often been referred to as the “wider Caribbean Basin” biological diversification that adds up to the or, more recently, as the Intra-Americas Sea (e.g., greatest concentration of rare and endemic Mooers and Maul, 1998). The latter term draws atten- species in the Atlantic Ocean Basin. Of the 987 tion to the fact that marine waters lie at the heart of the fish species treated in detail in these volumes, Americas and that they constitute an American Medi- some 23% are rare or endemic to the study area. terranean that has played a key geopolitical role in the Such a high level of endemism stands in contrast development of the surrounding societies. to the widespread view that marine species characteristically have large geographic ranges In geographic terms, the Western Central and that they might therefore be buffered against Atlantic (WCA) is one of the most complex parts of the extinction.
    [Show full text]
  • Caribbean Current and Eddies As Observed by Surface Drifters
    ARTICLE IN PRESS Deep-Sea Research II 52 (2005) 429–463 www.elsevier.com/locate/dsr2 Caribbean Current and eddies as observed bysurface drifters P.L. Richardsonà Department of Physical Oceanography, MS 29, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, USA Received 19 December 2003; accepted 29 November 2004 Abstract Recent satellite-tracked surface drifter trajectories were analyzed to describe the mean currents and eddies in the 1 Caribbean Sea. The structure of the Caribbean Current and its variabilitywere determined from high-resolution 2- degree maps of the mean velocityand eddykinetic energy.Looping drifter trajectories were used to identifydiscrete cyclones and anticyclones, and their characteristics were described and related to the structure of the mean flow. The translation rate of eddies in different areas was found to be similar to the mean velocityof the local background flow fields, suggesting that the eddies were largelyadvected bythe background flow. Ten energetic anticyclonestranslated westward at 13 cm/s in the Venezuela and Colombia Basins. These anticyclones tended to lie in two bands, centered near 151N and 171N, coinciding with two jets of the Caribbean Current. The northern weaker jet contains water primarilyfrom the North Atlantic; the southern stronger jet contains water from the tropical and South Atlantic. The anticyclones are thought to have formed in the eastern Caribbean from the anticyclonic vorticity derived from North Brazil Current rings. The ring vorticityenters the eastern Caribbean through island passages and is probablyamplified by the anticyclonic shear on the northern side of the jets. Southwest of Cuba a cyclone–anticyclone pair was observed to translate slowly( 2 cm/s) westward into the Yucatan Current.
    [Show full text]
  • Ecological Values of the 12 Miles Zone of Bonaire
    Ecological values of the 12 miles zone of Bonaire Auteurs: I.J.M. van Beek IMARES rapport C026/16 Ecological values of the 12 miles zone of Bonaire I.J.M. van Beek Report number C026/16 IMARES Wageningen UR (IMARES - Institute for Marine Resources & Ecosystem Studies) Client: Ministry of Economic Affairs Postbus 20401 2500 EK Den Haag BAS code: BO-11-011.05-037 Publication date: 18 March 2016 IMARES vision: • ‘To explore the potential of marine nature to improve the quality of life’. IMARES mission: • To conduct research with the aim of acquiring knowledge and offering advice on the sustainable management and use of marine and coastal areas. IMARES is: • An independent, leading scientific research institute. P.O. Box 68 P.O. Box 77 P.O. Box 57 1970 AB IJmuiden 4400 AB Yerseke 1780 AB Den Helder Phone: +31 (0)317 48 09 00 Phone: +31 (0)317 48 09 00 Phone: +31 (0)317 48 09 00 Fax: +31 (0)317 48 73 26 Fax: +31 (0)317 48 73 59 Fax: +31 (0)223 63 06 87 E-Mail: [email protected] E-Mail: [email protected] E-Mail: [email protected] www.imares.wur.nl www.imares.wur.nl www.imares.wur.nl © 2015 IMARES Wageningen UR IMARES, institute of Stichting DLO The Management of IMARES is not responsible for resulting is registered in the Dutch trade damage, as well as for damage resulting from the application of record nr. 09098104, results or research obtained by IMARES, its clients or any claims BTW nr.
    [Show full text]
  • A Study of the Circulation of the Western Nor Th Atlantic
    PAPERS IN PHYSICAL OCEANOGRAPHY AND METEOROLOGY PUBLISHED BY MASSACHUSETTS INSTITUTE OF TECHNOLOGY AND WOODS HOLE OCEANOGRAPHIC INSTITUTION (In continuation of Massachusetts Institute of Technology Meteorological Papers) VOL. IV, NO. 4 A STUDY OF THE CIRCULATION OF THE WESTERN NOR TH ATLANTIC BY C. O'D. ISELIN Contribution No. 108 from the Woods Hole Oceanographic Institution CAMBRIDG E, MASSACHUSETTS August, 1936 " CONTENTS INTRODUCTION . Preliminary considerations 5 5 Equipment and methods Distribution of stations . 5 7 Natural boundaries of the Sargasso Sea 8 THE BERMUDA TRIANGLE . The subdivision of the region 9 Distribution of temperature and salinity by the method of sections 9 13 Chesapeake Bay-Bermuda. 13 Nova Scotia-Bermuda . 22 Variations of temperature and salinity with depth 26 Method . 26 The slope water 28 The Central Atlantic water 32 Seasonal temperature cycle near the surface Correlation between temperature and salinity 34 34 Method 34 The slope water 35 The Central Atlantic water 38 Comparison between the two regions The deep water 38 39 Tempei:ature 39 Salini ty . 41 Densi ty 42 OTHER ATLANTIS SECTIONS The location of the sections. 43 Mid-Atlantic sections 43 The North Atlantic Current. 45 The Northern Equatorial Current 45 Antiles Current sections 49 Haiti-Bermuda. 55 Bermuda-Elbo Cay 55 58 Florida Current sections 60 Cape Canaveral 61 Jackson ville. 64 Onslow Bay. 67 THE DEPTH OF THE 10° ISOTHERM IN THE WESTERN NORTH ATLANTIC 69 THE GULF STREAM SYSTEM 72 Previous subsurface investigations 72 The three subdivisions of the Gulf Stream System 73 The sources and character of the Gulf Stream System 75 THE SARGASSO SEA .
    [Show full text]
  • Ocean Current Energy Resource Assessment for the United States
    OCEAN CURRENT ENERGY RESOURCE ASSESSMENT FOR THE UNITED STATES A Dissertation Presented to The Academic Faculty by Xiufeng Yang In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Civil and Environmental Engineering Georgia Institute of Technology December 2013 Copyright c 2013 by Xiufeng Yang OCEAN CURRENT ENERGY RESOURCE ASSESSMENT FOR THE UNITED STATES Approved by: Kevin A. Haas, Committee Chair Emanuele Di Lorenzo School of Civil and Environmental School of Earth and Atmospheric Engineering Sciences Georgia Institute of Technology Georgia Institute of Technology Hermann M. Fritz Paul A. Work School of Civil and Environmental California Water Science Center Engineering U.S. Geological Survey Georgia Institute of Technology Philip J. Roberts Date Approved: November 11, 2013 School of Civil and Environmental Engineering Georgia Institute of Technology ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my advisor Dr. Kevin Haas, for providing me with research opportunities and his patient and enlightening guidance throughout my time at Georgia Tech. I am extremely grateful for the invaluable time Dr. Hermann Fritz has invested in advising my research. I sincerely thank Dr. Paul Work for educating me in various topics in coastal engineering and providing me with field and teaching experiences. I want to sincerely thank Dr. Di Lorenzo for enriching my knowledge in oceanography and his continuous support since my thesis proposal. I also wish to thank Dr. Philip Robert for serving on my thesis committee and his comments on my thesis. I would also like to thank other professors, Dr. Donald Webster, Dr. David Scott, Dr.
    [Show full text]
  • The Water Circulation of the North Atlantic
    THE WATER CIRCULATION OF THE NORTH ATLANTIC (Extract from La Revue Maritime, Paris, June 1934, P* 754)- The above journal contains a very interesting paper by Enseigne de Vaisseau (retd.) P . d e M o r s ie r , entitled La Circulation des Eaux de I’Atlantique Nord, on the formation of the ocean currents of the North Atlantic. He summarises and co-ordinates some general principles extracted from tbe oceanographical works of Professors P e t t e r s s o n and S a n d s t r o m , of M . L e D a n o i s , of Commandant B e a u g e and of the I nternational I c e P a t r o l S e r v i c e , which help to explain the present conception of the general mechanism of the principal ocean currents and to make clear the hydrographical condi­ tions found along the coasts. If the sea is considered as a stratified fluid, external forces cannot effect any exchange of particles between the different layers, but vertical circulation arises when a physical change taking place in the sea water alters its density; the volume of water concerned abandons its existing level and takes up a position in a layer corresponding to its new density. (1). The polar ice in melting acts as a hydraulic pump driving down to the bottom, by cooling, the water round it, and drawing the warmer water to the surface. The drawing up effect of the melting ice of the southern hemisphere, much more extensive than that of the northern hemisphere, would appear to make itself felt as far as the Sargasso Sea which is the common reservoir pouring warm water towards the Arctic and Antarctic regions.
    [Show full text]
  • Aquatic Sciences and Fisheries Information System: Geographic
    ASFIS-7 (Rev. 3) AQUATIC SCIENCES AND FISHERIES INFORMATION SYSTEM GEOGRAPHIC AUTHORITY LIST ASFIS REFERENCE SERIES, No. 7 Revision 3 ASFIS-7 (Rev. 3) AQUATIC SCIENCES AND FISHERIES INFORMATION SYSTEM GEOGRAPHIC AUTHORITY LIST edited by David S Moulder Plymouth Marine Laboratory Plymouth, United Kingdom revised by Ian Pettman and Hardy Schwamm Freshwater Biological Association Ambleside, Cumbria, United Kingdom Food and Agriculture Organization of the United Nations Rome, 2019 Required citation: FAO. 2019. Aquatic sciences and fisheries information system. Geographic authority list. ASFIS-7 (Rev. 3) Rome. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131173-8 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode).
    [Show full text]
  • Oceanography by Pavan K
    Oceanography By Pavan K. Tiwari 2/10/2017 Pragnya IAS Academy Bangalore [Type text] Page 1 Hydrosphere – Ocean Floor Division Ocean Floor Division Continental Self . Basically the seaward extension of the continent from the shoreline to the continental edge approx. 200 m deep . Continental shelf is thus a shallow platform, whose width varies greatly from a few miles in North Pacific off the continent of North America to over 100 miles off North West Europe . In some places, where the coasts are extremely mountainous, such as at Rocky Mountains, the continental shelf may be entirely absent . The angle of slope is also variable with most common of 1 in 500 & is normally the least, where the continental shelf is widest . Continental shelves may be formed by submersion of part of continent due to increase in sea level or by wave erosion or conversely by off-shore deposition . Continental shelves shallowness enables sunlight to penetrate through the water, which encourages the growth of minute plants & other microscopic organisms such as planktons, on which millions of fishes & polyps survive. The continental shelves are therefore the richest fishing grounds in the world. Pavan K Tiwari Page 2 Continental Slope . At the southern edge of continental self, seaward slope immediately becomes steep & gradient to about 1 in 20 with average depth 200 – 3000 m. Most of the canyons & trenches are observed in this region Continental Rise . Beyond the continental slope is continental rise, an area of gentle slope with angle varying from .5 – 1* . With increasing depth, it virtually becomes flat & merges with abysmal plains Pavan K Tiwari Page 3 Abysmal Plains .
    [Show full text]